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Abstract: The objective of this study is to model the transport of groundwater contamination in
one-layered and two-zoned porous medium flows by an analytical approach. The one-dimensional
advection–dispersion equation (ADE) has usually been used to describe the problems of pollutant
transport in a water environment. This study presents some exact solutions to the one-dimensional
ADE to examine the variation of solute concentration with and without the biodegradable effect
in an unconfined aquifer of a finite domain by the generalized integral transform method (GITM).
The modeling results for the concentration of groundwater contamination show that the pollutant
concentration is more sensitive to the Peclect number than to the retardation factor and the first-order
decaying coefficient in uniform groundwater flow. In composite soil zones, decaying and diffusion
factors have significant effects on the contamination concentration around the interface, especially over
a long-term period. The transport flux between the two regions is determined by the concentration
gradient at the interface of the two regions. The contaminated concentration decreases as the retardation
factor, Peclect number, and the first-order decaying coefficient increase for every location at a fixed
duration. Moreover, the contaminated concentration is more sensitive to the Peclect number than to the
retardation factor and the first-order decaying coefficient in uniform groundwater flow.

Keywords: groundwater; advection dispersion equation (ADE); generalized integral transform
method (GITM); solute transport

1. Introduction

Groundwater is overconsumed in some regions or countries where people regard
it as a crucial water resources. Therefore, if groundwater is contaminated by artificial
activities such as pesticide usage, waste products from construction or industrial factory,
and excrements of livestock, it may threaten human health after people drink it over the
long term. Once groundwater is contaminated, it is difficult to purify it and requires huge
treatment costs.

Schuetz et al. [1] constructed an experimental wetland to realize the migration of
solutes in shallow water using a novel solute tracking method. The test was to inject hot
water into the model and observe the water flow with a handheld thermal imaging system.
This model can easily confirm the solute movement in shallow water flow and can simulate
more complex topographic structures according to the local topographic variation model.
Rubol et al. [2] used the advection–dispersion equation (ADE) with spatially variable
coefficients to model solute transport in soil layers with plant roots. The semi-analytical
solution of solute transport in the submerged vegetation aquatic system is derived by the
integral transformation technique. Irregularity of the soil layer with plant roots affects the
soil infiltration rate, which further affects the symmetry of concentration, effective vertical
diffusion, and magnitude of peak concentration. These flow mechanisms depend on the
geometry of the soil layer with the plant roots and affect the concentration of solutes in the
water flow, which are critical for studies on improving groundwater quality.
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The unidimensional advection–dispersion equation (ADE) is the most commonly
used partial differential equation that delineates the solute transport distribution in time
and space. Such an equation is derived with respect to the hydro-dynamic dispersion
process in aquifers according to the law of conservation of mass. Analytical solutions to
ADE with constant coefficients have been obtained, subject to a distinct set of initial and
boundary conditions in recent decades. Fry et al. [3] derived an analytical solution to the solute
transport equation by an eigenfunction integral equations method to discuss the variation
of concentrations under the effect of rate-limited desorption and decay. In the process of
derivation, a partial solution is first obtained by temporarily removing one term in the original
equation, and then the full solution can be found by adding the additional term to the partial
solution in order to satisfy the original full equation. The solution’s procedure is complicated.

Among the existent methods used to solve ADE, Laplace transform technique is the
most popular method. Therefore, some articles using Laplace transform methods are
surveyed here. Kumar et al. [4] presented an analytical solution of one-dimensional ADE
with variable coefficients in a finite domain for two dispersion problems by employing
the Laplace transform method. Their so-called variable coefficients—solute dispersion
and average flow velocity—are constrained to a specific mathematical relation. Later,
Kumar et al. [5] used the Laplace transform technique again to deal with similar problems in
the semi-infinite media. Neelz [6] commented that the limitations of an analytical solution
for ADE with spatially variable coefficients should be noted. Jaiswal et al. [7] applied
the Laplace transform method to solve the linearized advection–diffusion equation and
obtained analytical solutions for temporally and spatially dependent solute concentrations
for a source of the pulse input type along a uniform/non-uniform flow in a semi-infinite
length. The pulse type input concentration was imposed by a constant and a variable way,
respectively. Moreover, Jaiswal et al. [8] also employed the Laplace transform technique to
deal with a similar problem with a source input concentration for uniform dispersion in a
uniform flow where the dispersion parameter is not proportional to the flow velocity.

Heterogeneous soil layers are widely present in subsurface environments, as delin-
eated by Liang et al. [9], in which solute transport in heterogeneous media was simulated
by a one-dimensional two-domain model, and the results were verified by comparing the
numerical and analytical solutions. From their results, the exchange of solute concentra-
tions between the two regions was caused by the difference of properties of the two regions
and is determined by the lateral dispersion at the interface. As solutes pass through these
two layers, part of the solute in the fast-flow region migrates to the slow-flow region first,
and then this concentration exchange reverses; that is, part of the solute in the slow-flow
region migrates back to the fast-flow region. The interaction of the solute has a significant
effect on pollution in groundwater systems.

Perez Guerrero and Skaggs [10] and Perez Guerrero et al. [11] described the transport of
pollutants in heterogeneous porous media as usually formulated by an advection–diffusion
equation, and thus, an analytical solution was proposed. This system, composed of dif-
ferential equations, has constant coefficients for both transient and steady-state problems.
After comparing it with the previous hybrid analytical–digital solution obtained by directly
applying GITM, the new presented solution converges faster.

In a one-dimensional convection–diffusion equation with time-varying coefficients, the
solute diffusion parameter and the solute flow are various with time. Such a problem was
analytically solved by Jaiswal et al. [7] by Laplace transform technique, and in their study,
the dispersion of a continuous input point source in the initially solute-free semi-infinite
domain was studied.

Kumar et al. [12] solved the one-dimensional convection–diffusion equation with three
various solute dispersion coefficients. In the semi-infinite medium, continuous point sources
with uniform and increasing properties were considered. They also used the Laplace transform
technique to obtain analytical solutions. The spreading was considered to be related to the
square of the space-related velocity, and new independent variables were introduced through
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separate transformations. According to these transformations, the convection–diffusion
equation in each problem was simplified to an equation with constant coefficients.

Conversely, Schmid [13] also derived solutions considering the first-order decay
advection–dispersion effect in rivers with transient storage zones by the Laplace transform
method. The results were compared with numerical solutions by a finite difference method,
and they obtained fairly good agreement. Additionally, Shukla [14] presented analytical
solutions to 1D ADE, including the effect of the first-order decay rate of the pollutant
BOD by the Fourier transform method for the case of unsteady transport dispersion of
non-conservative pollutants in a river. Shukla [14] found that an increase in the pollutant
decay rate, as well as convective velocity and dispersion, increases memory length and
decreases memory time.

In the past, there were few studies on analytical approaches for solute transport in
double-layer systems. Gureghian and Jansen [15] developed a one-dimensional analyt-
ical solution for the radionuclide decay chain in a semi-infinite double-layer medium.
Ledger et al. [16] proposed an analytical solution for one-dimensional transport in double-
layer media with the help of Laplace transform. The model they established included
the continuity of concentration at the interface and the conservation of mass flux. Since
the solution of double-layer porous media in the Laplace domain became extremely com-
plicated, the numerical Laplace inverse transform time domain solution was used. Leij
and van Genuchten [17] derived a semi-analytical solution with a clear mathematical ex-
pression in the time domain of solute transport in double-layer porous media. Li and
Cleall [18] proposed a one-dimensional analytical solution for solute transport in a two-
layer medium, considering five different combinations of inflow and outflow boundary
conditions. Perez Guerrero et al. [19] applied the classic integral transformation technique
to develop a closed-form analytical solution for transmission in multi-layer media. Recently,
Batu [20] proposed an analytical solution for solute transport in semi-infinite, dual-domain
media, considering biodegradation. Chen et al. [21] proposed a one-dimensional stable
design equation for the PRB system. This design equation is obtained based on the work
of van Genuchten [22], presenting a one-dimensional analytical solution for a steady-state
groundwater flow in a proposed infinite single-domain medium. Chen et al. [23] described
the minimum thickness of PRB by developing a single-domain analytical solution with zero
concentration gradient on the exit boundary of PRB. Park and Zhan [24] and Chen et al. [25]
respectively proposed one-dimensional and two-domain analytical solutions for single and
multiple species transport in a PRB system. Based on the forgoing statements, most of the
above studies are still limited to one-zoned problems in one-dimensional transportation
systems, and most researchers employed the Laplace transform technique to solve the
solute transport equation with and without considering the effect of the first-order decay
rate. In this study, a generalized integral transform technique was applied instead for a
two-zoned problem because of its steady and fast convergence as discussed in the work of
Wu and Hsieh [26].

The purpose of this study was to analyze the transport of groundwater contamination
in one- and two-zoned porous medium flows via an analytical mathematical model. This
study provides some precise solutions for one-dimensional ADEs to examine changes in so-
lute concentrations in unconfined aquifers with or without biodegradable effects by GITM.
The solutions obtained by GITM converge fast, and the current solutions have been verified
with numerical solutions. The modeling results of groundwater pollution concentration
show that the pollutant concentration is the most sensitive to the Peclect number than to
the other factors in uniform groundwater flow. In the two-zoned porous medium, decaying
and diffusion factors have significant effects on the pollutant concentration around the
interface. The transport flux between the two zones was found to be determined by the
concentration gradient at the interface of the two zones. The decay of the solute has a
significant effect on the mass interaction between the two regions.
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2. Mathematical Models
2.1. One Zone in an Aquifer without Considering Biodegradable Effect

According to Fick’s law and the law of conservation of mass, a one-dimensional ADE
is usually acquired to describe the contamination transport in an unconfined aquifer. The
soil matrix in the aquifer is assumed to be isotropic and homogeneous. A permeable
reactive barrier (PRB) is set at x = L to hinder the transportation of the contamination
caused by the landfill leachate at x = 0 with the concentration C0, as shown in Figure 1.
In Sections 2.1 and 2.2, the parameters of both zones are the same, i.e., only one zone
in the aquifer.
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By referring to Kumar et al. [5], the one dimensional ADE and the initial and boundary
conditions to describe the solute transport in a flow are as follows:

Governing equation:

R
∂c
∂t

= D
∂2c
∂x2 −V

∂c
∂x

(1)

where c is the mass concentration of solute transport without considering the biodegradable
effect (kg/km3), D is the dispersion coefficient (km2/y), R is the retardation factor (−), V
is the average velocity of flow (km/y), t is time (y), and x is the distance (km).

Initial condition:
The study domain is supposed initially solute free in the flow, i.e.,

c(x, t = 0) = 0, 0 < x < L (2)

Boundary conditions:
The following continuous input concentration is introduced at the inlet x = 0, and a

zero concentration gradient at the other end x = L is given.

c(x = 0, t) = C0, t > 0 (3)

∂c
∂x

= 0, x = L, t > 0 (4)

where C0 is the concentration of the contamination at the inlet (kg/km3).
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Before solving the above boundary-value problem, we first non-dimensionalized the
original variables by the following relations:

X =
x
L

, C =
c− C0

C0
, T =

t
L/V

, α =
VL
D

(5)

in which C is the dimensionless variation of the solute concentration without considering
the biodegradable effect (−) and α is the Peclet number (−).

Substituting Equation (5) into Equation (1) gives

∂C
∂T

=
1

αR
∂2C
∂X2 −

1
R

∂C
∂X

(6)

with the following initial and boundary conditions:

C(X, 0) = −1, 0< X < 1 (7)

C(0, T) = 0, T > 0 (8)

∂C
∂X

= 0, X = 1, T > 0 (9)

Next, we used the technique of change-of-variables to eliminate the first-order spatial
differential term in Equation (6) by setting

C(X, T) = e
α
2 X− α

4R TCv(X, T) (10)

to transform Equations (6)–(9) into

∂Cv

∂T
=

1
αR

∂2Cv

∂X2 (11)

Cv(X, T = 0) = −e
−α
2 X , 0< X < 1 (12)

Cv(X = 0, T) = 0, T > 0 (13)

α

2
Cv +

∂Cv

∂X
= 0, X = 1, T > 0 (14)

To solve Equations (11)–(14), we used the generalized integral transform technique
proposed by Özisik [27]. The transformation relations are given below:

Transform formula:

CF(βm, T) =
∫ 1

X′=0
K
(
X′, βm

)
Cv
(
X′, T′

)
dX′ (15)

Inverse transform formula:

Cv(X, T) =
∞

∑
m=1

K(X, βm)CF(T, βm) (16)

By referring to Table 2.1 in Özisik [27], the kernel function based on the
boundaries (13) and (14) was found to be

K(X, βm) =

√
2Am

LAm + (α/2)
sin(βmX) (17)

where βm is eigenvalue, i.e., the positive roots of β of the eigen equation: βcotβ = − α
2 , and

Am = βm
2 + (α/2)2.



Water 2022, 14, 323 6 of 22

According to Equation (15), taking the transform of Equations (11) and (12) results in

dCF
dT

+
1

αR
βm

2CF = 0 (18)

CF(0, βm) =
∫ 1

X′=0
K
(
X′, βm

)(
−e

−α
2 X′
)

dX′ =

√
2Am

Am + (α/2)
Bm

Am
(19)

with Bm = βme
−α
2 cos βm + α

2 e
−α
2 sin βm − βm.

Solving Equation (18) with Equation (19) gives

CF(T, βm) =

√
2Am

Am + (α/2)
Bm

Am
e
−βm2

αR T (20)

Then, taking inverse transform of Equation (20) based on Equations (16) and (10) yields

C(X, T) = e
α
2 X− α

4R T
∞

∑
m=1

2Bm

Am + (α/2)
sin(βmX)e−

βm2
αR T (21)

According to Equation (5), the dimensional concentration of contamination without
considering biodegradable effect in the groundwater flow is

c(x, t) = C0 + C0e
α
2

x
L−

α
4R

V
L t

∞

∑
m=1

2Bm

Am + (α/2)
sin(βm

x
L
)e−

βm2
αR

V
L t (22)

2.2. One Zone in an Aquifer with Considering Biodegradable Effect

By referring to Kumar et al. [5], the advection–dispersion equation including the
first-order decaying coefficient of degradation becomes

R
∂c
∂t

= D
∂2c
∂x2 −V

∂c
∂x
− λc (23)

where c is the mass concentration of the solute transport (kg/km3) considering the biodegrad-
able effect, x is the distance (km), t is time (y), λ is the first-order decaying coefficient of
degradation in a flow (1/y).

Initial condition:
c(x, 0) = 0, 0 < x < L (24)

Boundary conditions:
c(0, t) = C0, t > 0 (25)

∂c(L, t)
∂x

= 0, t > 0 (26)

In addition, we non-dimensionalized the original variables by the following relations:

X =
x
L

, C =
c− C0

C0
, T =

t
L/V

, ρ =
λL
V

, (27)

with C as the dimensionless change of the solute concentration considering the biodegrad-
able effect (−).

Substituting Equation (27) into Equations (23)–(26) results in

R
∂C
∂T

=
1
α

∂2C
∂X2 −

∂C
∂X
− ρ(C + 1) (28)

C(X, 0) = −1, 0 < X< 1 (29)

C(0, T) = 0, T > 0 (30)
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∂C(1, T)
∂X

= 0, T > 0 (31)

Then, we used the technique of change-of-variables to eliminate the first-order spatial
differential term and the source term in Equation (28) by setting

C(X, T) = e
α
2 X− α

4R T−ρTCw(X, T) (32)

to transform Equations (28)–(31) into

∂Cw

∂T
=

1
αR

∂2Cw

∂X2 − ρe−
α
2 X+ α

4R T+ρT (33)

Cw(X, 0) = −e−
α
2 X , 0 < X < 1 (34)

Cw(0, T) = 0, T > 0 (35)

α

2
Cw +

∂Cw

∂X
= 0, X = 1, T > 0 (36)

Consequently, taking the integral transform to Equations (33) and (34) yields

dCF
dT

+
1

αR
βm

2CF = ρ

√
2Am

Am + (α/2)
Bm

Am
e

α
4R T+ρT (37)

CF(0, βm) =
∫ 1

0
K
(
X′, βm

)(
−e−

α
2 X′
)

dX′ =

√
2Am

Am + (α/2)
Bm

Am
(38)

where CF(T, βm) is the integral transform of Cw, βm is eigenvalue, Am = βm
2 + (α/2)2, and

Bm = βme
−α
2 cos βm + α

2 e
−α
2 sin βm − βm.

Solving Equation (37) with Equation (38) gives

CF(T, βm) = e
−βm2

αR T

√
2Am

Am + (α/2)
Bm

Am

1 +
4αRρ

[
e(4βm

2+α2+4αρR)T/4αR − 1
]

4βm2 + α2 + 4αρR

 (39)

Then, taking inverse transform of Equation (39) and inversing the relation,
Equation (32), yields

C(X, T) = e
α
2 X− α

4R T−ρT
∞

∑
m=1

e
−βm2

αR T sin(βmX)
2Bm

Am + (α/2)

1 +
4αRρ

[
e(4βm

2+α2+4αρR)T/4αR − 1
]

4βm2 + α2 + 4αρR

 (40)

According to Equation (27), the dimensional solute concentration considering the
biodegradable effect in the flow is

c(x, t) = C0 + C0e
α
2

x
L−(

α
4R +ρ) V

L t
∞

∑
m=1

e
−βm2

αR
V
L t sin(βm

x
L
)

2Bm

Am + (α/2)

1 +
4αRρ

[
e(4βm

2+α2+4αρR)Vt/4αRL − 1
]

4βm2 + α2 + 4αρR

 (41)

2.3. Two Zones in an Aquifer with Considering Biodegradable Effect

Generally, the soil texture is complicated; therefore, we intend to deeply explore
the variation of contaminated concentration in a composite aquifer of two zones. The
boundary-value problem for two zones was established as follows:
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Governing equations:

R1
∂c
∂t

= D1
∂2c
∂x2 −V

∂c
∂x
− λ1c, 0 < x < Lm (42)

R2
∂c
∂t

= D2
∂2c
∂x2 −V

∂c
∂x
− λ2c, Lm < x < L (43)

Initial conditions:
c(x, t) = 0, 0 < x < L, t = 0 (44)

Boundary conditions:
c = C0, x = 0, t > 0. (45)

c
(
x = Lm

−) = c
(
x = Lm

+
)
, t > 0 (46)

Vc
(

x = Lm
−)− D1

∂c(x = Lm
−)

∂x
= Vc

(
x = Lm

+
)
− D2

∂c(x = Lm
+)

∂x
, t > 0 (47)

∂c
∂x

= 0, x = L, t > 0 (48)

Based on the assumption of same flow velocity at the interface (x = Lm) and
Equation (46), Equation (47) can be reduced to

D1
∂c(x = Lm

−)

∂x
= D2

∂c(x = Lm
+)

∂x
, t > 0 (49)

In Equations (42)–(49), the subscripts 1 and 2 of all variables and parameters denotes
for zone 1 and zone 2, respectively.

The procedure of derivation of solutions to the above problem is similar to that in
Section 2.1, and hence it is moved to Appendix A. The derivation processes for the analytical
solutions can be shown in Figure 2.
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Finally, the dimensionless variation of the solute concentration considering the biodegrad-
able effect for two zones in an aquifer can be obtained:

C(X, T) = e
α1
2 X− α1

4R1
T−ρ1Te

−1
α1R1

βm
2T ∞

∑
m=1

K(X, βm)[−I1(βm) + ρ1 I1(βm)F1(T, βm)− I2(βm) + ρ2 I2(βm)F2(T, βm)],

0 < X < Lm/L
(50)
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C(X, T) = e
α2
2 X− α2

4R2
T−ρ2Te

−1
α2R2

βm
2T ∞

∑
m=1

K(X, βm)[−I1(βm) + ρ1 I1(βm)F1(T, βm)− I2(βm) + ρ2 I2(βm)F2(T, βm)],

Lm/L < X < 1
(51)

3. Results

In order to verify this analytical solution, we used a numerical solution for verification.
Figure 3 is the comparison of analytical solutions and numerical solutions in the case
of one-zoned homogeneous soil in a finite field. It can be seen from Figure 3 that the
analytical results with simulation time of 0.1 year and 1 year are consistent with the results
of the numerical simulation. The parameters are referred to Kumar et al. [4], assuming
L = 1 km, D = 0.21 km2/y, V = 0.11 km/y.
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(b) t = 1 y.

Dispersion is due to the heterogeneity of porous media at the microscopic scale,
leading to differences in groundwater flow path and average velocity and leading to solute
dispersion. We set the soil zone to have different dispersion coefficients D1 and D2 and
used the numerical solution to verify the analytical solution of the solute concentration
transport in the two-zoned aquifer. The results are shown in Figures 4 and 5. Figure 4 is
the simulation result of the dispersion coefficient D1 = 0.1 km2/y for x = 0–0.5 km and
the dispersion coefficient D2 = 0.2 km2/y for x = 0.5–1 km, respectively for 0.5 years and
1 year. Figure 5 is the simulation result of the dispersion coefficient D1 = 0.2 km2/y for
x = 0–0.5 km and the dispersion coefficient D2 = 0.1 km2/y for x = 0.5–1 km, respectively,
for 0.5 and 1 year. It can be seen from the figure that there is no significant difference
between the analytical solution and the numerical solution.

To understand the effect of each parameter on the change of solute concentration, we
conducted the sensitivity analysis of relevant parameters, and the results are shown in
Figure 6. By checking the difference ratio, when the dispersion coefficient, biodegradation
factor, and retardation factor were all increased by 3 times, the difference ratio in the
dispersion coefficient and retardation factor was relatively large. These two parameters
have a greater influence on the change of solute concentration (Figure 6a,c). Conversely,
the difference ratio of the biodegradation factor (Figure 6b) was only about 1/2 of that for
the dispersion coefficient and retardation factor. The solute concentration was less sensitive
to the biodegradation effect.
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When using a generalized integral transform to solve boundary value problems, the
number of eigenvalue terms will affect the convergence speed of the analytical solution. In
the processes of deriving the analytical solution of solute transport in two-zoned media, the
change-of-variable technique must be needed to eliminate the first order spatial differential
term to comply with the requirement of applying the generalized integral transforms. In
the inverse integral transform, an infinite series is included. Theoretically, the infinite series
needs to be accumulated to a maximum number of terms in the calculations to reach a best
accuracy of the solute concentration, but the summation could be stopped if the required
accuracy is reached. Therefore, it is necessary to analyze and discuss the convergence
behavior of this series. As shown in Figure 7, when the number of eigenvalues is less than
20, the solute concentration fluctuates greatly, about ±15%, and the analytical solution
should be regarded as not converging yet. When the number of eigenvalues is between
20 and 60, the fluctuation of solute concentration is reduced to within ±5%, which is within
an acceptable error range in engineering. At this time, the analytical solutions can be
regarded as convergent. When the number of eigenvalues becomes larger than 60, the
change in solute concentration is less than ±1%. At this time, it does not make much sense
to continue to increase the number of eigenvalues. Conversely, the parameter will also
have an impact on the number of eigenvalues required for the analytical solution to be
convergent. Figure 7 shows the concentration variation for the Peclect number α = 0.0524,
0.524, and 5.24. It can be seen from the figure that when the number of eigenvalues is less
than 20, α has a greater impact on the convergence of the analytical solution. However,
when the number exceeds 20, the change of α is not meaningful for the convergence of
the analytical solution. This study discusses the number of cumulative terms for the
convergence of this series in different situations under the criteria of 10−3 (dimensionless).
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4. Discussions

The variation of solute concentration is affected by dispersion coefficients, biodegrada-
tion factors, and retardation factors over time and space. The analysis of influence of these
factors was reported and discussed here by performing the present mathematical model.

Microorganisms in natural soil and groundwater can self-decompose specific pollu-
tants and convert themselves into substances that are harmless to the environment, which
is called biodegradation. This study considers the first-order decay rate of pollutants to be
constant, which can be converted from the pollutant half-life. When the first-order decay
rate is zero, Equation (41) can be reduced to Equation (22). Figure 8 shows the variation of
solute concentration over time and space with and without considering the biodegradable
effect. This figure reveals that regardless of whether biodegradation is considered or not,
the solute concentration will reach a stable concentration if the distance is long enough. As
expected, the concentration considering biodegradation will be smaller than that without
biodegradation effect.
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The one-zone solute transport simulation case in this study considers both retained
and non-retained biodegradation effects, referring to Equations (1) and (23), and analytical
solutions, Equations (22) and (41). Figure 9 shows how the solute concentration changes
over time and space when considering the biodegradable effect. The transport processes of
the dimensionless solute concentration with the biodegradable effect are clearly shown in
Figure 9c. All the local changes of the solute concentration will temporarily increase but will
gradually become stable. When the biodegradable effect is not considered, the variations
of solute concentration over time and space are shown in Figure 10. The concentration
increases slowly from a higher initial value for different locations (Figure 10a,c) and decays
slowly to a higher value over space at a certain duration (Figure 10b,c). Comparing
Figures 9 and 10, under the same simulation time of 1 year, the stable solute concentration
without biodegradable effect is about 0.7 kg/km3, and the stable solute concentration with
a biodegradable effect is about 0.3 kg/km3. The area of c < 0.50 kg/km3 becomes smaller
and the other two areas of c > 0.50 kg/km3 and c > 0.75 kg/km3 become larger when the
biodegradable effect is not considered. This clearly displays the effect of the biodegradation
on the solute concentration, meaning that the biodegradable effect has an apparent effect
on the solute concentration distribution.

The parameters used in Figure 11 are L = 1 km, D = 0.021 km2/y, V = 0.11 km/y,
which describes the slower transport rate of solute in the aquifer. From the figure, when
the biodegradable effect is considered, the solute concentration tends to stabilize with
the increase of time and space. In addition, because of the low solute transport speed
and the influence of the biodegradable effect, the solute concentration approaches zero at
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about x ≥ 0.6 km. In other words, the solute is completely degraded. Therefore, no
concentration will be observed at any location x ≥ 0.6 km before 1 year.

The same parameters are used in Figure 12 but without considering the biodegradable
effect. From the figure, the solute concentration increases with time. The increase of
the concentration is also quite insignificant after the position of x = 0.5 km. Because the
biodegradable effect is not considered, the solute concentration reaches different stable
values for different stages. When compared with Figure 11, although the concentration
variation in Figure 12 has the same trend, the concentration can still be observed over
the space, and the concentration c is larger than 0.40 kg/km3 for the hypothetical cases at
different durations.

Conversely, Figure 13 shows the spatial distribution of contaminated concentrations
in the composite aquifer for different Peclect numbers. When α1 < α2 (Figure 13a), the
contaminated concentration decreases gradually with increasing distance in zone 1. As
x ≥ 0.5 km, the concentration first drops quickly and then decreases gradually because
of the smaller Peclect number. Oppositely, when α1 > α2 (Figure 13b), the variation of
contaminated concentration drops fast in zone 1 because of the larger Peclect number.
The effect of different Peclect numbers on the change of contaminated concentration is
especially obvious for a longer period. The concentration variation at the interface of the
composite aquifer becomes smooth for α1 > α2 because the concentration decays to a low
value at the interface, and thus the transport flux has no effect on it.
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Figure 9. The change of solute concentration when the influence of biodegradation is considered.
(D = 0.21 km2/y, R = 1, λ = 0.1/y). (a) The solute concentration varies with time. (b) The
solute concentration varies with space. (c) The change of solute concentration over time and space.
(d) 3D plot of solute concentration change over time and space.
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Figure 10. The change of solute concentration when the influence of biodegradation is not consid-
ered. (D = 0.21 km2/y, R = 1, λ = 0. (a) The solute concentration varies with time. (b) The
solute concentration varies with space. (c) The change of solute concentration over time and space.
(d) 3D plot of solute concentration change over time and space.

The adsorption factor is usually considered in combination of various gases or dis-
solved pollutants and the surface of solid materials. In the groundwater system, solid
matter such as the aquifer medium or sandy soil and the pollutant is in the dissolved phase.
This phenomenon will affect the solute concentration in the porous medium. In this study,
the adsorption phenomenon only considers linear equilibrium adsorption by introducing
a retardation factor. Figure 14 compares the effect of the retardation factor on the solute
concentration. For a larger adsorption factor, the solute concentration decays more quickly.
Therefore, the change of solute concentration decreases fast in zone 2 in Figure 14a but in
zone 1 in Figure 14b. It was noted that the solute concentration at the interface drops more
quickly in Figure 14a than in Figure 14b because of the higher retardation effect.
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Figure 11. The change of solute concentration when the influence of biodegradation is considered.
(D = 0.021 km2/y, R = 1, λ = 0.1/y. (a) The solute concentration varies with time. (b) The solute
concentration varies with space. (c) The change of solute concentration over time and space. (d) 3D
plot of solute concentration change over time and space.

During the transport of solute concentrations, the factors such as Peclect number (α)
and retardation factor (R) directly affect the solute concentration in a short period. However,
the biodegradation factor (ρ) is a biological and chemical effect, which lasts for a long time
but has less influence than the Peclect number (α) and retardation factor (R). Figure 15
reveals that the solute concentration increases with time at every location and decreases
gradually over the distance at any duration. Notably, the influence of biodegradation
factors on the change of solute concentration is not significant, regardless that ρ1 > ρ2 or
ρ1 < ρ2, but the concentration gradient near the interface of the two zones slightly changes
for ρ1 < ρ2 when the duration is greater than one year.

From the above modeling of the concentration of solute transport, it was found that in a
composite aquifer, the decaying and diffusion (in the Peclect number) factors have an apparent
effect on the contaminated concentration at the interface, especially for long-term modeling.
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Conversely, Figure 13 shows the spatial distribution of contaminated concentrations 
in the composite aquifer for different Peclect numbers. When 𝛼ଵ < 𝛼ଶ (Figure 13a), the 
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Figure 12. The change of solute concentration when the influence of biodegradation is not consid-
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and retardation factor (R) directly affect the solute concentration in a short period. How-
ever, the biodegradation factor (𝜌) is a biological and chemical effect, which lasts for a 
long time but has less influence than the Peclect number (𝛼) and retardation factor (R). 
Figure 15 reveals that the solute concentration increases with time at every location and 
decreases gradually over the distance at any duration. Notably, the influence of biodeg-
radation factors on the change of solute concentration is not significant, regardless that 𝜌ଵ > 𝜌ଶ or 𝜌ଵ < 𝜌ଶ, but the concentration gradient near the interface of the two zones 
slightly changes for 𝜌ଵ < 𝜌ଶ when the duration is greater than one year. 
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(a) α1 < α2(b) α1 > α2.
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Analytical solutions to ADEs of the solute transport in groundwater flow under the 
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active barrier are presented and verified with numerical solutions. The presented exact 
solutions are obtained by the generalized integral transform method associated with 
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Figure 15. Variation of contaminated concentrations for different first-order decaying coefficients.
(D = 0.21 km2/y, R = 1). (a) ρ1 < ρ2 (b) ρ1 > ρ2.

5. Conclusions

Analytical solutions to ADEs of the solute transport in groundwater flow under the
hypothetical scenario designed as an aquifer between a landfill field and a permeable
reactive barrier are presented and verified with numerical solutions. The presented exact
solutions are obtained by the generalized integral transform method associated with change-
of-variables technique. Further, the modeling results indicate that the present mathematical
model is an efficient tool to model or predict the variation of contamination concentration
for a groundwater flow in a two-zoned aquifer, which can be extended to an n-zoned
aquifer in the future. Some remarkable points are summarized as follows:

(1) An analytical solution for solute transport in vertically layered geological media
is derived by employing GITM. Owing to the existence of an infinite series in the
analytical solution, the convergence precision should be checked via counting the
number of eigenvalues to make sure that the solution is correct.

(2) The contaminated concentration decreases as the retardation factor, Peclect number,
and the first-order decaying coefficient increase for every location at a fixed duration.
Moreover, the contaminated concentration is more sensitive to the Peclect number
than to the retardation factor and the first-order decaying coefficient in uniform
groundwater flow. The effects of decaying and diffusion factors on the contaminated
concentration around the interface become apparent over a long-term period.

(3) In nature, aquifers are usually composite. The present mathematical model can
be applied to simulate or predict the transport of the pollutant concentration in
groundwater flow in a single-layered aquifer and a two-zoned aquifer. Further, this
model can be extended to a more complex model considering an n-zoned porous
medium to study their solute transport in groundwater flow in the future.
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Appendix A Derivation of the Analytical Solution of a Two-Zone Model

The original variables are non-dimensionalized by the following relations:

X =
x
L

, C =
c− C0

C0
, T =

t
L/V

(A1)

with C is the dimensionless change of the solute concentration considering the biodegrad-
able effect (−).

Substituting Equation (A1) into Equations (23)–(26) results in

R1
∂C
∂T

=
1
α1

∂2C
∂X2 −

∂C
∂X
− λ1τ(C + 1), 0 < x < Lm (A2)

R2
∂C
∂T

=
1
α2

∂2C
∂X2 −

∂C
∂X
− λ2τ(C + 1), Lm < x < 1 (A3)

C(X, 0) = −1, 0 < X< 1 (A4)

C(0, T) = 0, T > 0 (A5)

C
(
X = Lm/L−

)
= C

(
X = Lm/L+

)
, T > 0 (A6)

1
α1

∂C(X = Lm/L−)
∂x

=
1
α2

∂C(X = Lm/L+)

∂x
, T > 0 (A7)

∂C(1, T)
∂X

= 0, T > 0 (A8)

where α1 = VL
D1

, α2 = VL
D2

, τ = L
V .

Then, we used the technique of change-of-variables to eliminate the first-order spatial
differential term and the source term in Equations (A2) and (A3) by setting

C(X, T) = e
α1
2 X− α1

4R1
T−ρ1TCw(X, T), 0 < X < Lm/L (A9)

C(X, T) = e
α2
2 X− α2

4R2
T−ρ2TCw(X, T), Lm/L < X < 1 (A10)

to transform Equations (A2)–(A8) into

∂Cw

∂T
=

1
α1R1

∂2Cw

∂X2 − ρ1e
−α1

2 X+
α1

4R1
T+ρ1T , 0 < X < Lm/L (A11)

∂Cw

∂T
=

1
α2R2

∂2Cw

∂X2 − ρ2e
−α2

2 X+
α2

4R2
T+ρ2T , Lm/L < X < 1 (A12)
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Cw(X, 0) = −e
−α1

2 X , 0 < X < Lm/L (A13)

Cw(X, 0) = −e
−α2

2 X , Lm/L < X< 1 (A14)

Cw(0, T) = 0, T > 0 (A15)

e
α1 Lm

2L Cw
(
X = Lm/L−

)
= e

α2 Lm
2L Cw

(
X = Lm/L+

)
, T > 0 (A16)

1
α1

e
α1 Lm

2L

[
∂Cw

∂X
+

α1

2
Cw
(
X = Lm/L−

)]
=

1
α2

e
α2 Lm

2L

[
∂Cw

∂X
+

α2

2
Cw
(
X = Lm/L+

)]
, T > 0 (A17)

∂Cw

∂X
+

α2

2
Cw(X = 1) = 0, T > 0 (A18)

where ρ1 = τ λ1
R1

, ρ2 = τ λ2
R2

.
From Equations (A11)–(A18), we can obtain the eigenvalue problem as:

d2K(X)

dX2 +
1

α1R1
βm

2K(X) = 0, 0 < X < Lm/L (A19)

d2K(X)

dX2 +
1

α2R2
βm

2K(X) = 0, Lm/L < X < 1 (A20)

K(X = 0) = 0, T > 0 (A21)

e
α1 Lm

2L K(X) = e
α2 Lm

2L K(X), T > 0 (A22)

1
α1

e
α1 Lm

2L

[
dK(X)

dX
+

α1

2
K(X)

]
=

1
α2

e
α2 Lm

2L

[
dK(X)

dX
+

α2

2
K(X)

]
, T > 0 (A23)

dK(X)

dX
+

α2

2
K(X) = 0, T > 0 (A24)

From Equations (A19) and (A20), we can obtain the kernel functions as:

K(X) = C1 cos
(

Xβm
√

1/α1R1

)
+ C2 sin

(
Xβm

√
1/α1R1

)
, 0 < X < Lm/L (A25)

K(X) = C3 cos
(

Xβm
√

1/α2R2

)
+ C4 sin

(
Xβm

√
1/α2R2

)
, Lm/L < X < 1 (A26)

The undetermined coefficients C1 − C4 can be solved by substituting Equations (A25)
and (A26) into (A21)–(A24), which yields

C1 cos(0) + C2 sin(0) = 0 (A27)

e
Lm
2L (α1−α2)

[
C1 cos

(
Lm

L
βm
√

1/α1R1

)
+ C2 sin

(
Lm

L
βm
√

1/α1R1

)]
= C3 cos

(
η2

Lm

L

)
+ C4 sin

(
η2

Lm

L

)
(A28)

α2
α1

e
Lm
2L (α1−α2)

{
C1

[
α1
2 cos

(
Lm
L βm

√
1/α1R1

)
− βm

√
1/α1R1 sin

(
Lm
L βm

√
1/α1R1

)]
+ C2

[
βm
√

1/α1R1 cos
(

Lm
L βm

√
1/α1R1

)
+ α1

2 sin
(

Lm
L βm

√
1/α1R1

)]}
= C3

[
α2
2 cos

(
Lm
L βm

√
1/α2R2

)
− βm

√
1/α2R2 sin

(
Lm
L βm

√
1/α2R2

)]
+ C4

[
βm
√

1/α2R2 cos
(

Lm
L βm

√
1/α2R2

)
+ α2

2 sin
(

Lm
L βm

√
1/α2R2

)] (A29)

C3
[ α2

2 cos
(

βm
√

1/α2R2
)
− η2 sin

(
βm
√

1/α2R2
)]

+ C4
[
βm
√

1/α2R2 cos
(

βm
√

1/α2R2
)
+ α2

2 sin
(

βm
√

1/α2R2
)]

= 0
(A30)

The eigenvalue βm can be solved by (A27)–(A30).
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After normalizing the kernel function, we can obtain:

K(X, βm) =
K(X)

N(βm)
(A31)

where norm N(βm) is:

N(βm) =



C2
2

βm
√

1/α1R1

[ 1
2 βm
√

1/α1R1
Lm
L

− 1
2 cos

(
βm
√

1/α1R1
Lm
L

)
sin
(

βm
√

1/α1R1
Lm
L

) ]

+ 1
2βm
√

1/α2R2

C3
2

 − cos
(

βm
√

1/α2R2
Lm
L

)
sin
(

βm
√

1/α2R2
Lm
L

)
−βm

√
1/α2R2

Lm
L + βm

√
1/α2R2

+ cos
(

βm
√

1/α2R2
)

sin
(

βm
√

1/α2R2
)


+C4

2

 cos
(

βm
√

1/α2R2
Lm
L

)
sin
(

βm
√

1/α2R2
Lm
L

)
−βm

√
1/α2R2

Lm
L + βm

√
1/α2R2

− cos
(

βm
√

1/α2R2
)

sin
(

βm
√

1/α2R2
)


+C3C4

[
cos2 βm

√
1/α2R2

Lm
L − cos2 βm

√
1/α2R2

]}



1
2

(A32)

Next, taking generalized integral transformation for Equations (A11) and (A12) yields

− dCF(T,βm)
dT − βm

2CF(T, βm)

= α1R1ρ1e
α1

4R1
T′+ρ1T′ ∫ Lm

L
0 K(X′, βm)e

−α1
2 X′dX′

+ α2R2ρ2e
α2

4R2
T′+ρ2T′ ∫ 1

Lm
L

K(X′, βm)e
−α2

2 X′dX′
(A33)

The solution of Equation (A33) can be obtained:

CF(T, βm) = e
−1

α1 R1
βm2T ∞

∑
m=1

K(X, βm)[−I1(βm) + ρ1 I1(βm)F1(βm, T)− I2(βm) + ρ2 I2(βm)F2(T, βm)], 0 < X < Lm/L (A34)

CF(T, βm) = e
−1

α2 R2
βm2T ∞

∑
m=1

K(X, βm)[−I1(βm) + ρ1 I1(βm)F1(T, βm)− I2(βm) + ρ2 I2(βm)F2(T, βm)], Lm/L < X < 1 (A35)

I1(βm) =
∫ Lm

L

0
K
(
X′, βm

)
e
−α1

2 X′dX′ (A36)

I2(βm) =
∫ 1

Lm
L

K
(
X′, βm

)
e
−α2

2 X′dX′ (A37)

F1(T, βm) =
∫ T

0
e
−1

α1R1
βm

2T′+ α1
4R1

T′+ρ1T′dT′ (A38)

F2(T, βm) =
∫ T

0
e
−1

α2R2
βm

2T′+ α2
4R2

T′+ρ2T′dT′ (A39)

After taking the inverse transformation of Equations (A34) and (A35), the analytical
solutions (50) and (51) of the solute concentration changes with time and space and can
be obtained.

Appendix B Numerical Model Using a Finite Volume Method

In the study, Equation (23) is also numerically solved by a finite volume method (FVM).
Hence, to integrate Equation (23) over control volume i, we can obtain

∫
i

1
R

∂c
∂t

dx =
∫
i

∂

∂x

(
D

∂c
∂x

)
dx−

∫
i

V
∂c
∂x

dx−
∫
i

λcdx (A40)
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Algebraically manipulating Equation (A40) leads to

1
Ri

cn+1
i − cn

i
∆t

∆x = D
∂cn

∂x

∣∣∣∣
i+ 1

2

− D
∂cn

∂x

∣∣∣∣
i− 1

2

−V
(

cn+1
i − cn

i

)
− λicn+1

i (A41)

where ∆x is the length of a control volume, ∆t is the time step size, superscripts n and
n + 1 denote time levels and subscripts i − 1

2 and i + 1
2 mean on the surface of control

volume i, respectively.
Then, the numerical solution of c(x, t) can be explicitly calculated based on

Equation (A41).

cn+1
i = cn

i + Ri

[
D

∂cn

∂x

∣∣∣∣
i+ 1

2

− D
∂cn

∂x

∣∣∣∣
i− 1

2

−V
(

cn+1
i − cn

i

)
− λicn+1

i

]
∆t
∆x

(A42)

In the equation,

D
∂cn

∂x

∣∣∣∣
i− 1

2

=

(
Di−1 + Di

2

) cn
i − cn

i−1
∆x

(A43)

and
∂cn

∂x

∣∣∣∣
i+ 1

2

=

(
Di + Di+1

2

) cn
i+1 − cn

i
∆x

(A44)

The numerical solution processes by a finite volume method is described in Figure A1.
The precision error is of the first order convergence, O(dx), for the numerical solution, with
dx = 0.005 m.
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(FVM). Hence, to integrate Equation (23) over control volume i, we can obtain 

න 1𝑅 𝜕𝑐𝜕𝑡 d𝑥௜ = න 𝜕𝜕𝑥 ൬𝐷 𝜕𝑐𝜕𝑥൰ d𝑥௜ − න 𝑉 𝜕𝑐𝜕𝑥 d𝑥௜ − න 𝜆𝑐d𝑥௜  (A40)

Algebraically manipulating Equation (A40) leads to 1𝑅௜ 𝑐௜௡ାଵ − 𝑐௜௡∆𝑡 ∆𝑥 = 𝐷 𝜕𝑐௡𝜕𝑥 ฬ௜ାଵ ଶൗ − 𝐷 𝜕𝑐௡𝜕𝑥 ฬ௜ିଵ ଶൗ − 𝑉(𝑐௜௡ାଵ − 𝑐௜௡) − 𝜆௜𝑐௜௡ାଵ (A41)

where xΔ  is the length of a control volume, tΔ  is the time step size, superscripts n  
and 1n+  denote time levels and subscripts 1

2i−  and 1
2i+  mean on the surface of 

control volume i, respectively. 
Then, the numerical solution of ( , )c x t  can be explicitly calculated based on Equa-

tion (A41). 𝑐௜௡ାଵ = 𝑐௜௡ + 𝑅௜ ቈ𝐷 𝜕𝑐௡𝜕𝑥 ฬ௜ାଵ ଶൗ − 𝐷 𝜕𝑐௡𝜕𝑥 ฬ௜ିଵ ଶൗ − 𝑉(𝑐௜௡ାଵ − 𝑐௜௡) − 𝜆௜𝑐௜௡ାଵ቉ ∆𝑡∆𝑥 (A42)

In the equation, 𝐷 𝜕𝑐௡𝜕𝑥 ฬ௜ିଵ ଶൗ = ൬𝐷௜ିଵ + 𝐷௜2 ൰ 𝑐௜௡ − 𝑐௜ିଵ௡∆𝑥  (A43)

and 𝜕𝑐௡𝜕𝑥 ฬ௜ାଵ ଶൗ = ൬𝐷௜ + 𝐷௜ାଵ2 ൰ 𝑐௜ାଵ௡ − 𝑐௜௡∆𝑥  (A44)

The numerical solution processes by a finite volume method is described in Figure 
A1. The precision error is of the first order convergence, O(dx), for the numerical solution, 
with dx = 0.005 m. 

 
Figure A1. Flow chart of numerical solution processes. Figure A1. Flow chart of numerical solution processes.
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