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Abstract: Azo dye wastewater belongs to the highly concentrated organic wastewater, which is
difficult to be treated by traditional biological processes. The oxidation efficiency of a single physico-
chemical method is not considerable. Recent research indicated that the advanced oxidation processes
(AOPs) based on the highly reactive hydroxyl radical (·OH) became one of the preferred methods in
dealing with such dye wastewater. In this paper, the typical azo dye, reactive brilliant red X-3B, was
employed as the target pollutant, and the transition metal Mn and hydrogen peroxide as the catalysts.
A photo-Fenton-like process, UV/Mn2+-H2O2 system, was established, which enables a combination
of various technologies to improve azo dye degradation efficiency while reducing disposal costs. The
results indicated that the UV/Mn2+-H2O2 system had the synergism of Mn2+/H2O2 and UV/H2O2,
which was 2.6 times greater than the sum of the two individual effects. And the degradation of X-3B
reached the optimum under the conditions of 0.59 mmol/L of the Mn2+, 10 mmol/L of the H2O2, pH
= 6 and a high level of DO. The ·OH, generated from chem-catalytic and photocatalytic decomposi-
tion of H2O2, played the predominant role in the decolorization of X-3B and mineralization of its
intermediates. The ·OH tended to attack and break the chromophore group, resulting in the rapid
decolorization of X-3B. The azo bond in X-3B was easy to be decomposed in the form of N2, while the
triazinyl group was recalcitrant for ring opening. The degradation process of the UV/Mn2+-H2O2

system preferred to be conducted at an acidic condition and appropriate concentrations of Mn2+ and
H2O2. The alkaline condition would decrease the utilization of H2O2, and excessive H2O2 would
also quench the ·OH.

Keywords: photo-Fenton-like process; UV/Mn2+-H2O2 system; reactive brilliant red X-3B; advanced
oxidation processes; hydroxyl radical

1. Introduction

Azo dyes, as the most used type of commercial dyes, are widely applied in various
fields, including textile, printing, leather, paint, plastics, and food processing [1,2]. Reactive
brilliant red X-3B is an indispensable azo dye in the roll dyeing, dip dyeing and tie-
dyeing of cotton and viscose fibers, as well as the dyeing of polyester-cotton and polyester-
cotton blended fabrics, and accounts for more than 60% of total dyes [3,4], which is very
representative. The discharge of large amounts of dye pollutants into water bodies will
threaten the aquatic organisms and human health [5]. The presence of dyes in the natural
aquatic ecosystem will prevent light penetration and oxygen transfer into water, resulting
in the reduction of the dissolved oxygen (DO) levels, and increases of the chemical oxygen
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demand (COD) and biochemical oxygen demand (BOD) levels in water sources [5,6].
Furthermore, the metabolic cleavage of azo linkage during degradation produces toxic
byproducts, which are carcinogenic to both human beings and aquatic life [4,7]. Therefore,
effective treatment of textile effluents is crucial prior to their ultimate discharge to the
environment [5].

With the continuous progress and widespread use of dye synthesis technology, the
treatment of printing and dyeing wastewater has become more difficult. Printing and
dyeing wastewater discharge standards are becoming more and more stringent, and the
existing treatment facilities have difficulties to meet the requirements of printing and
dyeing wastewater discharge standards [8]. Seeking an efficient and economical method for
treating dye wastewater and minimizing the discharge of wastewater and pollutants has
become an urgent problem to be solved in the dye manufacturing industry and the printing
and dyeing industry, which has attracted the attention of a wide range of scholars [9,10].
There are many techniques that have been developed to deal with the dye wastewater
including physical, chemical and biological methods, such as ultrasound irradiation [11],
photocatalytic processes [7], coagulation-flocculation [12], adsorption [13], electrochemical
oxidation [14], and biodegradation [15]. At present, the treatment methods for various
dye wastewater at home and abroad are mainly biochemical methods, supplemented by
chemical methods or physicochemical methods. Nevertheless, due to the low removal
rates of COD and color by biochemical methods, the post-treatment of physical methods
is relatively low and prone to produce the secondary pollution; and the chemical method
has the disadvantage of high cost as an effective way to improve the efficiency of sewage
treatment. As a powerful and environmentally friendly approach, advanced oxidation
processes (AOPs), have received attention for treating recalcitrant dye wastewater, by
generating highly reactive transient species (i.e., ·OH) in situ to achieve high removal
efficiency and total mineralization of dye molecules [10,16].

Among various AOPs for the treatment of printing and dyeing wastewater, H2O2 as
a commonly used oxidant has a higher oxidation potential, which can react with metal
ions to produce highly active ·OH. The ·OH involved in AOPs is a kind of nonspecific
oxidant that can oxidize and mineralize almost all the organic molecules owing to its high
oxidation potential (E◦ = +2.8 eV) [17,18]. The H2O2 is often used in combination with Fe2+

to comprise of the Fenton process, which proves to be an efficient, inexpensive, and green
technology for the treatment of wastewaters containing a variety of toxic substances [19,20].
In addition, the light irradiation can promote the generation of ·OH and degradation
of organic matter in the Fenton system, and therefore, some studies have attempted the
application of the UV/Fenton (photo-Fenton) system to the treatment of printing and
dyeing wastewater [21,22].

Nevertheless, Fe2+ (Fe3+), as a catalyst in the Fenton and photo-Fenton processes in
homogeneous media, must be used in an acidic environment (pH < 3), which requires high
corrosion resistance of the equipment and greatly reduces the promotion of applications.
A large amount of sludge containing Fe ions is produced after the wastewater treatment.
Moreover, the utilization rate of H2O2 is not ideal. Many problems need to be solved for
the application of the Fenton process in wastewater treatment [23]. Fortunately, in recent
years, many studies have found that the oxidizability of Fenton-like (Fe3+/H2O2) oxidation
system can be effectively improved under the action of Ce3+ and Mn2+ [24,25]. The Ce3+

and Mn2+ enhanced Fenton-like oxidation system has a stronger oxidation ability and
higher reagent utilization rate. The catalytic oxidation method using transition metals
as catalysts has a high removal rate of COD and color, and can even oxidize most of the
soluble dyes [24]. Compared with the original Fenton-like oxidation system, it has shown
good prospects for development [25]. In short, although there are many methods for
the treatment of dye wastewater, each has its own limitations, which makes it difficult
to achieve the unity of the removal effect, economic cost and ecological protection. The
application of the multi-stage combined degradation method is more advantageous, and
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it is expected to effectively reduce the chroma and ensure the effluent without increasing
costs to meet emission standards.

Currently, little is known about the synergistic effects produced by the combination of
UV/Fenton and Fenton-like systems. In this context, the reactive brilliant red X-3B was used
to simulate dye wastewater, and the removal efficiency and degradation effects of different
degradation systems were compared including Mn2+, H2O2, UV/Mn2+, Mn2+/H2O2,
UV/H2O2, and UV/Mn2+-H2O2. The synergistic and degradation mechanisms of the
UV/Mn2+-H2O2 system were preliminarily investigated. The effects of Mn2+ and H2O2
concentration, initial solution pH, and X-3B initial dosage on the degradation of X-3B by
the UV/Mn2+-H2O2 process were comprehensively investigated. The research on this
combined process is expected to effectively improve the degradation efficiency of azo dyes
and reduce the treatment cost, and provide important information for the research on the
operating conditions and mechanism of the process, which can provide some references for
its application and promotion.

2. Materials and Methods
2.1. Preparation and Testing of Dye Wastewater

The commercial azo dye X-3B was used to prepare 1 L of 150 mg/L simulated wastew-
ater. The chemical structure and UV-vis absorption spectrum of X-3B are given in Figure 1.
X-3B had five absorption peaks in the 200–800 nm wavelength range, i.e., 236 nm, 285 nm,
329 nm, 512 nm, and 538 nm. According to the theory of organic spectroscopy [26,27]
and the chemical structure of X-3B, it could be seen that: 236 nm and 285 nm were the
characteristic absorption peaks of the benzene ring; 329 nm was the absorption peak of the
naphthalene ring. The azo bond (−N=N−) is an atomic group containing π electrons, which
forms a conjugated color system of 8-naphthol-3 with the benzene ring and a 6-disulfonic
acid with the naphthalene ring, and the characteristic absorption peaks appeared at 512 nm
and 538 nm, respectively [28]. In this study, 538 nm was selected as the characteristic
absorption peak of X-3B in the UV-vis region, which was represented by A538.
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Figure 1. (a) Chemical structure of X-3B, (b) UV-vis absorption spectrum of X-3B.

2.2. Experimental Apparatus and Procedures

The schematic diagram of the experimental apparatus is shown in Figure 2. For a
typical degradation experiment, a certain concentration of MnSO4 and H2O2 were added
into X-3B solution in the reactor, and the initial pH value was adjusted with 20% H2SO4
and 10% NaOH. After sequentially turning on the aerating apparatus and UV lamp, the
degradation reaction was started. At a certain interval, solution samples were taken for
chemical analyses.
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For the choice of ideal catalyst, a certain volume of X-3B solution of 50 mg/L was
prepared. The candidate catalysts (i.e., MnSO4, MnO2, CeO2, CuSO4 or ZnSO4) of 0.2 g/L
and 1 mL H2O2 were added into X-3B solution. The degradation experiments were con-
ducted at room temperature, and the degradation of X-3B was monitored at 0, 30, 60, 90
and 120 min, respectively. The comparative results indicated the most ideal catalyst was
MnSO4 (see the results section below).

For the comparison of different degradation systems, the degradation experiments
were performed with 1 L X-3B solution of 150 mg/L. The Mn2+ of 0.6 mmol/L and H2O2 of
10 mmol/L were employed. Different degradation systems including single Mn2+, single
H2O2, UV/Mn2+, Mn2+/H2O2, UV/H2O2 and UV/Mn2+-H2O2 were carried out, respec-
tively. Solution samples were withdrawn at 0, 10, 20, 30, 40, 50 and 60 min, respectively,
and measured the change of X-3B concentration.

For the effects of various water chemistry factors, the basic experimental conditions
were set as: 1 L of 150 mg/L X-3B, 10 mmol/L of H2O2, 0.59 mmol/L of Mn2+, and
UV irradiation. The change of X-3B concentration was measured at 0, 10, 20, 30, 40,
50 and 60 min, respectively. Batch experiments were conducted by changing the initial
concentrations of H2O2 (5, 10 and 20 mmol/L), Mn2+ (0.3, 0.59, 1.18 and 2.6 mmol/L) and
X-3B (100, 150, 200, 250, 500 and 600 mg/L), and initial solution pH (2, 4, 6 and 8).

For the study of synergistic mechanisms, different doses of methanol (0, 0.24, 0.29 and
0.32 mmol/L) were added into X-3B solution to conduct the degradation experiments with
the UV/Mn2+-H2O2 system. After that, the degradation experiments were conducted in
the following three scenarios: (1) 1 L of 150 mg/L X-3B, 10 mmol/L of H2O2, 0.59 mmol/L
of Mn2+, and UV irradiation; (2) 1 L of 150 mg/L X-3B, 10 mmol/L of H2O2, 0 mmol/L of
Mn2+, and UV irradiation; and (3) 1 L of 150 mg/L X-3B, 10 mmol/L of H2O2, 0.59 mmol/L
of Mn2+, and without UV irradiation. Solution samples were taken at 0, 30, 60, 90 and
120 min, respectively, and the residual H2O2, total organic carbon (TOC) and total nitrogen
(TN) were measured.

To investigate the degradation pathway, the changes of UV-vis spectra of X-3B and
anions (Cl−, NO3

− and SO4
2−) concentrations were recorded during the degradation

process of the UV/Mn2+-H2O2 system.

2.3. Analytical Methods

For the measurements of UV-vis absorption spectra and the concentration of X-3B, an
UV-1201 UV-vis spectrophotometer (Beijing Ruili Analytical Instrument Co., Ltd., Beijing,
China) was used with scanning wavelength range of 200–800 nm. The pathlength of quartz
cuvette was 1 cm, and distilled water was used as a reference. A538 was employed for the
quantitative analysis of X-3B. The TOC and TN were determined by a Multi N/C TOC/TN
analyzer (Jena Analytical Instruments Co., Ltd., Thuringia, Germany). For the measure-
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ment of residual H2O2, ammonium molybdate spectrophotometry was employed using
2.4 mmol/L ammonium molybdate and absorbance at 350 nm. The ion chromatographic
analyzer ICS-900 (Dionex, Sunnyvale, CA, USA), equipped with Ion Pac AS23 ion sepa-
ration column, DS5 conductivity detector and MMS300 suppressor, was used to analyze
the concentration of Cl−, NO3

−, and SO4
2− during the degradation reactions. The sample

injection volume was 10 µL, and KOH solution was employed as the eluent with a flow
rate of 1.0 mL/min. Before the measurement, the sample was diluted, decolorized using
On Guard P type pretreatment column, and filtered through a 0.45 µm filter membrane.

3. Results and Discussion
3.1. Decolorization of X-3B by H2O2 with Different Catalysts

The decolorization rates of X-3B by H2O2 with different catalysts showed great differ-
ence (Figure 3). In the catalytic degradation experiments, the order of the ability of these
five catalysts to decompose H2O2 is: CuSO4 > MnO2 > MnSO4 > CeO2 > ZnSO4, respec-
tively. Among these five catalysts, Cu, Mn, and Zn belong to transition metal elements,
while Ce belongs to rare earth elements. The experimental results showed that the catalytic
performance of CeO2 was not very obvious. CuSO4 has the highest catalytic activity, which
is consistent with the results of other studies [29]. The catalytic activities of MnSO4 and
MnO2 are similar, affording ~25% of decolorization rate of X-3B after 120 min reaction.
Previous studies have shown that Mn2+ has good catalytic performance in homogeneous
catalytic ozonation reactions, and MnO2 also has strong heterogeneous catalytic perfor-
mance [30,31]. However, red-brown flocs appeared in the solution with CuSO4, and the
powdery MnO2 was insoluble in water, which would interfere with the measurements of
the water chemistry parameters. The catalytic activity of ZnSO4 was the worst, probably
because Zn2+ has no variable valence state, so it can be considered that ZnSO4 has no
catalytic activity for the catalytic decomposition of H2O2. Therefore, MnSO4 was finally
selected as the ideal catalyst for further investigations.
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3.2. Degradation of X-3B in Different Systems

The removal efficiencies of X-3B by Mn2+, H2O2, UV/Mn2+, Mn2+/H2O2, UV/H2O2,
and UV/Mn2+-H2O2 are presented in Figure 4. According to the experimental results,
the degradation rates of X-3B in these systems can be summarized as: UV/Mn2+-H2O2
> UV/H2O2 > Mn2+/H2O2 > H2O2 > UV > Mn2+. It can be seen that X-3B was stable
under the catalysis of Mn2+ alone or H2O2 alone, indicating that Mn2+ cannot directly
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degrade X-3B, and the catalytic oxidation effect was not obvious even under the action of
UV photolysis. It can be assumed that X-3B cannot be directly degraded by these single
processes. However, when Mn2+ and H2O2 coexist, the degradation effect of X-3B appears,
which indicates that the catalysis of Mn2+ is crucial for the oxidation of hydrogen peroxide.
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For the combined systems, i.e., Mn2+/H2O2, UV/H2O2 and UV/Mn2+-H2O2, the
degradation kinetics of X-3B was fitted by the first-order kinetic equation [32]. The
calculated apparent reaction rate constant (kapp) for UV/Mn2+-H2O2, UV/H2O2, and
Mn2+/H2O2 was 0.0951, 0.0368 and 0.0030 min−1, respectively. It can be seen that X-3B
was degraded the fastest in UV/Mn2+-H2O2 system, and the kapp is 2.6 times the sum
of the other two systems. It is feasible to draw the conclusion that the synergistic effect
of photocatalysis and Mn2+ catalysis is crucial to improve the degradation ability of the
UV/Mn2+-H2O2 system.

3.3. Factors Affecting the Degradation System of UV/Mn2+-H2O2

3.3.1. Effects of Mn2+ and H2O2 Concentrations

Mn2+, as a catalyst for the UV/Mn2+-H2O2 reaction system, is a necessary factor for
generating ·OH. As shown in Figure 5a, increasing the concentration of Mn2+ from 0.3 to
0.59 mmol/L accelerated the decomposition of H2O2. However, continuously increasing the
Mn2+ concentration resulted in an inhibition on the degradation of X-3B. Mn2+ participates
in the Fenton-like reaction [24]. An obvious acceleration in the decomposition rate of H2O2
was observed by adding Mn2+, and a large amount of ·OH was produced. When the dosage
of Mn2+ was too high, ·OH would be produced in a very short time and many of them
would be consumed by side reactions, which is not conducive to the effective use of ·OH.
Therefore, the optimal concentration of Mn2+ was determined to be 0.59 mmol/L.
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Figure 5. Effects of concentrations of Mn2+ (a) and H2O2 (b) on the decolorization of X-3B by the
UV/Mn2+-H2O2 system.

As an oxidant, the amount of H2O2 had a great influence on the UV/Mn2+-H2O2
degradation system. It can be seen from Figure 5b that the final decolorization rate gradually
increased, as the H2O2 concentration was increased from 5 to 20 mmol/L. However, within
the initial 10 min of the degradation reaction, the degradation rate with 10 mmol/L H2O2
was significantly better than that with 20 mmol/L. The H2O2 can not only produce ·OH,
but also acts as a radical scavenger in the system [11]. The excessive H2O2 would consume
·OH, leading to the reduction of available ·OH for the oxidation of X-3B. Considering that
excessive H2O2 will increase the COD in the effluent and increase the treatment cost, the
ideal concentration of H2O2 was determined to be 10 mmol/L.

3.3.2. Effect of Initial Solution pH

Figure 6 shows the effects of the initial solution pH on the X-3B decolorization rate by
the UV/Mn2+-H2O2 system. When the initial condition of the experiment was increased
from pH = 2 to pH = 8, the degradation rate of X-3B was gradually slowed down, but all
could be completely degraded after 60 min. An increase in initial pH (OH− concentration)
will decrease the utilization of H2O2, and reduce ·OH concentration. Under alkaline
conditions, H2O2 would like to decompose into HO2

− and H2O [33]. On the contrary,
H2O2 is relatively stable under acidic conditions, but can be decomposed by UV light and
soluble Mn2+ to generate ·OH [34]. As the reaction progressed, the organic carbon in the
solution was continuously converted into inorganic carbon. Under alkaline conditions,
inorganic carbon existed in the form of HCO3

− or CO3
2−, which could react with ·OH, and

then consume ·OH to reduce the catalytic activity [35]. Furthermore, in order to ensure
good dyeing properties of azo dyes, they should be used under acidic or neutral conditions,
due to its anionic properties. On the other hand, under alkaline conditions, Mn2+ could
hydrolyze and be transformed into precipitation, which will inhibit the reactions and reduce
the generation of ·OH [25]. For the comprehensive consideration of the above aspects, the
pH value of 6 was selected in the degradation experiments.
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3.3.3. Effect of Initial X-3B Concentration

For different processes, X-3B concentration in effluent printing and dyeing plants will
significantly fluctuate. Therefore, the effect of initial X-3B concentration on X-3B removal
efficiency is worth studying. As shown in Figure 7, as the initial concentration increased,
X-3B removal efficiency decreased. The reason is that the dosage of the oxidizing agent was
certain, and the amount of ·OH produced was limited [36]. The amount of ·OH used to
attack the chromogenic group of X-3B was not enough to completely break the chromogenic
groups, resulting in the decrease of decolorization rate. The light shielding effects caused by
excess X-3B may also provide a negative impact for the photo-Fenton-like process [37]. In
addition, the increased amount of X-3B molecules would also produce more intermediates
that competed with X-3B parent molecules for ·OH [38].
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3.4. Role of ·OH in the Degradation System of UV/Mn2+-H2O2

The ·OH was considered to be the main factor in the degradation of organic pollutants
in AOPs [39]. Adding different concentrations of ·OH scavengers could indirectly analyze
the change of ·OH in the reaction system, and qualitatively explain the existence and
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contribution of ·OH to the degradation of organic pollutants [40,41]. There were many
kinds of ·OH scavengers, and alcohols are the most widely used [42,43]. Here, methanol
was selected as the ·OH scavenger. As shown in Figure 8, with the addition of methanol, the
degradation rate of X-3B gradually decreased. With the addition of 0.32 mol/L methanol,
the degradation of X-3B was inhibited by 72%. The experimental results indicated that the
degradation of X-3B by the UV/Mn2+-H2O2 system mainly resulted from the oxidation of
·OH [44].
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Figure 8. Effect of different concentration methanol additions on the decolorization of X-3B by the
UV/Mn2+-H2O2 system.

3.5. Degradation Mechanism of UV/Mn2+-H2O2 System

Figure 9 shows the changes of the residual H2O2 in the three degradation systems
of UV/H2O2, Mn2+/H2O2 and UV/Mn2+-H2O2 over time. When the reaction time was
60 min, the decomposition of H2O2 in the three systems was not complete, the residual
concentration of H2O2 was 7.07, 8.82 and 6.18 mmol/L, respectively. When the reaction
progressed to 120 min, the residual H2O2 (8.47 mmol/L) in the Mn2+/H2O2 system did
not change significantly, indicating the catalytic effect of single Mn2+ was not remarkable,
and the amount of ·OH produced was not enough to oxidize X-3B. H2O2 was still excited
to form a certain amount of ·OH after 60 min in the UV/H2O2 system, and the residual
H2O2 continuously decreased to 3.7 mmol/L at 120 min. In the UV/Mn2+-H2O2 system,
the residual H2O2 was the lowest and further decreased to 1.52 mmol/L at 120 min. These
results indicated in the UV/Mn2+-H2O2 system, in addition to UV irradiation, the Fenton-
like effect of Mn2+ and H2O2 was also very important [45]. Under the dual catalysis, H2O2
decomposed rapidly and produced a large amount of ·OH for the degradation of X-3B. The
reaction mechanism is as follows:

Mn2+ + H2O2 → Mn3+ + ·OH + OH− (1)

H2O2 + Mn3+ + 2OH− → Mn2+ + O2
− ·+2H2O (2)

OH ·+O2
−· → O2 + OH− (3)
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Figure 9. The change of residual H2O2 during the degradation processes of X-3B by different systems.

After X-3B was degraded, small molecular nitrides (such as NO3
−, NO2

−, NH4
+ etc.)

would be produced, which could affect the water discharge quality, and TN reflects the
total nitrogen content in the solution [46]. As shown in Figure 10a, the removal rate of TN
in the two systems of UV/H2O2 and Mn2+/H2O2 was not ideal, and even the TN content
in the solution increased at the beginning of the reaction. The UV/Mn2+-H2O2 system
showed a considerable effect for the TN removal, and obtained a TN removal rate of 20.65%
at 120 min.
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Figure 10. The removal of TN (a) and TOC (b) in different systems.

The TOC removal rate represents the degree of mineralization of the X-3B solution [47].
It can be seen from Figure 10b that the Mn2+/H2O2 system had almost no effect on the
degradation of TOC in the X-3B solution, and the removal rate of TOC at 120 min was only
3.48%, indicating that Mn2+/H2O2 system was difficult to mineralize X-3B. The UV/Mn2+-
H2O2 system showed the best effect on TOC removal, and obtained a TOC removal rate of
56.45% at 120 min. It could be observed that the removal of TOC in the three systems were
relatively slow at the beginning. Decolorization was completed in the early stage of the
reaction, because ·OH will first attack the chromophore group of X-3B and cause it to be
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cleaved, and after the decolorization was completed, the organic intermediate molecules in
the solution began to be oxidized and mineralized into H2O and CO2 [28,48], leading to
the quick decline of TOC.

The azo bond in X-3B is unable to maintain a steady state when exposed to light, heat,
and in acidic or alkaline media, and it is prone to react, release N2, and decolorize [49].
In the UV-vis absorption spectrum of X-3B, the chromophore group is the azo bond (the
conjugated π system) corresponding to the main absorption bands at 512 and 538 nm, and
the peaks at 236, 329 and 285 nm in the ultraviolet region are ascribed to the aromatic rings.
In the reaction process, the intensity of characteristic absorption peaks at 512 and 538 nm
obviously reduced until they disappeared completely after 60 min (Figure 11), indicating
that chromogenic group of X-3B had been completely cleaved. The peaks of the benzene
ring in the UV range of 200–350 nm were also diminished to a certain extent, which was
well in accord with TOC removal rate [50]. After 120 min degradation, the solution still
had a strong terminal absorption at about 200 nm, which may be the strong absorption of
various intermediates.
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Figure 11. Change of the UV-Vis absorption spectra during the degradation of X-3B by the UV/Mn2+-
H2O2 system.

In the comparison of ion chromatograms, the peaks of Cl−, SO4
2− and NO3

− at
120 min were conspicuously higher than that at 30 min (Figure 12). The concentration of
X-3B in the experiment was 150 mg/L, and its molarity was about 0.25 mmol/L. According
to the molecular formula of X-3B, theoretically, the molar concentrations of Cl, N and S ele-
ments in the reaction solution were 0.5 mmol/L, 1.5 mmol/L and 0.5 mmol/L, respectively.
In addition, the initial concentration of SO4

2− in the catalyst used in the experiment was
0.6 mmol/L. With the progress of the reaction, the concentration of Cl−, NO3

− and SO4
2−

in the solution continued to increase, indicating that the degree of oxidation was further
deepened. After 60 min, the concentration of Cl− and SO4

2− in the solution was relatively
stable and close to the theoretical value, while NO3

− concentration was small. When the
reaction proceeded to 120 min, Cl−, NO3

− and SO4
2− concentrations were 0.4 mmol/L,

0.039 mmol/L, 0.877 mmol/L (Figure 13). The NO3
− in the solution may theoretically come

from the azo bond, amino group and triazinyl. Nevertheless, the azo bond decomposed in
the form of N2, and the triazinyl group was stable and difficult to open ring, so the NO3

−

in the solution was mainly provided by the amino group [51,52].
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Figure 13. Change of Cl−, NO3
− and SO4

2− concentrations during the degradation of X-3B by the
UV/Mn2+-H2O2 system.

According to the above experimental results, combined with the structure of X-3B and
the previous research [52], a probable degradation pathway of X-3B in the UV/Mn2+-H2O2
system was proposed (Figure 14). The ·OH generated during the photo-Fenton-like process
attacked the X-3B molecules, increased the electron cloud density of the adjacent and para
positions, and the electron cloud density of the N in −NH− also enlarged due to the lone
pair electrons. Therefore, it is speculated that ·OH would attack the ortho position of
the −OH and N atom in −NH− to break the chromophore group, which is consistent
with the result of the rapid decolorization of X-3B in the UV/Mn2+-H2O2 system. The
o-hydroxybenzenediazonium salt released N2, and then was further oxidized to small
molecular acids or aldehydes. At the same time, the sulfonic acid group on the naphthyl
ring was broken to form SO4

2−, and the Cl atom on the triazine ring was replaced by −OH
and entered the solution to form Cl−.
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4. Conclusions

The combination of the photocatalysis with the Mn2+-H2O2 Fenton-like process was
proven to have a synergetic effect on enhancing the degradation of X-3B, which is 2.6 times
that of the combined effect of Mn2+/H2O2 and UV/H2O2 alone. The Mn2+ had no oxidiz-
ing ability, but acted as an active catalyst in the UV/Mn2+-H2O2 system, which enhanced
the production of ·OH from chem-catalytic and photocatalytic decomposition of H2O2,
and it was also an indispensable part of the whole system. The ·OH was the main contrib-
utor to decolorization of X-3B and mineralization of intermediate products to inorganic
substances, whose function was to attack and destroy the chromophore of X-3B to rapidly
decolorize. The ·OH tended to attack and break the chromophore group, and therefore, the
decolorization of X-3B was a relatively rapid process. In addition, various experimental
conditions, such as Mn2+ and H2O2 concentrations, the initial solution of pH and the X-3B
initial dosage had significant influences on the degradation efficiency. The degradation of
X-3B reached the optimum under the conditions of 0.59 mmol/L of the Mn2+, 10 mmol/L of
the H2O2, pH = 6 and a high level of DO. The study opens up new ideas for the combined
use of various technologies in the treatment of printing and dye wastewater, caters to
the future development trend, and provides an important reference for the application
conditions of this technology.
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