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Abstract: Drought is one of many critical problems that could arise as a result of climate change
as it has an impact on many aspects of the world, including water resources and water scarcity. In
this study, an assessment of hydrological drought in the Gidra River is carried out to characterize
dry, normal, and wet hydrological situations by using the Slovak Hydrometeorological Institute
(SHMI) methodology. The water bearing coefficient is used as the index of the hydrological drought.
As machine and deep learning are increasingly being used in many areas of hydroinformatics, this
study is utilized artificial neural networks (ANNs) and support vector machine (SVM) models to
predict the hydrological drought in the Gidra River based on daily average discharges in January,
February, March, and April of the corresponding year. The study utilized in total 58 years of daily
average discharge values containing 35 normal and wet years and 23 dry years. The results of the
study show high accuracy of 100% in predicting hydrological drought in the Gidra River. The early
classification of the hydrological situation in the Gidra River shows the potential of integrating
water management with the deep and machine learning models in terms of irrigation planning and
mitigation of drought effects.

Keywords: drought; drought forecasting; machine learning; artificial neural networks; support vector
machines; water bearing coefficient

1. Introduction

Drought can be characterized based on the objective of the study, which is essential
when quantifying drought [1]. Generally, drought can be defined as a prolonged dry
period in the natural climate cycle that can occur anywhere in the world. Considerable
changes in climate components during the past decades are now being connected in several
cases to abnormal events such as droughts and floods [2]. Droughts generally correlate
with large-scale impacts and are often driven by regional or even global-scale climate
features. The historic classification of drought has emerged mainly from meteorological
and hydrological studies in order to manage agricultural and socioeconomic impacts [3].
Hence, drought classification is usually divided into four major categories: hydrological
drought, soil moisture drought, meteorological drought, and socioeconomic drought [4].

Meteorological drought is usually followed by a hydrological drought, which typi-
cally begins with an extended lack of precipitation as a result of atmospheric circulation.
Precipitation deficits take longer to manifest in hydrological system components such as
soil moisture, streamflow, groundwater, and reservoir levels. Hydrological drought is
characterized by decreased river discharges, below-normal groundwater levels, declining
the area of wetlands, and low water levels in lakes or reservoirs [4]. Additionally, hydro-
logical drought is characterized by low flow periods in rivers; however, the continuous
seasonal appearance of low flow is not necessarily a hydrological drought. In contrast,
many researchers define the hydrological drought as a prolonged period of low flow in the
river [5].
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Drought prediction tools are considered critical for risk management, water resources
engineering, and planning [6]. For predictions, there are several ways to model hydrologi-
cal events such as floods and drought. Physically based models have been used to forecast
hydrological phenomena such as storms, rainfall or runoff, shallow water conditions, and
hydraulic flow models. Additionally, physical models are capable of forecasting a wide
range of flooding/drought situations, but they frequently need a variety of hydrogeo-
morphological monitoring information, which requires extensive computing and limits
short-term prediction [7].

The shortcomings of the previously mentioned physically based models encourage
the use of advanced data-driven models, such as machine learning (ML). Data-driven
prediction models based on machine learning are promising tools because they are easier
to develop and require fewer inputs.

Machine learning (ML) is a branch of artificial intelligence (AI) that is used to detect
regularities and patterns. It provides easier implementation with low computation costs,
together with faster training, validation, testing, and assessment when compared to physical
models [7]. Drought forecasting in this article is conducted using ML algorithms to provide
yearly a hydrological preassessment of the Gidra River.

Many scientific researchers include advanced algorithms to analyze time-sequence
hydrological data such as autoregressive integrated moving average models (ARIMAs), and
nonlinear autoregressive neural networks (NARs) [6–8] in order to produce predictions for
a variety of purposes. However, in many cases with limited data sources, classic machine
learning algorithms such as SVM or a simple deep learning neural network ANN have
shown to be capable of providing practical and valuable information as the results obtained
in this study.

A recent study aimed to forecast hydrometeorological drought by Alrashidi and
Alsumaiei in a hyperarid climate region (Arabian Golf/Kuwait) utilized the Levenberg–
Marquardt algorithm to train an NAR model as a forecasting tool. The model was tested
for forecasting 12- and 24-month droughts using the precipitation index (PI) [9]. Moreover,
the model was assessed by four statistical metrics in the training and validation phases.
The performance was significant by reaching a 0.784–0.883 range of computed R2 score and
outperformed other periodic models developed for the same purpose. The NAR model
forecasted droughts in hyperarid climates with similar efficiency to other ANN-based
methods for drought forecasting in other climatic regions. Thus, it shows the capabilities of
such models in the field of hydroinformatics [6].

Another study was conducted to predict drought situations in the Awash River basin
of Ethiopia by using three types of machine learning models: artificial neural networks
(ANNs), support vector regression (SVR), and coupled wavelet-ANNs (WA-ANN). The
study used the standardized precipitation index (SPI) as a drought index and two different
statistical tests (RMSE and R2) to evaluate the accuracy of the three models. The results
indicated that WA-ANN models were the most accurate among other models for forecasting
SPI 3 (3-month SPI) and SPI 6 (6-month SPI) values over lead times of 1 and 3 months in
the Awash River basin in Ethiopia, which also confirm the ability of such models to predict
drought indices with a high accuracy rate [10].

The available data play a significant role in the process of selecting the type of model
for each study area, and it may have a direct impact on the model’s accuracy or even the
output format, which may reflect on the purpose of drought forecasting tools. In this article,
the only type of data that was recorded for the Gidra River is the daily average discharge
at the only gauge station upstream on the river. Therefore, this study aims to predict
in general the annual hydrological situation of the Gidra River based on daily average
discharges of the first four months, accordingly it could provide a seasonal warning [11] of
a hydrological situation in the river. Thus, it mitigates the results of drought by regulating
the operation of existing water structures for the rest of the year.

The water bearing coefficient is the hydrological index used in this study to assess the
hydrological situation in the Gidra River. This index categorizes the river’s hydrological
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situation into three different statuses (dry, normal, and wet). Despite the fact that it
measures the severity of dry and wet periods, the goal of this study is to forecast or classify
the river’s hydrological situation regardless of the severity of the dry/wet periods.

The study provides practical evidence on the importance of integrating AI in the
field of water management and hydrology. Although the input data are restricted to the
daily average discharge values, two machine learning models showed high accuracy in
predicting drought events according to the water bearing coefficient. The water bearing
coefficient was used as the drought index in this study, which is generally useful in any area
where the input data is limited to daily average discharge values. By deploying two simple
machine learning models, an accuracy of 100% was reached when predicting drought in a
local river. Both models have been tested for the next two following years and the results
were accurate. This study may encourage many researchers to take small steps to deploy
machine learning models and try to solve real-world problems. Moreover, the results of
both models contribute to the annual assessment of the hydrological situations for the
Gidra River by providing an early classification of the hydrological situation according to
the methodology of SHMI.

2. Materials and Methods
2.1. Study Area

The Gidra River catchment is located above the village of Píla on the southeastern
slopes of the Little Carpathians, which are situated in western Slovakia (Figure 1). The
catchment is more than 95% forested [12]. These mountains belong to the southern corner
of the inner Carpathian and, in their upper parts, the streams flow through the original
beech forest environment.

Figure 1. Location of the research area (Gidra River basin) in Slovakia [13].

Many water abstractions exist along the Gidra River, and those water abstractions are
both private and public. The drought assessment must trace every source of water whether
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from water abstractions, reservoirs, ponds, weirs, or fisheries to control every possibility
of water loss along the river. Figure 2 shows the Gidra River and all of the existing water
abstractions, which are:

1. Fishery Častá [14] is a system of ponds where the water is diverted by side abstraction.
2. Budmerice water structure and Hájiček pond [15] are water structures located up-

stream from Budmerice village, which diverts water into the Budmerice reservoir and
the Gidra River.

3. Pond in Cífer [16] is a throughflow pond (the volume of water flows into the pond
and the other side of the pond has outflow back to the Gidra River).

4. Upper Ronava and Lower Ronava [17,18] are water abstractions that are used for
filling the Ronava reservoir in the neighboring catchment.

5. Upstream side abstraction of Voderady weir [19] is a water abstraction for supplying
a small pond in the park of Voderady manor house (weir of Voderady).

Figure 2. Gidra River and its tributaries showing all described abstractions and water structures.

The area under the mountain regions often encounters flash floods [20]. In 2018,
approximately the lowest quarter of the Gidra River was completely dry according to many
local observations. The reason was ambiguous and only two actions could have been taken.
The first option was to trace back the volume of the water used in every abstraction along
the river. Therefore, it would ensure whether there was any unusual activity or irregular
water consumption that year. This method is impractical due to the missing record of water
abstraction in each part of the river.

The second option was to conduct a drought assessment of the Gidra River over the
past 58 years and detect all the dry periods to detach any related events. This method is set
to check the effect of a continuous dry period on the groundwater level. Additionally, it
allows the possibility of interpreting the situation of 2018 as a result of water infiltrating
into the ground due to precedent hydrological drought events, which may have led to a
decrease in the level of groundwater. Thus, the deep and machine learning models can
aid in detecting any dry period in the Gidra River catchment by predicting such events in
advance, thus regulating the water operations and distributions accordingly.

For the purpose of this study, the daily mean discharges over 58 years were provided
by SHMI from the only gauging station, called Píla, for the period 1961–2018. The dataset
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contains the date of discharge in the form dd/mm/yyyy, code of gauging stations according
to the SHMI, name of the stream/village, and daily mean discharges in m3·s−1.

2.2. Drought Assessment

There are various indices that are used to measure and identify drought of different
types. These indices include: standardized precipitation index (SPI), standardized stream-
flow index (SSI), a threshold-based index, Palmer drought severity index, and snow water
supply index [21]. The standardized precipitation evaporation index and the standardized
snowmelt and rain index use precipitation and temperature to estimate streamflow [21].

However, most of these indices require more information than only average daily
discharge to give an accurate hydrological assessment. Therefore, in such cases, the water
bearing coefficient is used in Slovakia to assess the hydrological status of a given river. It
compares the average discharge value of any year with the long-term average value (which
represents the normal status) [13]. Exploratory data analysis is performed on daily average
discharges by extracting one of basic low-flow statistics (mean flow) [22] monthly and
annually, then comparing the results on monthly basis over the study period (1961–2018).

As previously mentioned, the data for the daily average discharge obtained for this
study are for 58 years. The data were taken over the period 1961–2018. The hydrological
situation of each year in the dataset is evaluated using the water bearing coefficient. The
ratio between annual average discharge value and long-term average discharge is compared
to standard values, which are defined by the normal, wet, and dry hydrological status of the
river. In Table 1, the standard values of the water bearing coefficient are obtained in order
to differentiate between hydrological characteristics of the river. Standard values of the
water bearing coefficient represent the percentage of average discharge in a given period in
comparison to the long-term average, which is demonstrated in standard intervals. The
standard intervals are divided into three main categories to determine whether the year is
dry, normal, or wet, and more subcategories are used to measure the severity of drought
and wet years [13]. Based on those intervals, it is possible to determine the hydrological
status by calculating the water bearing coefficient for each year, comparing it with the
standard intervals, and then assessing the situation accordingly.

Table 1. Standard values of water bearing coefficient [6].

Hydrological Situation Water Bearing Coefficient Values (%)

DRY

10–29
30–49
50–69
70–89

NORMAL 90–110

WET

111–130
131–150
151–170
171–180

More

The evaluation of the hydrological situation using the water bearing coefficient for the
period between 2001 and 2018 is demonstrated in Table 2. Furthermore, Table 2 consists
of five columns, the first column contains the year index, while the second column has
only one value (long-term average discharge Qa1961–2000 designated according to SHMI
standards), the third column contains values of annual average discharge of each year in
the study period, the fourth column contains the calculated water bearing coefficient for
each year, and the last column contains the hydrological status of the Gidra River for each
year in the study period.
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Table 2. Assessment of hydrological status of the Gidra River using water bearing coefficient values.

Year Qa1961–2000
(m3·s−1)

Qavg
(m3·s−1)

Water Bearing Coefficient
Qavg/Qa

(%)
Status

2001 0.297 0.181 60.8 Dry
2002 0.297 0.258 86.8 Dry
2003 0.297 0.172 57.8 Dry
2004 0.297 0.265 89.1 Normal or wet
2005 0.297 0.195 65.8 Dry
2006 0.297 0.462 155.5 Normal or wet
2007 0.297 0.187 63.0 Dry
2008 0.297 0.110 36.9 Dry
2009 0.297 0.372 125.4 Normal or wet
2010 0.297 0.553 186.3 Normal or wet
2011 0.297 0.379 127.5 Normal or wet
2012 0.297 0.151 50.7 Dry
2013 0.297 0.348 117.2 Normal or wet
2014 0.297 0.239 80.6 Dry
2015 0.297 0.304 102.2 Normal or wet
2016 0.297 0.220 74.2 Dry
2017 0.297 0.105 35.4 Dry
2018 0.297 0.149 50.2 Dry

2.3. Characterization of Normal and Dry Years

To prepare the discharge data for analyzing and modeling, the data were divided into
two separate parts. The first part consists of all daily and monthly average discharges for
dry years. The second part contains daily and monthly average discharges of all wet and
normal assessed years, and starting from this point the notation for normal year refers
to both normal and wet years. By using this methodology, it is possible to detect any
existing pattern in both dry and normal parts of the data. Therefore, it is possible to extract
the average monthly discharges for the long-term normal and dry hydrological years and
compare them in order to find the major differences in monthly average discharges. Figure 3
illustrates the differences in monthly average discharges between normal and dry years.

Figure 3. Monthly mean discharges for dry and normal years for the period 1961–2018.

Differences between monthly mean discharges in dry and normal years vary in their
value each month. However, the value difference in the months of January, February, March,
and April are the most significant, while the differences in mean discharges in the summer
months are smaller. The monthly average discharges show a similar pattern of changes for
dry and normal assessed years, as shown in Figure 3. The monthly average discharges in
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normal years show a steady increase in the first four months of the year, when the peak
is usually reached in April. After the peak, the average monthly discharge value starts
decreasing to reach the lowest value in September and then it starts to increase again until
December. On the other hand, the monthly average discharges of dry years show a similar
pattern with a slight difference. The values differ in the increasing/decreasing magnitude
and the month of the peak/lowest average discharge over the year. A similar rising pattern
was observed in the dry years, but the peak discharge value is reached in March. After the
peak, the values start to decrease from March until reaching the lowest point in August,
then the values follow an increasing pattern until the end of the year.

The difference in the magnitude of a sequence of monthly mean discharges between
normal and dry years is most significant in the first four months. Hence, it may imply that
the average discharge values of the first four months play a decisive role in determining the
hydrological situation of the Gidra River for the whole year. The monthly mean discharge
in April might be the most effective value to assess the hydrological situation. The monthly
mean discharge in March is considered the second most effective value in this approach.

Average discharges for January, February, March, and April provided basic indicators
to differentiate between the normal and dry years. For further analysis, a range comparison
between the monthly average discharges for each month over the study period 1961–2018
was conducted to understand the difference between the dry and normal hydrological
situation in terms of monthly average discharges.

This comparison aimed to examine the overlapping rate of monthly average discharge
values between normal and dry years using box plots for January, February, March, and
April. Figure 4 illustrates the distribution of monthly average discharges in January and
February in both dry and normal years. The boxes represent interquartile ranges (IQR),
which contain 50% of the data (the discharges between 25% and 75% of the ordered data),
while the horizontal line in the middle of the box represents the median. The whiskers
contain the remaining data points, which their values are between (Q1 − 1.5×IQR) and
(Q3 + 1.5×IQR), where Q1 is the point of 25% of the data and Q3 represents the point with
the 75th percentage of the ordered data [23].

By comparing the ranges of January (Figure 4a) average discharges, a high rate of
overlapping is observed. Over 50% of average discharges in normal years contain similar
values as the average discharges in dry years, and over 75% of average discharges in dry
years overlap with less than 50% of average discharge values in normal years. However,
more than 25% of discharges in normal years did not occur in any previous dry year.

In February (Figure 4b), the situation is different, and the rate of overlapping is even
higher than what is observed in January (Figure 4a). For a better understanding of monthly
mean discharge distribution in normal and dry years, it is observed that 75% of average
discharges in dry years overlap with 50% of average discharges in normal years, and over
50% of discharges in dry years overlap with less than 25% of discharges in normal years.

In Figure 5, the ranges of monthly mean discharges of March (Figure 5a) and April
(Figure 5b) for both dry and normal years are displayed in box plots.

In March (Figure 5a), over 90% of average discharges in dry years are distributed
in the range of 0–0.5 m3·s−1. Less than 30% of average discharges in normal years also
fall in the same range. More than 60% of average discharges values in normal years have
never occurred in any dry years, and more than 75% of average discharges in dry years
are overlapping with less than 25% of discharges values in normal years. The overlapping
rate in average discharges for normal and dry years is significant (around 30%, excluding
outliers) over the period between 1961 and 2018. The low overlapping rate in March
provides a valuable indicator to the drought assessment process.
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Figure 4. Range comparison in January (a) and February (b) for the monthly mean discharges.

On the other hand, the ranges of average discharge in April (Figure 5b) for both dry
and normal years have a significant low overlapping rate. Over 95% of average discharges
in dry years are in the range of 0–0.5 m3·s−1. Less than 30% of average discharges in
normal years are in the same range. Only one extreme value of average discharges, which
is classified as an outlier overlaps with 75% of average discharges in normal years.

In summary, we conclude that the variations in monthly average discharges between
dry and normal years are most significant in the first four months of the year. When
comparing the average discharge values for the series of months to the other series of
months, the first four months had the highest difference between dry and normal situations.
However, the overlapping rate of monthly average discharges for January, February, March,
and April in dry and normal situations is not constant. The rate shows the probability of
having similar monthly average discharge values in both dry and normal years. In order to
differentiate between dry and normal hydrological situations, we have to look for the lower
overlapping rate in monthly average discharges for our selected month series, as shown in
Figures 4 and 5. In both figures, we can see the overlapping rate in this monthly series is
sorted in ascending order as follows: April, March, January, and February. Therefore, the
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monthly average discharge value in April is most likely to determine if a specific year is
hydrologically dry or normal. However, in April the overlapping rate reaches 30%, which
is highly error prone and leads to the main investigation of this paper: Based only on the
discharge values of the first four months, how would it be possible to predict the situation
of the Gidra River?

Figure 5. Range comparison in March (a) and April (b) for the monthly mean discharges.

2.4. Modeling Process
2.4.1. Pattern Detection

Two separate patterns were extracted for dry and normal hydrological years of the
Gidra River’s discharges. However, the discharges of the first four months of each year
vary the most when comparing dry and normal average hydrological years. Discharge
distribution for both dry and normal years has a low overlapping rate, which could be
useful to differentiate between dry and normal years.

Although the difference in monthly average discharges is significant when comparing
dry and normal years in the first four months, the level of overlapping in monthly average
discharge distributions is complicated, especially in January and February. Hence, the
modeling process is aimed to use a combination of the precedent analysis results to develop
a model to classify the hydrological situation.
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Thus, the modeling process is based on the following results:

1. Monthly average discharge values of January, February, March, and April vary be-
tween normal and dry hydrological situations.

2. The difference in monthly average discharge values of the first four months is the
highest in comparison to any series of monthly discharge values.

3. Monthly average discharge distribution has a low overlapping rate in March and
April and a relatively moderate overlapping rate in January and February.

4. The overlapping rate of monthly discharge distribution in the first four months is the
lowest in comparison to any series of monthly discharges.

This pattern confirms the results of the previous study regarding hydrological droughts
or periods of low flow in Slovakia [24]. The surface runoff regime in Slovakia is typically
characterized by runoff increased in the spring. It occurs later in mountain areas with
higher altitudes and then in lowland watercourses due to later melting of snow and larger
snow reserves, both of which are important factors influencing spring runoff [24]. If the
level of spring runoff decreases, the discharge rate also decreases. This trend could indicate
a dry situation because the spring runoff is below natural when it is supposed to be the
highest rate of the year.

2.4.2. Data Processing

Data preparation for modeling is a multistep process. This process transforms the raw
data into the desired structure that is compatible with both models used in the study.

The data obtained for this study are the daily average discharge value for the period
1961–2018. The data were first used to extract monthly average discharges for drought
assessment using the water bearing coefficient. Hence, the hydrological situation for each
year in the dataset is determined and assigned a notation as “1” for normal and “0” for dry.
The hydrological situations represent the target of the modeling process, where models
should be able to classify the hydrological situation and provide the output as “1”s and
“0”s for normal and dry situations, respectively.

The aim of the study is to predict the hydrological situation of the Gidra River based
on the daily average discharge values of the first four months. Therefore, the inputs for
the modeling process are the daily average discharge values of the first 120 days, while the
desired outputs of the modeling process are the correct hydrological situation in the form
of “1” for normal and “0” for dry.

The modeling process in machine learning usually includes two steps: training and
testing. Thus, the data are split into two groups; the first group should contain 60–80% of
the data for training, and the second group contains the other 20–40% for testing. Since the
general dataset has approximately a balanced percentage of dry and normal assessed years,
the normal years result in 60% over 35 years and the dry years result in 40% over 23 years.
Additionally, the data over the period 1961–2000 are reserved for training, while the data
over the period 2001–2018 is reserved for testing. The reason behind splitting the data in
this order is to maintain the homogeneity in terms of the variety of hydrological situations
and their severity for a continuous series of years.

Another reason for splitting the data in this manner is to investigate the impact of
using long-term average discharge from 1961 to 2000 on the subsequent period. We used
the long-term average discharge to compute the water bearing coefficient for each year,
and we used the period 1961–2000 as the long-term period to measure its effect on the next
period. As a result, the testing dataset over the period 2001–2018 meets the conditions for
homogeneity and tests the efficacy of utilizing the long-term average value in accordance
with SHMI’s recommendations.

The first group (training set) contains the daily average discharges of the first 120 days
over the period 1961–2000 and the hydrological situations as the target values, while the
second group (testing set) contains the daily average discharges of the first 120 days over
the period 2001–2018 with the hydrological situations as the target values.
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2.4.3. Model Building

The support vector machine algorithm and artificial neural network models are uti-
lized in this study to classify the hydrological situation of the Gidra River, where the main
task of both models is to predict whether the hydrological situation of the Gidra River is
dry or normal, based on the data of daily average discharge of the first four months.

SVM is a popular machine learning algorithm to analyze data and recognize patterns.
SVM performs classification by constructing an N-dimensional hyperplane (a plane gener-
alized into N dimensions), which separates the data into two categories. They are used for
classification and regression analysis, among other tasks [25,26].

The first step of the modeling process is splitting the data into two groups. The first
group is for training the model. It contains daily average discharge values of the first
four months for 40 years in the period between 1961 and 2000 as well as the hydrological
situation of the Gidra River for every year over the same period. The training dataset is
used to feed the model with inputs concerning daily average discharges and the resulting
hydrological situation of each year; therefore, the model is able to recognize an empirical
pattern (N-dimensional hyperplane) [26] and to separate the values of the daily discharge
into a dry and normal situation.

Afterward, the model obtained a separable N-dimensional hyperplane, which can
separate daily average discharges into two classes; dry and normal. The N-dimensional
hyperplane obtained should be applicable for the testing dataset, which contains daily
average discharges of the Gidra River over the validation period 2001–2018 without pro-
viding the hydrological situation of those years. The SVM model should generate results
regarding the hydrological situation of the Gidra River over the testing period using the
separable N-dimensional hyperplane. The outcome is generated in the format “0” for dry
hydrological status and “1” for normal hydrological status.

As the real hydrological situations over the testing period 2001–2018 are evaluated in
this study, it is possible to measure the accuracy of the model’s results (predicted-status) by
comparing them with the real hydrological situations over the testing period (real-status).
Table 3 shows the predicted results of the hydrological situation over the testing period
2001–2018, which are identical to the real assessed values.

Table 3. Predicted and real hydrological status comparison over the testing period 2001–2018 using
SVM and ANNs models.

Year Real Situation Predicted Situation

2001 0 0
2002 0 0
2003 0 0
2004 1 1
2005 0 0
2006 1 1
2007 0 0
2008 0 0
2009 1 1
2010 1 1
2011 1 1
2012 0 0
2013 1 1
2014 0 0
2015 1 1
2016 0 0
2017 0 0
2018 0 0

The second model developed in this study is based on the deep neural network model.
It provides similar results while employing a more complex technique. Although the
definition of the neural network is not the object of this study, for a better understanding of
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the concept a brief definition is necessary. The neural network is a parametric supervised
deep learning algorithm that contains N layers. It takes inputs as an N-dimensional array
then it applies nonlinear transformation (by using multiple activation functions) on the
input values by multiplying them by learnable parameters and constantly tuning those
parameters until the output of this model satisfies the required outputs in the learning
phase [25,27]. This process is called backpropagation and it requires three steps: loss
functions to measure the difference between predicted outputs and the real outputs, metric
function to measure the accuracy of the model, and an optimization algorithm to estimate
the parameter values depending on the values of the loss function.

The inputs of this model are the daily average discharges of the first 120 days of
each year in the training dataset. Therefore, the input layer of this model should contain
120 neurons. Equation (1) refers to the computations that are performed across every
neuron in the network. In each neuron “k” of any hidden layers, a nonlinear transformation
is applied to the weighted sum (with weights wk,1, . . . , wk,n) of its linear input n (which
are inherited from previous layers, as shown in Figure 6) plus a bias b, whereas w, b are
the accumulated parameters. The output yk is constantly passed to the next layer after
transforming the inputs nonlinearly using activation functions g.

yk= g(
n

∑
i=1

wk,i×xi+bi), (1)

Figure 6. Artificial neural network architecture sketch for illustration [28].

The neural network model used to classify the hydrological situation of the Gidra
River contains six layers (including the input layer); each layer has a defined number of
neurons (120, 90, 60, 30, 4, 1), respectively. It is used in the following nonlinear activation
functions: scaled exponential linear unit (SELU, Equation (2), where α, λ are justified
according to [29]), hyperbolic tangent (tanh, Equation (3)), and Softplus, Equation (4) [30].
For parameter optimization, a cosine similarity function is used as a loss function and the
binary cross-entropy function is used as a metric function [30]. The stochastic gradient
descent algorithm is used as an optimization algorithm to tune the parameters with a
learning rate set to 0.1.

SELU : g(x) = λ ×
{

x if x > 0
α × exp(x) − α if x ≤ 0

where :
α ≈ 1.6732
λ ≈ 1.0507,

(2)

tan h : g(x) =
sin h(x)
cos h(x)

=
exp(x) − exp( −x)
exp(x)+ exp( −x)

, (3)
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Softplus : g(x) = ln(1 + exp (x)), (4)

Additionally, one specific step has been used before feeding training data to the ANN
model, and that is scaling input data using a robust scaler to transform the input values into
values that are robust to outliers. Equation (5) shows the mathematical representation of a
robust scaler that removes the median and scales the data in the range between 1st quartile
and 3rd quartile by subtracting the median (xmid) and then dividing by the interquartile
range (75% value–25% value), i.e., in between the 25th quartile and 75th quartile range
(x75 − x25). If outliers are present in the dataset, then the median and the interquartile
range provide better results and outperform the sample mean and variance [30].

XScale =
xi − xmid
x75 − x25

. (5)

3. Results and Discussion
3.1. Modeling Results

The SVM and ANN models have been trained on the training dataset to obtain the
required parameters for accurate predictions of the hydrological situation of the Gidra
River. The SVM model has 120 parameters, whereas the ANN model has 120, 90, 60, 30,
and 4 parameters based on the number of neurons in each layer. The parameters of both
models have been calibrated using the mathematical theory of support vector machines and
backpropagation [25–27]. Both models show accurate results predicting the hydrological
situation of the training dataset. The input of the testing dataset was introduced to both
models and the predicted hydrological situations (output) were compared with the real
hydrological situations for the period 2001–2018. Table 3 compares predicted and real
status over the testing period for both models, where the second column represents the real
hydrological status, and the third column represents the predicted values of hydrological
status. As shown in Table 3, the real and predicted hydrological status are identical, which
indicates that the SVM model with a linear kernel and ANN were successful in predicting
the drought situation of the Gidra River correctly during the period 2001–2018.

A confusion matrix is used to visualize the accuracy of both models, as shown in
Figure 7. Both models succeeded in predicting the drought hydrological situation in the
Gidra River on the testing dataset. It correctly classified 11 years as dry years using only
daily average discharges of the first four months of each year, as shown in Figure 7.

For verifying the accuracy of both models, the data of years 2019 and 2020 were
provided, but only the daily discharges of the first four months of both years. This was
used to test the forecasting model results and compare them with the assessment of SHMI
for the hydrological situation on the Gidra River. Both SVM and ANN models show results
of the dry hydrological situation for 2019 and 2020, which correspond with the results
obtained from the analysis using SHMI methodology (water bearing coefficient values for
2019 and 2020: 72 and 85, respectively) and drought assessment by SHMI [31,32].

3.2. Comparison with Previous Studies

This study examined the performance of two well-known machine learning models,
SVM and ANN, in predicting the hydrological drought of the Gidra River. Many researchers
have been testing the efficiency of deploying both models to predict drought situations
in different parts of the world. Furthermore, a recent study was conducted in Pakistan to
predict drought in various locations using SVM and ANN [33]. SVM proved to be more
efficient in capturing characteristics of drought development and severity over Pakistan.
Moreover, SVM outperformed ANN in predicting extreme drought situations in a certain
season [33]. In this study, both models provided the exact same results over the testing
period. However, the input data and model complexity play a major role in determining
the output precision and the input data of this research was restricted to only daily average
discharge values.
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Figure 7. Confusion matrix for testing the classification accuracy of the SVM and ANN models.

Another study utilized ANN and SVM to evaluate and predict drought situations in
multiple rivers in the United States of America [34]. The study showed that the performance
of the models correlates with the location, type, and snowmelt process in the mountains.
Both models reached their best performance for predicting drought in the Chehalis River
while the poorest performance appeared in the Carson River drought prediction, owing to
the time difference between streamflow and snowmelt in these two river basins [34]. These
results confirm that the performance of any model may change for different locations and
it highly depends on snowmelt parameters [34]

3.3. Discussion

This study showed high accuracy of SVM and ANN results in classifying the hydro-
logical drought. The inputs for both models were the values of daily average discharges of
the first 120 days. After training, the SVM model showed perfect performance in classifying
the hydrological situations linearly in a high dimensional space of 120 features (inputs).
The possibility of linearly separating the data inputs into two classes indicates a low level
of data complexity. However, this result does not apply to all possible training sets in
case the data were split differently. Thus, this confirms the effect of splitting the data
homogeneously, meaning that the training dataset should contain a variety of hydrological
situations with different water bearing coefficient values, especially for values located
around the limits of determining a new hydrological situation; more specifically, when the
input data are of one type, the daily average discharge values, as in this case.

As previously mentioned, ANN is a more complex parametric model that requires
more information to set up. It requires the loss function, the optimizer, the activation
functions for each layer, the number of neurons in each layer, the overall architecture
of the network, and input data transformation. Multiple data transformations such as
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normalization, standardization, and scaling may apply to the raw data before using the data
for training and testing purposes. These transformations tend to boost the model accuracy.

Vanishing gradient descent is one of the frequent problems that appear when using
sigmoid activation functions in the deep ANN model. Instead, it is possible to use tanh
and SELU activation functions after scaling the data to overcome this problem. Moreover,
random initialization of the parameters w, b for the ANN model is one way of avoiding
vanishing gradient descent in the training phase; however, use of the Xavier parameters ini-
tializing method is recommended to enhance accuracy in the validation phase by choosing
model parameters in a systematic approach [35].

Reaching 100% accuracy in ANN models is a surprising result and, it was at first
considered a result of overfitting. However, the same results were reached in the SVM
model applying linear kernel to classify the hydrological situation in the Gidra River.
Therefore, the ability to reach the same results using a linear kernel in the SVM model
negates the overfitting effect on the ANN model. After performing multiple experiences
with the different training sets, the ANN model obtained better results and, in many cases,
these results seem to contain information about the drought severity.

The drawback of both models is their dependency on a single type of data as input. For
example, both models do not take into consideration other types of hydrological data, such
as temperature, water ground level, and snowmelt, which may expedite the development
of drought periods.

These findings apply to foothill rivers, as well. It is more likely that the behavior of
rivers in the lowlands could have different patterns. It depends on the flow regime in
channels or surface water at lowland territories during the growing season. This often is
strongly influenced by the occurrence of aquatic vegetation [36]. As a result, implementing
such models to different climate regimes should involve considering other factors that may
be more related to droughts in the target climatic area.

4. Conclusions

Analyzing historical data of different types (hydrological, meteorological, climato-
logical, and many others) for drought assessment is one of many possible ways to char-
acterize drought and dry periods. However, performing a broad statistical analysis on
hydrological data for any river or streamflow reveals valuable information about average
discharges, ranges of average discharges, and the typical average year of dry and normal
hydrological situations.

For the Gidra River, after performing detailed statistical analysis according to the
SHMI methods, the following results were obtained:

1. The discharges of January, February, March, and April play a major role in the final
hydrological situation of the Gidra River.

2. There is a significant difference in average discharge values for the first four months
between dry and normal assessed years.

3. Drought has a significant impact on monthly average discharges, mainly in March and
April, because it is a stream below a mountainous region and influenced by snowmelt.

4. It is possible to use historical data and deploy machine learning models to predict the
hydrological situation.

5. More accurate results on the hydrological situation obtained from precipitation and
snowcover data are recommended to consider, analyze, and combine with discharge
values to track every possible pattern through time.

The results of the study provide useful information for any operation project of the
Gidra River, including water distribution for agriculture or any other purposes, owing to
the number of water structures and abstractions along the river. To prevent downstream
drying, forecasting the hydrological status of the Gidra River based on daily discharges
during the first four months of the year could be included in the operating manuals for
water structures on the Gidra River.
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