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Abstract: Flood Frequency Analysis (FFA) and the non-stationary FFA approaches are used in flood
study, water resource planning, and the design of hydraulic structures. However, there is still a
need to develop these methods and to find new procedures that can be used in estimating simple
distributions in controlled catchments. The aim of the study is a comparison of three-parameter
distributions in controlled catchments for stationary and non-stationary data series and further to
develop the procedure of the estimation the simple distributions. Ten rivers from the Czech Republic
and Poland were selected because of their existing or planned reservoirs as well as for flood protection
reasons. The annual maximum method and the three-parameter Weibull, Log-Normal, Generalized
extreme value, and Pearson Type III distributions were used in this study. The analyzed time series
are stationary and non-stationary. The methodology used in this study, which makes use of the
Maximum Likelihood Estimation, allows one to simplify the analysis whenever there is a series of
data that is both stationary and non-stationary. The novelty in our research is the standardization and
development of a new procedure for a stationary and non-stationary data series, taking into account
to read a specific value of the maximum flow with a given exceedance probability from the lower
or upper tail. It determines the optimal choice of the theoretical distribution that can be used, for
example in the design of weirs in rural areas (lower quantiles) or in the design of hydrotechnical
structures in areas at risk of flooding (upper quantiles).

Keywords: flood frequency analysis; non-stationary; three-parameter distribution; GEV distribution;
Weibull distribution; Log-Normal distribution; Pearson Type III distribution; maximum likelihood

1. Introduction

In many parts of the world, extreme natural phenomena such as extreme streamflows
and floods lead to loss of life and property [1,2]. They cause destruction of infrastruc-
ture [3–5] and damage the environment and economy [4,5].

In several studies [2,6,7], an appropriate estimation of flow values for various proba-
bilities of occurrence or various return periods is required. Examples include the design
of hydrotechnical structures and water management [4,8–14]. Numerous methods are
available for flood analysis using historical data [4,5]. Such methods include the at-side
FFA, which allows one to select the most appropriate probability distribution and the esti-
mation of its adequate parameters [4,5,11,15]. such as climate and landcover, are the same
in the past, present, and future [16]. Otherwise, the non-stationary FFA approach is recom-
mended [10,16–18]. The relationship between the flow and the probabilities of occurrence
is unique for every gauging station [14,18–20]. The maximum flow peak value occurring in
a water year at a given cross-section of a stream collected for the longest possible period
of observation allows one to get more realistic results of the FFA [1,13,21]. Moreover, it is
very important because the obtained estimated values of the parameters of the probability
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distribution function should be unbiased and close to their population values [1]. The
maximum peak flow of each year in the longest observation period consists of the sample
series and is used in the annual maximum (AM) approach [4,5,20–25]. The AM is still the
most commonly used method in at-side FFA [12,20,24,26,27] and in non-stationary FFA in
many countries [10,16–18], including the Czech Republic and Poland.

In the hydrological literature [5,21,26–28], traditional two-parameter distributions are
most commonly studied. Despite the satisfactory results yielded by these distributions,
the use of multi-parameter distributions could lead to more appropriate fits between
simulated and observed data [11,15]. Therefore, the use of multi-parameter distributions
has been proposed, namely three-parameter distributions such as the Generalized Extreme
Value (GEV), the three-parameter Log-Normal (LN3), the three-parameter Weibull, and
the Pearson Type-III (3PIII). These distributions are recommended for an at-side FFA in
many countries and are common in the literature [4,5]. Apart from the scale and shape
parameters, a three-parameter distribution has a third parameter—the shift (location). This
last parameter is added in order to reflect the long-term river flow regime and to increase
the flexibility of models in terms of a variety of datasets [29]. These distributions have been
studied by many scientists [5,11,13,18,30]. The selection of a fitting two- or three-parameter
distribution usually depends on the characteristics of investigated data series at a particular
site [4]. Therefore, it is very important to study the best fit of the different distributions to
the observational flow series of data streams.

For the selected distribution, an analysis should be performed, including the estima-
tion of its parameter values. One of the most theoretically sound and extensively used
methods for fitting probability distributions to hydrological data is the Maximum Like-
lihood Estimation (MLE) [5,17,31]. The MLE has been used for the 3LN, 3PIII [5], GEV,
3PIII [4,32], GEV [13,21,22,33], as well as GEV and 3LN [19]. MLE estimators are usually
asymptotically efficient [22,32]. The MLE can be used to estimate the statistical parameters
of distributions by examining the non-stationary data series [16] and in long time series [18].
In turn, other methods of estimating distribution parameters, such as the L-moments or
probability weighted moment, are not recommended in non-stationary FFA [30]. As shown
in the literature review, despite the high potential, the use of the MLE to estimate three-
parameter distributions for non-stationary flow data series is marginal and unpopular.
However, this topic requires further research under various conditions.

Both in the territory of the Czech Republic (in the Vltava and Morava basins) and
Poland (in the Upper Oder basin), studies of simple distributions have been few and far
between. The research does not cover all the available stations in Poland, especially in
the area of the Upper Odra basin [34]. Recently, in 2008, in the research area, studies of
three-parameter Log-Normal and two-parameter distributions such as the Log-Normal,
Gumbel, and Fechet distribution were used for the Vltava river, Prague station [26]. Later,
only two-parameter distributions such as the Log-Normal, Log-Pearson III, Gumbel, and
Fechet were tested. The latter two distributions did not seem to fit well with the empirical
data [27]. Moreover, the Annual Maxima method and the GEV distribution were used for
individual stations of the Morava river [33] and for the Elbe river, Litoměřice station [35].
The data series consisted of maximum annual water levels [33] and maximum annual
flows [35]. For some of the rivers in the Upper Odra basin, including the Widawa in the
Zbytowa profile, researchers used single distributions such as 2P2, 2LN, and GEV [13]. In
turn, for the Bezimienny Potok (Minkovický Potok) located on the Polish-Czech border,
researchers used Pearson Type III with the MLE [36]. In Poland, there were more studies of
single distributions in the Vistula basin [12,18,19,30,37,38].

Ten rivers were selected because of their existing or planned reservoirs, as well as
for flood protection reasons. The justification for this article is that the study of FFA and
non-stationary FFA will allow one to analyze the possible distributions to be used for flood
protection and engineering calculations in the design of water management facilities, which
eventually should lead to improved water management.
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Flood Frequency Analysis (FFA) and the non-stationary FFA approaches are used in
flood study, water resource planning, and the designing of hydraulic structures. However,
there is still a need to develop these methods and to find new procedures that can be used
in estimating simple distributions in controlled catchments.

The aim of the study is comparison of three-parameter distributions in controlled
catchments for a stationary and non-stationary data series and further to develop the
procedure of the estimation the simple distributions.

In addition, this study will, in the practice of flood protection, determine the optimal
choice of theoretical distribution that can be used in the areas at risk of flooding—both
urban and rural, or during the design of hydrotechnical structures.

2. Materials and Methods
2.1. Study Area

The maximum annual data series comes from 10 river gauging stations (Table 1)
located in the Czech Republic and Poland (Figure 1). The source of data is the Czech
Hydrometeorological Institute and the Institute of Meteorology and Water Management—
National Research Institute. These data have been processed.

Table 1. Summary of the selected gauge stations.

No. Country River Name Station River
Abbreviation Station ID Catchment

Area [km2]

1 Czech Republic Berounka Beroun BB 198000 8286.23

2 Czech Republic Labe Děčín LD 240000 51,120.34

3 Czech Republic Morava Olomouc-Nové
Sady MO 367000 3323.59

4 Czech Republic Bečva Teplice nad
Bečvou BT 389000 1275.32

5 Czech Republic Morava Kroměříž MK 403000 7013.27

6 Poland Bystrzyca Krasków BK 150160120 683.40

7 Poland Opawa Branice OB 150170160 604.46

8 Poland Prudnik Prudnik PP 150170110 134.40

9 Poland Ślęza Białobrzezie SB 150160250 181.00

10 Poland Widawa Zbytowa WZ 151170050 720.7

Source: [39,40], own work.
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Figure 1. Locations of analyzed gauging stations. Source: [39,40], own work.

The study area covers three river basins in these countries. The Berounka and Labe
are located in the Labe basin, and the Morava and Bečva are located in the Morava basin.
In turn, all rivers from Poland are located in the Upper Odra.

The selected rivers from the Labe and Morava basins have a much larger catchment
area than the rivers from the Upper Odra basin (Table 1). The data of the annual maximum
flow of ten gauging stations are examined in this investigation. The rivers from the Czech
Republic also have a longer data series than those from Poland (Table 2). The length of the
samples varies from 49 to 133 years (Table 2).

The rivers selected for the analysis, on the one hand, play an important role in the water
management of both the Czech Republic and Poland, but on the other hand, they cause a
flood risk. Reservoirs are planned on the rivers Labe, Morava, Becva, and on the tributaries
of the Berounka River, on the Czech Republic side [41]. In turn, there are 12 existing
reservoirs on the Morava tributaries, which are part of the water regulation works for flood
protection. Moreover, the purpose of the reservoirs built in the 1960s–1970s is to supply
both drinking water and service water [42]. Multifunctional reservoirs are planned on three
of the five rivers (the Prudnik, Ślęza, Bystrzyca) near the gauging station, on the Polish
side [43–46]. Lastly, on the Widawa River, there is a multifunctional reservoir [25]. The
Opawa river was chosen because of the flood protection in its valley.

Two data collections, OB and WZ (N = 49) have the smallest sample size and the largest
LD (N = 133) (Table 2). The data series of the WZ has a skewness of 0.30, which means it is
fairly symmetrical. In turn, the data series of the SB has a skewness of 0.92, which means it
is moderately skewed. Moreover, the remaining data series have the skewness above 1.0,
which means they are highly skewed (Table 2). The BB, BK, BT, MK, MO, OB, and PP data
series have a kurtosis greater than 3, which means they have heavier tails than the normal
distribution. Moreover, the LD, SB and WZ data series have a kurtosis of less than 3, which
means they have lighter tails than the normal distribution (Table 2).
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Table 2. Descriptive statistics.

River Abbreviation Period N Mean
[m3·s−1]

Skewness
[m3·s−1]

Kurtosis
[m3·s−1]

Min
[m3·s−1]

Max
[m3·s−1]

SD
[m3·s−1]

CV
[–]

BB 1911–2018 77 290 3.245 15.58 45.6 1680 235.6 0.8127

LD 1887–2018 133 1478 1.336 2.611 186 4600 743.8 0.5034

MO 1920–2018 98 173.6 2.143 8.116 52.7 686 94.84 0.5464

BT 1921–2019 92 194.7 2.536 9.805 29.9 841 119.3 0.6126

MK 1916–2018 103 356.8 1.315 3.473 119 1030 145.4 0.4075

BK 1951–2019 69 69.53 2.103 4.197 8.06 371 77.34 1.112

OB 1967–2019 49 63.94 4.105 20.92 11 432 65.72 1.028

PP 1956–2019 64 39.73 2.161 4.964 1.95 220 45.71 1.151

SB 1951–2019 68 7.738 0.9182 −0.4071 0.33 22.2 6.083 0.7861

WZ 1971–2019 49 19.78 0.3011 −0.8346 4.63 39.8 9.701 0.4905

Explanations to the table: Mean—Mean flow; SD—Standard Deviation of all values; CV—Coefficient of Variation
of all the values [–].

If a data series has N < 90 (which applies to samples BB, BT, LD, MO, and MK), then
the SD is greater. Otherwise, the SD is smaller (SD < 70 m3·s−1 for BK, OB, PP, SB, and WZ)
(Table 2). The highest CV was recorded for BK CV = 1.11 and the lowest was recorded for
MK CV = 0.41 (Table 2).

The characteristics and the classification of the hydrological regime is presented in
Appendix A (Table A1). The hydrological regime depends on the number of floods per
year and the source of supply (Parde classification) and the variability of flows per year
(Dynowska classification) [47–52]. The supplement in Appendix A (Figure A1) shows the
variability of long-term monthly flow rates. Most rivers are dominated by the nival regime,
while the remaining rivers are dominated by the pluvial-nival or nival-pluvial regime. This
means that the spates caused by rainfall or thawing snow are responsible for the higher
water flows in Poland and the Czech Republic (if the regime is simple—there was one clear
spate in the year, if composite—there were two or more). At the same time, all rivers, except
for the PP, are classified as lowland or upland. Seven out of 10 rivers are characterized by
average balanced flows, which differs throughout the year (except for the BK, PP, and SB,
where the variation during the year is low).

2.2. Change Point Analysis

Change Point Analysis is used to check the presence of abrupt changes in the mean of
the annual peak in the data series records [53]. The FlowScreen R package was used to plot
a metric with change points and trend [54,55]. The Kendall test was used to determine the
trend. The change point is printed as solid black lines. If the temporal trend is significant
(p-value < 0.05), the trend is plotted as a dotted red line for a trend [54].

2.3. Temporal Trend Analysis

The non-parametric Mann–Kendall trend test was used to detect the presence of
temporal trends [11,56,57] in the annual maximum peak flow. The null hypothesis H0
is that there is no trend in the series, the alternative hypothesis H1 is that there is a
trend [11,53]. Kendall’s statistic S is calculated according to Equation (1):

S =
n−1

∑
k=1

n

∑
j=k+1

sgn
(
xj − xk

)
(1)

where x corresponds to the x univariate time series, n is the length of the maximum
series, and j and k are time indices associated with individual values [11]. The S and
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p-value were determined for each time series. In the Mann–Kendall trend test [11,20], the
significance level was set at 5% [58]. The R Software version 4.0.5 was used to compute the
Mann–Kendall trend test [55].

2.4. Test for Randomness

The rank version of von Neumann’s ratio test (RVN) proposed by Bartels was used for
testing a series for randomness [59,60]. The test statistic is given in Equation (2):

RVN =
∑n

i=1(ri − ri+1)
2

∑n
i=1(ri − r)2 (2)

where ri is the rank of the ith observation in a sequence of n. The p-value is determined
with the beta distribution over the range 0 ≤ x ≤ 4 with parameters 3:

α = β =
5n(n + 1)(n− 1)2

2(n− 2)(5n2 − 2n− 9)
− 1

2
(3)

where α and β are shape parameters of the distribution. The sample sizes should be in the
range of 10 ≤ n < 100. For large values of the sample size (n > 100), the approximation with
N(2, 20 = (5n + 7)) is used to calculate the p-value. The null hypothesis H0 that the sample
is random is tested against the alternative hypothesis H1 that the data are significantly
different from random. In this test, the significance level was set at 5%. The DescTools R
package was used to compute the rank version of von Neumann’s ratio test.

2.5. PDF Fitting by the MLE

The MLE method estimates the parameters of a probability distribution by maximizing
the likelihood function (4). The likelihood function is given by Equation (4) [5,28]:

L(θ) = f (x1, x2, . . . , xn|θ) (4)

where L(θ) is called the likelihood function and x1, x2, and x3 are observed data.
If we have an empirical sample series, we can calculate the probability of occurrence

of an observed sample series of any random variable by multiplying the PDFs of each
empirical data of that series by each other, under the assumption that the events of the
random variable are independent, which results in the likelihood function (LF) [1,5].

In order to find the Maximum Likelihood estimator, numerical optimization methods
were used. For this purpose, the optim () function was used to find the ML estimator within
the 3LN and 3W distributions [61] and the GEV distributions [62]. The nlminb () function
was used to find the ML estimator within the 3PIII distribution [63]. The latter function
was also used by Debele et al. [30]. The R Software version 4.0.5 was used to compute
the MLE [55].

2.6. Probability Density Function (PDF)

The three-parameter probability distribution function of the 3LN was obtained by
using the EnvStats R package and is given by the following formula [9,11,64]:

f (x) =
1

(x− α)σy
√

2π

exp{− 1
2σ2

y
[log(x− α)− µy]

2} (5)

where µy, σ_y2, α are the location, scale, and shape parameters, respectively.
The three-parameter Weibull distribution PDF expressed by Equation (6) is described

by [65]:

f (x) =
α

β
(

x− µ

β
)α−1e−(

x−µ
β )

α

(6)
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for x > µ and α, β > 0. The parameters α, β, and µ are the shape, scale, and shift parame-
ters, respectively.

The PDF of the 3PIII distribution is given by:

f (x) =
1

|s|αΓ(α)
|x− λ|α−1e−

x−λ
s (7)

for s 6= 0, a > 0, and (x − λ)/s ≥ 0.
where α, s, and λ are the shape, scale, and location parameters, respectively.
The PDF function of the Generalized Extreme Value Distribution (GEV) is given in

Equation (8) [11,13,20,21,66]:

f (x) = exp[−
{

1 +
s(x− α)

b

}−1/s
] (8)

for 1 + s(x − α)/b > 0, where b > 0; where α, b, and s are the location, scale, and shape
parameters, respectively.

2.7. The Goodness-of-Fit Tests (GOF Tests)

The Goodness-of-Fit tests are used to check if the observed sample series follows an
expected distribution.

The Anderson–Darling test has been applied to the comparison between the CDF
from the tested distribution F(x, θ) and the empirical CDF Fn(x), where x is the studied
variable, θ is a vector of parameters, and n is the number of elements in the sample. The
null hypothesis is that H0:Fn(x) = F(x, θ), while the alternative hypothesis is that F(x, θ) is
some other function. The significance level was set at 5% [4,11,20,32].

With the aid of the goftest R package, the Anderson–Darling test was performed to
tests all of the observed AM series presented in relation with each sample series. The test
makes use of Braun’s method (1980) [67] to adjust for the effect of parameter estimation [68].

The following were used to define the best fit distribution [4,11,20]: the mean absolute
error (MAE, Equation (9)) [4,11,20], the mean absolute relative error (MARE, Equation
(10)) [13], and the root mean square error (RMSE, Equation (11)):

MAE(y) =
1
2

n

∑
i=1

∣∣∣∣F(yI)− F
(

ˆ
yl

)∣∣∣∣ (9)

MARE(y) =
n

∑
i=1

∣∣∣∣y− yi
yi

∣∣∣∣ (10)

RMSE(y) =

√
∑n

i=1(F(yI)− F(ŷi))
2

n
. (11)

Model estimation was accomplished by using the Akaike information criterion (AIC) [28]
and the Bayesian information criterion (BIC) [5]. Before they can be calculated, both AIC
and BIC require the likelihood to be maximized. The calculations are as follows [69]:

AIC = 2lnL(θ) + 2k (12)

BIC = 2lnL(θ) + 2lnNk (13)

where L(θ) is the value of the LF, N is the number of recorded measurements, and k is the
number of estimated parameters.

The above-described GOF tests are often used in the FFA method [4,5].
The distribution is assigned a rank score between 1 and 4 in GOF tests. Rank score

4 indicates the best-fitted distribution, whereas 1 stands for the worst fitted distribution [4].
A distribution can obtain the highest score for the lowest value of the Anderson–Darling
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statistic/highest p-value of the Anderson–Darling test. A distribution can also obtain the
highest score for the lowest RMSE, lowest MARE, lowest MAE, lowest AIC, or lowest BIC.
The total rank is the sum of all points in the row.

3. Results

Change points have been determined to be one of the possible causes of the non-
stationarity of the annual flood peak time series [53]. We found (Figure 2a–j) that eight out
of the 10 catchments exhibited a significant abrupt change in the mean. For BB, MO, and
OB, the times of abrupt changes in the mean clustered around the 1990s and between 2000
and 2015 (Figure 2a,c,g). For LD, BK, PP, and WZ, the times of abrupt changes in the mean
clustered between 2000 and 2015 (Figure 2b,f,h,j). Moreover, for BK and PP, the changes in
the mean clustered around the 1950s and 1960s, respectively (Figure 2f,h). Only for MK
and SB was no change point detected (Figure 2e,j).

On the one hand, the mean flow values for BB, LD, MO, BK, OB, PP, and WZ were
much lower over the last period being analyzed after the change point (Figure 2a–c,f–h),
but on the other hand, the mean flow values for BT (Q = 197.04 m3·s−1 in 1921–1995, Q =
216.43 m3·s−1 in 1995–2019) were much higher over the last period being analyzed after
the change point (Figure 2d).

A second major cause of non-stationarity is a trend in the annual flood peak time
series [53]. Analyses of the long-term trends were performed using the Mann–Kendall
two-sided tests. A negative trend was detected only for LD and WZ. The Kendall test was
also used to determine the trend. A temporal trend was detected for LD (p-value 0.008),
WZ (p-value 0.01), but also for MK (p-value 0.04). This trend is decreasing (Figure 2b,c,e,j).
The rank version of the von Neumann’s ratio test proposed by Bartels did not show that
the data were significantly different from random.

Figure 2. Cont.
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Figure 2. Change points and trend for investigated data series: (a) Berounka river, Beroun gauging
station (BB), (b) Labe river, Děčín gauging station (LD), (c) Morava river, Olomouc-Nové Sady gauging
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station (MO), (d) Bečva river, Teplice nad Bečvou gauging station (BT), (e) Morava river, Kroměříž
gauging station (MK), (f) Bystrzyca river, Krasków gauging station (BK), (g) Opawa river, Branice
gauging station (OB), (h) Prudnik river, Prudnik gauging station (PP), (i) Ślęza river, Białobrzezie
gauging station (SB), (j) Widawa river, Zbytowa gauging station (WZ).

The shape of the histograms of the empirical data for BB, LD, MO, BT, MK, BK, OB,
PP, and SB of the data series is right-skewed. Only the histogram of the empirical data for
WZ has a uniform shape (Figure 3). Histograms of empirical data (with the exception of
the WZ data series) determine the best-fit (skewed-right) distributions from the Weibull,
Gamma, and Log-Normal families. Hence, the 3LN, 3W, GEV, and 3PIII distributions were
selected. In order to estimate the three parameters of these distributions, the Maximum
Likelihood estimation was used. The estimated distributions are shown in Figure 3. For
the WZ data series, we also decided to use the above-mentioned distributions.

Figure 3. Histograms showing the empirical, 3LN, GEV, 3W, and 3PIII distributions of the analyzed
data series.
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The plot in Figure 4 shows the CDF estimates of all the three-parameter distributions
and the estimates of the empirical distribution function (ECDF). The CDF plot indicates
that for the BB, the fit of 3PIII is poor compared to the ECDF estimate. The 3W distribution
is also a poor fit. In turn, the other distributions seem to be quite close to the ECDF estimate.
This shows that there can be more than one distribution well fitted to the empirical data.
The plots for the LD, MK, SB, and WZ data series reveal that all the distributions (LN3,
3W, GEV, and 3PIII) fit the ECDF almost identically (Figure 4). The use of 3PIII for non-
stationary flood peak time series leads to an underestimation of variability. This has been
shown for both the MO and the BK data series. In this case, the other distributions (LN3,
GEV, 3W) seem to be quite close to the ECDF estimate (Figure 4). The plot for two samples,
BT and OB, shows that LN3 and GEV are closer to the ECDF estimate than 3PIII and 3W
(Figure 4). In turn, for the maximum flow of the PP data series, GEV, 3W, and 3PIII are
a poor fit as compared to the ECDF estimate. Hence, the best fit is obtained for the 3LN
distribution (Figure 4).

Comparing the shift of the ECDF to the proposed distributions in the upper and lower
tail, one can see that a single theoretical distribution will not always provide a good fit in
both parts of the tail (Figure 4). An analysis of two consecutive samples MO and BT reveals
that while all the four distributions (GEV, LN3, W3, 3PIII) seem to be appropriate in terms
of fit to ECDF from the 95th to the 99th percentile (upper tail), only the 3W distribution
provides the best fit on the lower tail section (Figure 4).

Another sample, the MK data series, shows that all the distributions considered seem
to be quite close to the ECDF from the 95th to the 99th percentile (upper tail), but only the
3PIII fits the ECDF on its lower tail (Figure 4). In turn, for BB and LD, the GEV distribution
seems to be quite close to the ECDF estimate from the 95th to the 99th percentile (upper
tail). Next, in the lower tail for BB and LD (only from the 1st to the 10th percentile), the
GEV seems to be quite close to the ECDF estimate (Figure 4). The long time series, as in the
case of the BB, LD, MO, BT, MK, BK, and PP samples, have a smaller spread (Figure 4). In
turn, the OB, SB, and WZ data series have a greater spread. In the upper tail of the ECDF,
the 3W distribution for the BK and WZ seems to provide the best fit to the empirical data.
In the case of OB, all of the distributions considered seem to fit the ECDF from the 98th to
the 99th percentile. In turn, from the 95th to the 90th percentile, the GEV seems to be the
best possible choice in terms of fit to ECDF (Figure 4). In the case of two samples, PP and
SB, different distributions are fitted to the ECDF, depending on the percentile value. For
the PP data series, the LN3 seems to fit the ECDF from the 90th to the 98th percentiles. In
turn, for the 99th percentile, the 3W seems to be the best possible choice in terms of fit to
ECDF (Figure 4). While the 3PIII distribution seems to fit the ECDF for the SB sample from
the 90th to the 99th percentile, on the 99th percentile, the 3W seems to be the best choice in
terms of fit to ECDF (Figure 4). In the lower tail of the ECDF, the 3W, GEV, LN3, 3PIII, and
3W distributions seem to provide the best fit to the empirical data for the BK, OB, PP, SB,
and WZ, respectively (Figure 4).

Despite some ambiguities in indicating the best candidates, the CDF plots allowed for
an analysis of the lower and upper tail of the distributions.

The empirical Probability Density Function superimposed on the PDF of the four
theoretical distributions is shown in Figure 5. For all the samples, the empirical density
is positively skewed. For the BB data series, the 3W and GEV distributions seem to be
most appropriate for the empirical data series (Figure 5). In turn, for LD, SB, and WZ, all
of the distributions (GEV, LN3, 3PIII, and 3W) seem to be the best possible choices for
empirical data series (Figure 5). For the BK data series, only the GEV gives the best fit, and
for MO and MK, the 3W distribution seems to be most appropriate for empirical data series
(Figure 5). For the BT data series, the 3PIII and 3W differ significantly from the LN3 and
GEV in the central portion of the range of Y values. Hence, the latter two distributions fit
the data series almost identically. For the OB and PP samples, the LN3 and GEV seem to be
the best possible choices appropriate for the empirical data series (Figure 5).
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Figure 4. The empirical, 3LN, GEV, 3W, and 3PIII Cumulative Distribution Functions of the analyzed
data series.

The p-value of the Anderson–Darling test shows that the 3PIII distribution for BB, BK,
BT, MO, OB, and PP, the 3LN distribution for MO and BK, and the GEV distribution for
WZ should be rejected (p < 5%). Rejected distributions were not included in the GOF test in
Appendix B (Table A2).
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Figure 5. The Empirical Probability Density Function and the Probability Density Function of 3LN,
GEV, 3W, and 3PIII.

The CDF plot indicated that for a large number of samples, the GEV and the 3LN
seem to be quite close to the ECDF (Figure 4). In turn, an analysis of the PDF plot (Figure 5)
shows that 3W seems to be the best possible choice suited for most empirical data series
(Figure 5). However, the performance rank score indicated that GEV had the most points
(Table 3). Nevertheless, the 3LN distribution had a high score in two accuracy measure
methods: MAE and RMSE. In turn, GEV obtained the highest number of points in the rank
scores, which took into account the Anderson–Darling test, MARE, and information criteria
(Table 3). While the 3W and GEV distributions prepared for the MO and BT data series,
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respectively obtained the most points in all the analyzed methods and criteria (Table 3), for
the MK data series, the Anderson–Darling test indicated that the 3W was the best fit, which
was consistent with the PDF plot (Figure 5, Table 3). In turn, the RMSE pointed at the GEV
distribution as the best fit. Despite this, it was the 3PIII that obtained the most points in the
remaining accuracy measures methods, as well as in the AIC and BIC criteria.

Table 3. Distribution rank score in the Goodness-of-Fit tests.

Data Series Distribution AD Amax MARE MAE RMSE AIC BIC Total Rank

BB

GEV 3 3 3 3 3 3 18

LN3 2 2 2 2 2 2 12

3W 1 1 1 1 1 1 6

LD

GEV 2 4 3 3 4 4 20

LN3 1 3 4 4 2 2 16

3W 3 1 1 1 1 1 8

PIII 4 2 2 2 3 3 16

MO
GEV 1 1 1 2 1 1 7

3W 2 2 2 1 2 2 11

BT

GEV 3 3 3 3 3 3 18

LN3 1 2 2 2 2 2 11

3W 2 1 1 1 1 1 7

MK

GEV 1 1 1 4 2 2 11

LN3 2 2 2 3 3 3 15

3W 4 3 3 1 1 1 13

PIII 3 4 4 2 4 4 21

BK
GEV 2 2 1 1 1 1 8

3W 1 1 2 2 2 2 10

OB

GEV 3 3 3 3 3 3 18

LN3 1 2 2 1 2 2 10

3W 2 1 1 2 1 1 8

PP

GEV 2 1 1 1 1 1 7

LN3 3 3 3 3 2 2 16

3W 1 2 2 2 3 3 13

SB

GEV 2 1 2 1 1 1 8

LN3 3 3 1 2 2 2 13

3W 1 2 3 4 3 3 16

PIII 4 4 3 3 3 3 20

WZ

LN3 2 1 1 1 1 1 7

3W 1 3 3 3 3 3 16

PIII 3 2 2 2 2 2 13

On the one hand, GEV is the best fit for the BK data series according to the Anderson–
Darling test and MARE, but on the other, 3W is suggested by the MAE, RMSE, AIC, and
BIC. The latter distribution obtained a high score (Table 3).

The CDF and PDF plots indicated that GEV and 3LN are the best possible choices
suited for the empirical OB data series (Figures 4 and 5). Nevertheless, the GEV distribution
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prepared for this data series obtained the most points in all the analyzed methods and
criteria (Table 3). The 3LN prepared for the PP data series was the best fit according to both
the Anderson–Darling test and the accuracy measure methods (Table 3). It was consistent
with the CDF plot (Figure 4). This distribution had a high score and is the best choice.
Nevertheless, according to the AIC and BIC criterion, 3W is the best quality model out of
all the other models. The 3W and 3PIII distributions prepared for the SB data series have a
high score. However, in the overall rank, 3PIII is best. The 3W distribution prepared for
the WZ data series has a high score. However, according to the Anderson–Darling test, the
3PIII distribution provides the best fit for the empirical data.

In this study, the sample size, catchment area, and flow regime do not seem to be
important as factors that would favor a certain distribution.

Comparing the results obtained by the rank score of distributions (Table 3) and the
plot showing the change points (Figure 2), we found that the 3PIII distribution provided
the best fit only for two of the empirical data: MK and SB. For these two data series, no
change points were detected, but a trend was found for MK. The remaining distributions
(GEV, 3W, and 3PIII) fit the empirical non-stationary series. Moreover, for the LD and WZ
data series, the Mann–Kendall test rejected the hypothesis of there being no trend. Despite
this, the GEV and W distributions proved to be the best fit, respectively.

4. Discussion

In the present study, we analyzed the rivers on which the reservoirs exist or are planned.
One river was chosen because of the flood protection in its valley. The analysis of the possi-
ble distributions can be widely used for flood protection and engineering calculations.

The study aimed to compare three-parameter distributions in controlled catchments
for a stationary and non-stationary data series with the use of PDF plots, CDF plots, CDF
plots (only lower tail of the distributions), CDF plots (only upper tail of the distributions),
and a GOF test.

Selection of the optimal estimated parameters of the distribution requires prior verifi-
cation of the data series. The following verification methods were used in the present study:
change point analysis, temporal trend analysis, test for randomness. Similar methods
were used in other research [4,20,70]. Some researchers used only one method [11]. Other
researchers assumed that all the data series were not homogeneous [13].

In this study, the change point analysis indicated that only two in 10 samples have
no change point. In another study, a small number of samples (18 out of 50) exhibited a
significant abrupt change in the mean [53]. The Von Neumann ratio test, which was used
in the study of the Litija gauging station (in Slovenia), showed that all the samples were
randomized [20]. This is in line with [4] and with the present study. In the present study,
the Mann–Kendall test showed that the LD and WZ samples had a negative trend and the
Kendall test showed that, additionally, the MK sample had a negative trend, too. Only the
SB was stationary. In other study, a negative trend was also recorded for the LD sample
for the period 1851–2010 [70]. An analysis of the middle part of the River Morava—the
MO and MK samples—revealed a negative trend [33]. The Widawa profile Zbytowa was
not homogeneous [13]. Different approaches to the temporal trend have been recorded in
many studies. In the samples of the Litija gauging station (in Slovenia), temporal trends
were observed. In this case, all of the data series were used in the FFA. In turn, in the Rio
Grande do Sul State (in Brazil), only seven out of 113 data series presented a significant
monotone trend. They were not used for the investigation [11]. The study of the Upper
Odra Basin assumed that all the data series were not homogeneous. Despite this, the
scientists performed FFA using simple distributions. In the studies mentioned above, one
or few methods were used. In our opinion, there is a need to verify the data series using
simultaneously change point analysis, temporal trend analysis, test for randomness before
the FFA, and non-stationary FFA analysis.

After verifying the data series, the next important step should be to choose the ap-
propriate distribution. The determination of skewness and kurtosis makes it possible to
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determine the family of the distribution. The positive skewness and kurtosis of this sample
(close to three) suggested that right-skewed distributions such as Normal, Log-Normal,
Gamma, and Weibull should be considered for possible model distribution candidates [4].
In this study, the data series with a skewness of 0.30 means it is fairly symmetrical, a skew-
ness of 0.92 means it is moderately skewed, and the skewness above 1.0 means it is highly
skewed (Table 2). Moreover, a kurtosis greater than 3 has heavier tails than the normal
distribution, while those less than 3 have lighter tails than the normal distribution (Table 2).

In our opinion, the use of histograms for empirical data easily allows for such an
assessment (Figure 3). We found that histograms of the majority empirical data series
determine the best-fit (skewed-right) distributions from the Weibull, Gamma, and Log-
Normal families. In other studies, the histograms were used to illustrate fitted distributions
to the empirical data series [4,5].

The sample size of the time series and their catchment area do not seem to be important
as factors favoring a particular distribution in the study of the Torne River (Sweden) [4].
This is in line our own results. In turn, the elevation of the gauging station, the length of
the straight line from the source to the gauging station, and the drainage area were the
most important variables in explaining the peak flows [14].

In this study, the MLE method was used for stationary data and non-stationary data.
The MLE is effective for longer time series [71] such as those analyzed in our study. The
MLE has been successfully applied to the PIII distribution for a non-stationary flow data
series [20]. In the study of the Praha gauging station on the Vltava river, the MLE was used
to estimate 3LN [27]. The GEV parameters can be also estimated by means of the MLE [33].
In our opinion, there are not enough studies with MLE to estimate the three-parameter
distributions for non-stationary flow data series. There are several other methods for
estimating distribution parameters, but they have some limitations compared to MLE. For
instance, the GAMLSS software cannot implement the GEV and LN3 distributions, and the
TS method proved to be the best estimator for small sample sizes and trends in the mean
values [30]. Based on our calculations, the MLE simplifies the procedure of determining
theoretical distributions.

When comparing empirical and theoretical data, it is sometimes difficult to choose
a single distribution. This was demonstrated by the analyses of the CDF and PDF plots
(Figures 4 and 5). Then, the GOF test is used. In the present study, when analyzing the CDF
plot and GOF tests, we noticed that the AD test did not always indicate the best distribution
in comparison to the accuracy measures. Some researchers [11,13] used statistical tests
and GOF as the accuracy measure. The accuracy measures and GOF test can be applied
separately [4] In addition, the AIC can be added to the GOF test [5,20].

In the present study, the AD test was used because it assigns more weight to the
distribution tails [11]. In another study, both the AD test and the K-S test selected the same
distribution—3PIII—as the best fit for empirical data. The parameters of this distribution
were estimated using the MLE [20]. Lastly, it was found that all analyzed distributions
obtained identical results when comparing the tests: AD, K-S test, and Cramer-von Mises
for probable maximum flows [5].

After estimating the distribution parameters using MLE, it is recommended to use
the AIC identification [17]. The MLE-estimated parameters for the 3PIII and the GEV
distributions at the Litija gauging station of the Sava River showed that the AIC values
were 187.19 and 193.76, respectively [20]. These values were lower than those obtained
in the studies of rivers in the Polish-Czech borderland. In turn, for the Tana river at the
Garissa gauging station, the 3PIII and 3LN distributions have the lowest AIC and BIC. The
values were 1083.1 (AIC), 1087.7 (BIC), 1083.7 (AIC), and 1088.4 (BIC), respectively. This
was the reason for selecting these distributions as the best models. [5]. However, in the
present study, the AIC and BIC tests were not always consistent with the results of the AD
test and the accuracy measure method.

According to our research results and other studies using the GOF test in many cases,
it may turn out to be insufficient. Different statistical tests, accuracy measures, and informa-
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tion criteria give different solutions, not always indicating one distribution [5,11,13,20,25].
Therefore, a method should be used that allows the elimination of mismatched distributions
before the GOF test is performed. Such a solution is to analyze the CDF plot. The quantile
estimation of the selected upper tail of the distribution is very often performed due to
the use of extreme flow values in the design and flood risk assessment. Such analyses
were performed by [4,11,19,20,28,30]. The CDF analysis was presented by selecting the
distributions closest to the empirical data [5]. In addition, in the Rhine river study, the
ECDF plot was analyzed for the flood wavelength above the 95th quantile threshold of
individual time series discharge using the storm surge model and two hydrological river
discharge models [2]. It is worth noting that the lower tail quantiles are also used in the
engineering practice to calculate the occurrence of floods in agricultural areas, in rainwater
drainage, and drainage construction. In the present study, we show that the analysis of the
CDF and ECDF graphs allows one to indicate the theoretical distributions closest to the
empirical distribution in both the upper and lower tail (Table 4). If we need quantiles from
only one tail (either the lower or the upper one), we can choose the theoretical distributions
most suited for the empirical data from this tail before performing the Goodness-of-Fit test.

Table 4. Best-fit distributions using graphical (CDF plot) and analytical (GOF test) methods.

Data Series CDF (Distribution) CDF (Only Lower Tail) CDF (Only Upper Tail) GOF

BB GEV, LN3 GEV GEV GEV

LD GEV, LN3, PIII, 3W GEV GEV GEV

MO GEV, 3W 3W GEV, LN3, PIII, 3W 3W

BT GEV, LN3 3W GEV, LN3, PIII, 3W GEV

MK GEV, LN3, PIII, 3W PIII GEV, LN3, PIII, 3W PIII

BK GEV, 3W 3W 3W 3W

OB GEV, LN3 GEV GEV, LN3, PIII, 3W GEV

PP LN3 LN3 LN3, 3W LN3

SB GEV, LN3, PIII, 3W PIII PIII PIII

WZ LN3, PIII, 3W 3W 3W 3W

Based on our research and analyses of other scientific works, a procedure has been
proposed (Figure 6). The adopted methodology, not limited only to the FFA, is a proposal
that can be used in the scientific and practical flood analysis as well as in engineering
design. In water management, this should be helpful in the analysis of various flow values
with a given probability of exceeding.

The novelty of this work is as follows:

• Proposing to standardize the verification of data series before performing the FFA and
non-stationary FFA procedures;

• Histograms of the empirical data series determine the family of the distributions; the
use of histograms easily allows for such an assessment;

• The MLE method allows one to simplify the analysis whenever there is a series of data,
both stationary and non-stationary;

• Combining the graphical method (CDF plot) and the analytical method (GOF test);
• Our results will find the optimal three-parameter distribution for a given data series

in the upper and/or the lower tail.
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Figure 6. Workflow for determining theoretical distributions for a stationary and non-stationary
data series.

5. Conclusions

The study aimed to compare three-parameter distributions in controlled catchments
for a stationary and non-stationary data series with the use of PDF plots, CDF plots, CDF
plots (for both lower and upper tail of the distributions), and a GOF test.

The data was analyzed according to the following procedure. (1) The data series were
verified. (2) The stationarity of the data series was determined. (3) Based on skewness
and kurtosis analyses as well as histograms, families of distributions were selected. (4)
The parameters of distributions with the use of MLE were estimated. (5) The PDF plots
and CDF plots were analyzed. (6) The fit of theoretical and empirical data in the lower
and upper tail of the distributions was analyzed. (7) The GOF test was performed, and a
theoretical distribution was chosen for each analyzed sample.

We found that our new procedure could be broadly applicable in the determination
of the three-parameter distributions in controlled catchments for a stationary and non-
stationary data series. The methodology used in this work, i.e., making use of the MLE,
allows one to simplify the analyses when there is a series of data, both stationary and
non-stationary.

The analyses performed in our article will be used in flood study, water resource
planning, and the designing of hydraulic structures.

The most significant novelty in our research is the standardization and development of
a new procedure for a stationary and non-stationary data series, taking into account to read
a specific value of the maximum flow with a given exceedance probability from the lower
or upper tail. From the point of view of engineering practice, this is extremely important. It
determines the optimal choice of the theoretical distribution that can be used, for example,
in the design of weirs in rural areas (lower quantiles) or in the design of hydrotechnical
structures in areas at risk of flooding (upper quantiles).

Further research will evaluate the influence of natural and anthropogenic causes and
the influence of seasonal changes on the parameters of the empirical distribution.
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Appendix A

Figure A1 and Table A1 show the variability of long-term monthly flow rates k and
selected characteristics of the hydrological regime in the studied rivers in Poland and the
Czech Republic.

Figure A1. Cont.

https://www.chmi.cz/
https://danepubliczne.imgw.pl
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Figure A1. Variability of long-term monthly flow rates k in the studied rivers in Poland and the
Czech Republic.

Table A1. Selected characteristics of the hydrological regime in the studied rivers of Poland and the
Czech Republic.

River, Station Kr Cm QmeanXII-V
and Qmeany (Qmeana) Regime–Parde Regime–

Dynowska

Berounka,
Beroun

3.80 (average
balanced flows)

36.53% (slightly
unbalanced outflow)

QmeanXII-V > Qmeany
(lowland and highland streams)

simple
snow–rain,

mountain variety
nival

Labe,
Decin

3.41 (average
balanced flows)

33.68% (slightly
unbalanced outflow)

Morava,
Olomouc

4.10 (average
balanced flows)

42.76% (slightly
unbalanced outflow)

Becva,
Teplice

3.47 (average
balanced flows)

39.40% (slightly
unbalanced outflow)

Morava,
Kromeriz

3.78 (average
balanced flows)

40.16% (slightly
unbalanced outflow)

Bystrzyca,
Kraskow

2.91 (very
balanced alpine flows)

30.5% (slightly
unbalanced outflow) QmeanXII-V > Qmeany

(lowland and highland streams)
composite
snow–rain

regime

nival–
pluvialOpawa,

Branice
3.51 (average

balanced flows)
34.34% (slightly

unbalanced outflow)

Prudnik,
Prudnik

2.79 (very
balanced alpine flows)

25.38% (balanced
outflow)

QmeanXII-V < Qmeany
(alpine streams)

pluvial–
nival

Sleza,
Bialobrzezie

1.68 (very
balanced alpine flows)

19.75% (balanced
outflow) QmeanXII-V > Qmeany

(lowland and highland streams)

nival–
pluvial

Widawa,
Zbytowa

5.03 (average
balanced flows)

47.5% (slightly
unbalanced outflow)

composite rain,
oceanic variety nival

Appendix B

Table A2 showing Goodness-of-Fit of the Anderson–Darling (AD) test and accu-
racy measures, and AIC and BIC criterion of the estimated distributions of the analyzed
data series.
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Table A2. Goodness-of-Fit of the Anderson–Darling (AD) test and accuracy measures, and AIC and
BIC criterion of the estimated distributions of the analyzed data series.

Data Series Distribution AD Amax AD p.Value MARE MAE RMSE AIC BIC

BB

GEV 1.05 0.972 3.81 15.09 61.74 995.4 1002.5

LN3 1.53 0.812 4.15 18.20 75.80 995.7 1002.7

Weibull 2.36 0.429 9.25 31.82 89.38 1002.9 1009.9

LD

GEV 3.10 0.262 3.93 49.98 79.88 2107.5 2116.1

LN3 3.93 0.112 4.62 45.20 61.23 2113.9 2122.6

Weibull 2.18 0.604 7.22 92.04 141.40 2116.2 2124.9

PIII 1.35 0.946 4.77 65.44 117.04 2110.1 2118.7

MO
GEV 2.98 0.255 3.89 7.75 17.21 1129.6 1137.3

Weibull 2.48 0.413 3.40 7.74 24.60 1129.3 1137.1

BT

GEV 1.69 0.773 4.92 11.08 29.58 1088.2 1095.8

LN3 2.98 0.256 5.75 12.95 34.28 1090.8 1098.4

Weibull 1.86 0.694 11.21 21.12 40.90 1104.8 1112.4

MK

GEV 2.74 0.323 2.62 9.46 21.10 1300.2 1308.1

LN3 2.33 0.473 2.50 9.13 21.35 1299.5 1307.4

Weibull 1.92 0.664 2.26 8.66 26.85 1301.2 1309.1

PIII 2.00 0.622 2.06 7.77 23.67 1299.2 1307.1

BK
GEV 1.83 0.626 9.98 12.78 40.38 709.2 715.9

Weibull 2.25 0.435 13.20 8.36 15.69 706.5 713.2

OB

GEV 2.52 0.302 9.54 9.48 30.28 488.4 494.0

LN3 1.94 0.524 10.46 10.46 31.90 488.9 494.6

Weibull 2.21 0.409 17.07 13.50 31.58 492.7 498.3

PP

GEV 2.15 0.477 12.98 6.64 22.17 599.9 606.4

LN3 2.14 0.483 10.59 3.59 6.33 597.1 603.6

Weibull 3.16 0.175 11.05 3.61 7.01 593.9 600.4

SB

GEV 3.33 0.146 13.44 1.32 3.10 416.1 422.8

LN3 1.92 0.580 12.20 1.12 2.50 413.8 420.5

Weibull 3.77 0.092 12.39 0.87 1.25 411.1 417.8

PIII 1.13 0.939 12.01 0.87 1.33 411.1 417.8

WZ

LN3 1.53 0.729 9.63 1.87 2.87 366.9 372.6

Weibull 2.09 0.458 7.38 1.18 1.44 361.0 366.6

PIII 1.50 0.744 7.68 1.37 1.86 363.5 369.2
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