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Abstract: Catchment models based on steady-state mass balances enable rapid assessment of con-
taminant fluxes and concentrations in rivers. However, such models often focus on surface drainage,
without taking groundwater into account. This paper presents a novel steady-state mass-balance
catchment model that includes groundwater. The model incorporates a conceptual reservoir under
each surface subcatchment, with lateral subsurface exchanges between adjacent reservoirs and ver-
tical exchanges between the reservoirs and the surface drainage network. This leads to an easily
solved coupled algebraic system of equations. The approach is demonstrated for nitrogen in a
meso-scale catchment in New Zealand. Exchange coefficients were extracted from a full groundwa-
ter model, while recharge sources were obtained from separate hydrological and leaching models.
Other parameters such as decay coefficients were determined through calibration. Although the
exchange coefficients are generated from a detailed groundwater model, alternatives such as simple
groundwater models or phreatic contours could be used instead. The effective decay parameters
were different from what was expected, which is partly due to the model structure (for example, the
assumption of complete mixing in each reservoir), but may also be due to input uncertainty. The
applications demonstrated the successful deployment of a novel, simple, fast-running and flexible
coupled surface-groundwater model.

Keywords: groundwater; surface water; water quality; model; coupling; nitrogen; model simplification

1. Introduction

Explicit representation of groundwater in models of catchment-scale contaminant
generation and transport is desirable to enable more accurate representation of transport
pathways and processes, especially in catchments with a regional groundwater system
and for contaminants such as nitrate that are transported through groundwater. In simple
catchment models, a surface-water-centric approach is often taken, without explicit rep-
resentation of the groundwater system. As an example, the catchment model SPARROW
(Spatial Regional Regression on Watershed attributes) [1,2] divides a catchment into sub-
catchments and an associated stream network, and contaminant sources are transported
into the streams and down the stream network without taking groundwater into account
explicitly. However, often a large part of the rainfall/irrigation and associated catchment
load moves via groundwater. There may be losses or transformations of contaminants in
the groundwater, and water recharged in one location may not enter the surface water in the
local stream, but in some distant stream. One of the motivations behind the work reported
in this paper is to add a groundwater component to surface-oriented catchment models.

Some coupled surface-groundwater models are available. For example, the Streamflow-
Routing (SFR2) package [3] of the groundwater model MODFLOW (Modular Three-
Dimensional Finite-Difference Groundwater Flow Model) [4] enables such coupling. Simi-
larly, the model HydroGeoSphere [5] is an integrated surface-groundwater model. How-
ever, such models are complex to set up, time-consuming to run, and often neglect runoff
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that reaches the stream by surface or near-surface runoff processes. The run time makes it
difficult to undertake comprehensive uncertainty and scenario analysis. One approach to
overcoming this run-time barrier is to develop meta-models [6], but usually that involves
running the full model many times to develop an approximation of the system behaviour.

Another approach is to use simple steady-state or annual average flow and con-
taminant budgets, including a spatially distributed discretisation. Simple budget-based
catchment models often do not take surface-groundwater interaction and groundwater
routing into account (see [7,8] for recent reviews of catchment models). For example, the
Water Framework Directive Explorer (WFD Explorer) [9] just applies contaminant attenua-
tion factors between the source and the environmental receptor (such as the coast). Even
dynamic (time-stepping) catchment contaminant models such as eWater Source [8] and
SWAT (Soil Water Assessment Tool) [10] do not allow for movement and transformation of
contaminants in regional groundwater systems.

To address these limitations, in this paper we present a spatially distributed budget-
based catchment model including a simple representation of groundwater. A steady-state
flow and contaminant budget approach is taken, which is simple and useful in practical
applications that seek to quantify the source and transport pathways of contaminants.
The model is spatially distributed, in that the catchment can be broken into many sub-
catchments. Advantages of this approach include fast run times, compatibility with simple
surface-oriented models and an intuitive conceptualisation.

This new model was applied in a case study of the Hauraki (3630 km2) catchment in
the North Island of New Zealand, which has a regional aquifer. Land use in the catchment
is dominated by pastoral farming, leading to concerns regarding nutrient losses and their
impacts on freshwater and estuarine receiving environments. Fully distributed groundwa-
ter models have been developed previously for the main aquifer in this system, which was
useful for informing the simplified surface-groundwater model. Nitrogen was chosen as
the contaminant of interest because it can travel through groundwater and is of ecological
significance in the associated streams and estuaries.

This paper presents the concepts and mathematical development of this new model
and demonstrates the setup and parameterisation of the model. It also demonstrates the
development and application of a simple budget-based distributed meso-scale catchment
model to represent coupled surface and groundwater transport for nitrogen, including
consideration of the strengths and weaknesses of the approach.

2. Materials and Methods
2.1. Main Model Concepts and Assumptions

In this section, the main model concepts and assumptions are presented, while the
mathematical formulation is presented in Section 2.2. The model spatial arrangement
and mass exchanges are depicted in Figure 1. The catchment is represented as a set of
subcatchments and associated stream segments and groundwater reservoirs. The segments
and reservoirs are termed ‘elements’. Only three subcatchments are shown in Figure 1,
but in practice there may be thousands of subcatchments. Each subcatchment has a single
associated stream segment, and stream segments are connected to make a drainage network,
which is usually dendritic. Each subcatchment represents the land surface draining directly
to the stream segment, which is determined by topographic elevations and gradients.
A stream segment is a portion of a stream defined either between its beginning and a
confluence, or between two confluences.

A reservoir is placed under each subcatchment, with the same boundaries (in plan
view) as the subcatchment boundaries. Subsurface flow may occur between all its immedi-
ate neighbours. A reservoir may pass flow to or receive flow from multiple neighbours, and
the subsurface flow directions can differ from the surface drainage directions. The potential
for multiple subsurface directions means that flows cannot be simply accumulated from
the top of the drainage network to the bottom; instead, mass transport equations are set up
as a system of coupled equations.
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matching subcatchment and its underlying reservoir.

Exchanges may also occur between a stream segment and its underlying reservoir.
There can be losses from the stream to a reservoir (a ‘losing stream’) or discharge from the
reservoir to the stream (a gaining stream).

A further key concept is that the outflows from an element are apportioned to its adja-
cent elements according to exchange coefficients, each of which represents the proportion
of the total outflow occurring in the direction of interest. We used proportions rather than
fixed flow rates because exchange coefficients would be more flexible. For example, if the
sources were to be perturbed under a flow-change scenario, then new flow rates could
be determined provided that the exchange coefficients remain the same. It may also be
easier to estimate exchange proportions rather than absolute flow rates, for example, from
phreatic gradients.

Each element can have sources, other than exchanges from other elements. Typically,
we apportion the total water input (e.g., from rainfall and irrigation) from a subcatchment
to (i) recharge to the reservoir and (ii) ‘direct’ losses to the stream (runoff).

The system of flow equations is developed by applying a flow continuity relationship
for each element, whereby the total outflow from an element is the sum of flow sources
and inflows from other streams or reservoirs. The equations are assembled into a matrix,
which is solved using linear matrix methods (typically, sparse matrix methods).

A contaminant mass balance is developed for each element and assembled into a
system of equations. It is assumed that each element is essentially ‘well-mixed’, in the
sense that each outflow from an element has the same concentration as other outflows from
that element. Hence, outflow contaminant loads are apportioned to adjacent elements in
the same proportion as outflow flow rates, and the proportion of total mass outflow from
an element that goes to an adjacent element can be determined using the relevant flow
exchange coefficient. A proportion of the mass inflowing to an element can be lost from the
system—typically from represented as ‘decay’. Once the flows and loads are known, the
flow-weighted mean concentration in an element can be obtained.

2.2. Mathematical Formulation and Solution
2.2.1. Flow Balance

The vector of total flows out of each element (volume per time) is denoted by q. This
is represented as a stacked vector, where the top half is outflow from the streams and the
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bottom half is the outflow from reservoirs. If element qk is the outflow from the stream in a
subcatchment k, and there are nseg subcatchments (or segments) overall, then qk+nseg is the
outflow from the reservoir below subcatchment k.

From mass balance, the total outflow from an element is the sum of inflows from other
elements plus sources:

q = ATq + b (1)

where A is an exchange matrix and b is a vector of sources. Aij is the proportion of the
total outflow from element i that is passed to element j, while bi is the source of inflow
into element i other than the inflow from other elements. AT is the transpose of A so that
element kl of AT is the proportion of outflow from element l that goes into element k. The
proportionality formulation ensures that the system equations are linear, is reasonable and
ensures that the system can be solved if, for example, the sources change in a scenario.

The exchange matrix A can be partitioned into exchanges between: stream segments,
F; lateral exchanges between adjacent reservoirs G; a diagonal matrix formed from the
vector of stream loss proportions to reservoirs, β; and a diagonal matrix formed from the
vector of reservoir discharges to streams, µ:

A =

[
F diag(β)

diag(µ) G

]
(2)

Rearranging Equation (1) gives the simple linear matrix equation

Bq = b (3)

where B =
(

I − AT
)

and I is an identity matrix. Equation (3) is a simple linear algebraic set
of equations which can be solved readily, if values for the exchange proportions and other
parameters are provided. Even though B can have large dimensions, it is sparse (there
are sparse non-zero matrix elements) so that efficient sparse matrix solution methods can
be used.

2.2.2. Contaminant Balance

The total flux out of an element (mass per time), l, is the sum of inputs multiplied by
the decay within the element. It is assumed that all the outflows from an element have the
same concentration, so that output flux from any element is in the same proportion as the
outflows. Hence:

l = (I − diag(δ)) ATl + (I − diag(δ))d (4)

where di (element i of the vector d) is the source flux entering element i from its associated
subcatchment (but excluding inflows from other elements), and δi is the decay fraction in
element i, that is, the fraction of inflow to an element i that is lost due to decay within that
element. Rearranging Equation (4) gives

Dl = (I − diag(δ))d (5)

where D = I − (I − diag(δ)) AT. As with the flow balance, the mass balance can be solved
with linear matrix methods.

The concentration flowing from an element i can be obtained simply from the mass
flux divided by the flow rate out of the element:

c = l/q (6)

where the division is elementwise. This is a flow-weighted mean concentration, which may
be different from the temporal mean or median concentration, and a factor may be used to
convert between them [11].



Water 2022, 14, 350 5 of 15

The outflow from a stream into other streams, qs is the total outflow minus the losses
to reservoirs:

qs = (I − diag
[

β
µ

]
)q (7)

A similar equation is applied to obtain the load out of a stream to other streams, ls:

ls = (I − diag
[

β
µ

]
)l (8)

Element ij of a matrix D−1(I − diag(δ)) is the proportion of the source to element
i that is transferred to element j. That is, D−1(I − diag(δ)) is a transfer matrix between
sources and receptors. In general, the transfer matrix will not be sparse. This result is
not needed for application of the model but is of interest in terms of relating the matrix
formulation based on exchange coefficients to the intuitive concept of a transfer matrix.

This theory has been extended to allow for flow abstractions, two groundwater layers
and for calculation of water age [12], but this paper has an abbreviated version for simplicity
and clarity.

The sources can include point sources, direct runoff from the subcatchment into the
local stream (the part of runoff that bypasses groundwater), and through land surface
recharge from the subcatchment (excluding losses from streams). In the model applications,
it was assumed that a proportion of α of the total water input on to the land surface of a
subcatchment is recharged, the remainder entering the stream directly as runoff, and that
the proportion can vary with subcatchment. If the concentration for direct runoff is the
same as that in recharge, then the proportion of flow α, can be applied to the total diffuse
load source generated in a subcatchment to give the diffuse sources to the local stream
and recharge.

While the model could use any user-specified decay fraction, we adopted the following
approach. Decay within groundwater is assumed to be a first-order function of residence
time (T) in the reservoir, where the residence time is calculated from the outflow (q),
subcatchment plan area (As) and an effective mixing depth (H):

δ = e−kT = e−kAs H/q (9)

where k is a first-order time-based decay coefficient which may vary between reservoirs.
Decay within streams is assumed to be a first-order function of stream length, with

the decay coefficient a power function of flow, as in the application of SPARROW to New
Zealand [13]:

δ = e−aqb L (10)

where a and b are the coefficient and exponent respectively of the power function (deter-
mined by calibration), and L is the length of the stream segment. The decay coefficient is
allowed to vary with flow, and the exponent b is usually negative, because streams with
large flow rates generally have a smaller proportion of load lost to decay per unit stream
length, compared to streams with small flow rates [13].

2.2.3. Solution Method

The matrices for flow and contaminant balance were set up by assembling sparse
matrices from exchange coefficients, sources and decay parameters read in from a text
file. Text files were used for input and output to make for easier interfacing with general
parameter calibration software PEST++ (Parameter ESTimation ++) software [14,15] which
uses text files. The model was implemented in the Python language (ver 3.5), with use of the
sparse linear algebra solver called spsolve within the open-source SciPy library (ver 1.7) [16]
which in turn uses the high-performance numerical library SuperLU [17]. Model code and
example input and output data are included in a set of files in the Supplementary Materials.
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2.3. Exchange Coefficients

The model requires exchange coefficients between groundwater reservoirs, and be-
tween streams and groundwater, and between streams. The exchange between stream
segments is defined by the network topology (all the outflow apart from stream losses goes
to the next downstream segment).

In the simplest case (apart from the case where there is no recharge), all the groundwa-
ter recharge in a subcatchment emerges into the stream in the same catchment, and there is
no stream loss. All the subsurface exchange coefficients (elements of G) are then zero, and
the stream loss coefficients β are zero. This approach was used in our case study in areas
where there is no regional groundwater (e.g., hilly subcatchments). Exchanges between
adjacent reservoirs (elements of G) were simulated for the area covered by the regional
groundwater model that encompasses a large proportion of the case study area.

Another simple approach is for the direction of subsurface exchanges to mirror the
direction of the overlying surface drainage network. So, if a stream in subcatchment A
flows into the stream in subcatchment B, the subsurface reservoirs also drain in the same
direction (from the reservoir under A to the reservoir under B). This approach still requires
estimation of exchanges between streams and groundwater, which could be informed by
stream gauging measurements.

The most general case would be to allow exchange coefficients to be varied indepen-
dently and estimated using high-dimension parameter estimation techniques [14,15]. We
found that approach introduced complexity associated with ensuring continuity (sum of ex-
change coefficients sums to 1) and required a massive number of runs in a trial application,
so that approach was not ultimately used in the case studies.

Derivation of Exchange Coefficients from MODFLOW Groundwater Model Results

The approach used in the case studies, for areas within the regional groundwater
zone, was to derive exchange coefficients from results of a full groundwater model. In
the case study a groundwater model based on MODFLOW had already been developed
and are documented [18]. Derivation of the exchange coefficients required considerable
post-processing of the groundwater model results.

Losses from the streams to reservoirs were determined directly from losses per stream
length in the MODFLOW output. The MODFLOW stream network was based on the
stream reaches of the catchment model, but only on Strahler order 3 and larger of the
stream network in the catchment model. Since it is not easy to downscale losses from large
streams (i.e., higher Strahler order) to smaller streams (i.e., lower Strahler order), losses
were limited to the larger streams.

Flow across the boundary between adjacent reservoirs was determined based on spa-
tial downscaling of vertically averaged MODFLOW outputs. First, the three-dimensional
(3-D) MODFLOW fluxes were converted to a 2-D vertically averaged flux by summing
fluxes over the MODFLOW vertical layers. The groundwater model used 1 km by 1 km grid
cells, which are larger than the scale of subcatchments and do not align with the irregular
subcatchment boundaries (see Figure 2, which is taken from part of the Hauraki catchment).
To address this mismatch, the groundwater model plan grid was subdivided into finer
resolution cells (10 m by 10 m grid cells, although the fine cells were ten times smaller
than that depicted in Figure 2). Each of the fine cells was allocated to a subcatchment
based on the location of the centre of the fine cell. The flow across each of the groundwater
subcatchment boundaries was then determined, using linear interpolation of velocities
from the original MODFLOW grid. The total flux across the boundary was then determined,
and the fluxes across all boundaries were then accumulated for each element to determine
the outflows as a proportion of the inflows.
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2.4. Hauraki Case Study

The Hauraki case study addressed the catchment of the south end of the Haruaki
Gulf in New Zealand (Figure 3) which is dominated by the catchment of the two main
rivers, the Piako River and the Waihou River. The geology is predominantly ignimbrite [19],
with well-drained soils in the upper catchment. Nitrogen loads entering the Gulf are of
concern due to potential marine eutrophication [20], while concentrations in the streams
are of concern due to excessive growth of macrophytes and epiphytic periphyton. The
catchment has been studied as part of a research program on surface-groundwater model
simplification and uncertainty [12]. The total catchment area is 3630 km2, which was broken
into 7925 subcatchments and their associated stream segments.
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Key data sources used in the model are summarised in Table 1. Subsurface exchange
coefficients and surface-subsurface exchanges were determined as described in Section 2.3.
Subsurface first-order decay coefficients used a map of shallow groundwater oxic status
class (Figure 4) which was developed with a spatial regression model [21] and provided
three classes of oxic status. A separate decay coefficient was used for each decay class
(through calibration) and the representative decay parameter for a subcatchment was the
area-weighted decay parameter based on the areas of the class within the subcatchment. In
areas where the decay class is not available, the value for mixed oxic status was used.

Table 1. Key data sources used for the Hauraki case study.

Item Source

Surface subcatchments and streams River Ecosystem Classification (REC) drainage
network version 2.4 [22]

Direct runoff, recharge and runoff
apportionment Hydrology model TopNet [23,24]

Diffuse nitrogen sources Overseer catchment model [25,26], as applied by
DairyNZ [27]

Point sources WRC monitoring summary [28]

Groundwater model
(used for exchange coefficients)

Steady-state model by GNS Science
MODFLOW-NWT-SFR [18]

Redox zones Shallow groundwater redox status model [21]

Calibration loads Derived from monitoring data by WRC [28]
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Key remaining parameters include (i) the first-order subsurface decay rate coefficient
for each of three groundwater oxic state classes, (ii) a stream decay coefficient and (iii) an
effective mixing depth for each of a number of zones associated with monitoring sites.

Monte Carlo methods were used to calibrate model parameters, using the SWEEP
facilities of the PEST++ (Parameter ESTimation ++) software [14,15]. The methods sample
parameters from a prior distribution, and the best-performing parameters sets are selected
to arrive at a ‘conditioned’ set of model parameters (which we have termed ‘posterior’
parameters, even though the model estimation does not use Bayesian methods for which
the term posterior originates). Methods used for establishing the prior distribution, and the
shape and parameters for the distributions, are summarised in Table 2. About 10,000 pa-
rameter realisations were used (the model was run 10,000 times). Stream nitrogen loads at
12 sites derived from monthly water quality monitoring measurements and continuous flow
records [28] were used for assessing the goodness of fit. The sum of absolute deviations in
load was used as the fit metric. The ‘posterior’ parameter distribution was taken from the
best 200 runs (smallest values of the fit metric), rather than defining an acceptable value for
the metric.

Table 2. Key parameters other than exchange coefficients, methods of determining their prior
distribution and the prior distribution, for the Hauraki case study.

Parameter Method of Determining Prior Values Parameter Baseline Value and
Distribution

Subsurface decay coefficients

Global oxic, anoxic and mixed nitrogen first
order removal rate coefficients. Baseline values
from independent advice (Murray Close, ESR).

Distribution was biased less than initial
estimates after initial model exploration.

Oxic = 0.0000365 yr−1

(0.0000001–0.00001)
Mixed = 0.9993 yr−1 (0.001–0.9999)

Anoxic = 1 yr−1 (0.01–1)
Distribution: Uniform.

Mixing depth (water
equivalent depth)

Initial depths were based on the thickness of the
saturated layer of the MODFLOW model.

However, that approach gives large mixing
depths and resulted in high decay rates. Hence,
the mixing depth was set as no more than 2.5 m.

≤2.5 m (0.5–2.5)
Distribution: Uniform.

Values adjusted for zones
associated with each of 18 river

monitoring stations.

Stream decay coefficient Based on CLUES [13]. Exponent set at −0.7.
0.01 km−1m2.1s−0.7

(0.0001–0.02)
Distribution: Uniform

Concentration ratio for surface runoff
(ratio of direct discharge to

groundwater recharge concentration)
Assumed constant Set to 1, not varied.

3. Results
Hauraki Case Study

The model ran rapidly (3 s for a single iteration on a personal computer, including
input-output), the numerical solution was stable and the system conserved mass. This
result was not unsurprising given the simple linear formulation. Due to the rapid run-time,
it was feasible to run 10,000 Monte Carlo iterations on a four-core workstation in 4.5 h.
The most complicated part of the setup was extracting exchange coefficients from the
groundwater model.

A numerical difficulty occurred when there were cycles in the flows, when the ex-
change coefficients were such that all the outflow from an element returns to that element.
In this situation there is not a unique solution to the flows and the matrix solver fails. This
unusual situation, which is actually a poorly specified model, only arose when merging
the groundwater model domain with the full model domain; additional forensic code was
required to detect and correct the source of the cycles, based on examining increments of
flow with an iterative matrix solver.
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Example results comparing measured and predicted loads before and after parameter
conditioning are shown for the downstream sites in Figure 5. Parameter conditioning gener-
ally shifts the distribution of predictions closer to the values estimated from measurements
(‘measured’ values) and narrows the distribution of parameters. This reduction in bias is
associated with selecting the best-performing set of parameters realisations. Despite the
general improvement, there was some deterioration for some of the smaller catchments
such as the Waitakaruru River catchment, because the parameters such as the global decay
coefficients were dominated by sites with larger loads. While the model performance
for small sites was sometimes poor, this does not have much influence on the overall
result due to the choice of fit metric. Alternative fit metrics could have been used to place
more emphasis on smaller sites (for example, by normalising the loads to measured loads
in the fit metric). Other sites (not shown) had a negative bias, which was retained after
parameter conditioning.
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The distribution of groundwater decay parameters after conditioning (Figure 6) shows
that the decay coefficients were considerably less than initially estimated from independent
advice. The decay coefficient in oxic groundwater was very small, but despite the small
decay, the predicted loads were less than measured in some of the subcatchments in oxic
zones, suggesting that the leaching sources provided from a separate model may be too high.
There is no mechanism in the model for creating additional source loads. These small decay
coefficients are also influenced by the large residence times associated with the assumption
of complete mixing in the conceptual reservoirs. For example, with a shallow effective
depth (equivalent water depth) of 2.5 m, the residence time for a typical recharge of 0.1 m/y
would be 25 years, leading to attenuation by a factor of 0.082 (91.8% reduction) for a decay
coefficient of 0.1 y−1. We also note that the independent estimates are actually derived
from calibration of different models, rather than from direct measurement of process rates,
so the independent estimates are not themselves definitive. No measurements of decay
rates have been made in this catchment, though.
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As an example, application of the approach, a load reduction scenario was run whereby
all sources in the catchment were reduced by 20%. The resulting concentration is shown in
Figure 7. The distribution of concentrations is biased low compared with the measured me-
dian, which is in part due to under-prediction of the load at that location. Additional errors
may arise due to estimating the median concentration from the mean annual load. The load
reduction leads to a 20% reduction in concentrations, due to the linear model formulation
and the assumed uniform reduction of sources. Despite the reduction and uncertainty in
predictions, the concentrations remain above the target level of 0.5 mg/L (an interim target,
which is likely to be replaced). The bias in concentrations suggests that bias correction may
be needed for comparing model predictions with absolute concentration targets.
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4. Discussion

In the application of the model, exchange coefficients were determined by extracting
information from a 3-D groundwater model. There are some limitations with that approach,
such as a mismatch of scales and spatial discretisation. For example, the groundwater
model only included stream losses for Strahler order 3 streams, whereas it would be de-
sirable to have losses for smaller streams in the simplified subcatchment-based model.
Converting from the coarse rectilinear groundwater model grid to the irregular subcatch-
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ment boundaries required considerable manipulation of the groundwater model results.
The groundwater model could have vertical variations in flows—for example, fast shal-
low components—which had to be averaged vertically for simplified subcatchment-based
model, which then led to long residence times and associated high decay. This can be
countered to some degree by restricting the depth of the model to an effective depth that is
calibrated, losing some aspect of the physical interpretation of the formulation and leaning
more towards a conceptual formulation.

Lumped-parameter dynamic modelling of a subcatchment within the Piako catchment
by Woodward and Stenger [29] demonstrated that long residence-time pathways (such
as deep groundwater) were associated with low concentrations, whereas shallow fast
pathways had high concentrations, suggesting the desirability of separating shallow and
deep groundwater pathways. The model formulation presented in this paper has been
extended to include a deep groundwater layer [12], but was not explored in the model
application due to the need for additional parameterisation.

The model formulation allows for extracting exchange coefficients from a variety
of sources. There are alternatives to using a fully distributed groundwater model for
evaluating the exchange coefficients. As mentioned in Section 2.3, in some cases it could be
assumed that all the recharged groundwater exits into the local stream, or that subsurface
flow mirrors surface pathways. A further approach would be to extract the exchange
coefficients from a simplified groundwater model developed recently for New Zealand [30],
which could be explored in future work. In some cases, piezometric surfaces may be
available, and they could be used for estimating subsurface exchange coefficients, although
it would still be difficult to evaluate stream losses and groundwater discharge.

An alternative approach to model simplification in the Hauraki catchment by White
et al. [31] used a linear model emulator of a fully distributed steady surface-groundwater
model coupled with a transient nitrate transport model. The emulator reasonably assumed
linearity between source loading and stream concentrations. The sensitivity of concentra-
tions to sources (a response matrix) was determined by undertaking a full model run for
each grid cell, changing the source in that cell and noting the response at each location of
interest. In the model application, 3160 grid cells each of 1 km2 area were used, requiring
3160 model runs to represent the sensitivity of concentrations to source loadings. The linear
formulation was convenient for coupling with an economic optimisation model for source
load reduction including parameter uncertainty. A similar linear approach could be taken
using the simplified subcatchment-based model presented in the current paper, building
on the transfer matrix concept discussed in Section 2.3.

The model formulation and application only addressed some aspects of uncertainty.
For example, it was assumed that the nutrient sources and the split between recharge and
runoff direct to the local stream are known deterministically; uncertainty in the measured
load was not accounted for; and the structural uncertainty is not addressed (for example,
the assumption of mixing in each subsurface reservoir).

Calibration was only done for load estimates in the streams. Some groundwater
concentration estimates are available, and the model can predict a concentration in ground-
water, but measured concentrations are likely to vary with depth and at fine spatial scales
not represented in the model, so that comparisons between modelled and measurements
are not likely to be of much value.

The model has been extended to predict the water age [12]. That extension was not ap-
plied in the case study, but may offer opportunities in the future for constraining parameters
such as the effective mixing depth better, if measurements of water age are available.

The model formulation introduces the potential for parameter interaction. For example,
decay coefficients are likely to interact with the effective groundwater depth and source
parameters. Such interactions make parameter calibration difficult (for example, requiring
more parameters realisations to explore the model behaviour).

The model is steady state, focusing on long-term average water and mass balances.
It is possible to use flow-concentration relationships in conjunction with a measured or
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simulated time series to disaggregate concentrations over time (as done recently in the
Hauraki catchment [32]), but that introduces uncertainties associated with the rating curve
form and evaluating the rating curve for un-measured locations. A potential avenue
for future work would be to extend the spatial constructs of the model presented in
this paper (a conceptual reservoir under each subcatchment, with exchange proportions
between adjacent reservoirs) but taking account of dynamics (for example, thorough
storage-discharge relationship for each reservoir), possibly building on conceptual dynamic
groundwater extensions from other hydrological models (e.g., [23]).

5. Conclusions

The novel simple model presented in this paper provides a simple and flexible ap-
proach to adding regional groundwater to steady-state models for flow and contaminant
transport models that use spatial constructs of subcatchments and an associated drainage
network, which are commonly used for representing surface water systems.

The calculations proved to be straightforward to set up and solve, with rapid run-
times (<10 s) for a meso-scale catchment with 7925 subcatchments. Such rapid run-times
allow for parameter calibration methods that involve many model realisations. The simple
formulation would be easy to incorporate in couple catchment-economic models.

The model entails the specification of many exchange coefficients, which define the
proportion of the total outflow that passes to adjacent elements (reservoirs or stream
segments). In the example application, the coefficients were derived from an existing 3-D
groundwater flow model, but alternatives are available, such as basing flow directions on
groundwater contours.

The trial application showed model biases even after calibration. Part of the biases
could be due to relying on separate models for some of the inputs, such as nutrient sources,
recharge fractions and locations of reducing groundwater conditions, which could not
be compensated for by adjusting other parameters. The model also incorporates some
conceptual parameters, such as the effective mixing depth, which are difficult to determine
with limited observations and when there is inherent co-variation with other parameters
such as decay.

Overall, the approach presented in this paper provides some new concepts that could
be further developed in future models, and are of some immediate use for rapid assessment
of contaminant fluxes in coupled surface-groundwater systems, provided that challenges
with parameterisation are catered for.

Supplementary Materials: The model code and example dataset are available online at https://
www.mdpi.com/article/10.3390/w14030350/s1.
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