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Abstract: Scour is the most frequent cause of bridge collapses in Mexico. Bridges located along the
Mexican Pacific coast are exposed to extreme rainfall originating from tropical storms and hurricanes.
Such environmental phenomena trigger sediment loss, which is known as scour. If maintenance actions
are not taken after scouring events, the scour depth increases over time until the bridge collapses. A
methodology to estimate the scour hazard considering both the scour–fill interaction and the Monte
Carlo simulation method is proposed. The general extreme value probability distribution is used to
characterize the intensity of the scouring events, the lognormal distribution is used to characterize the
sedimentation process (fill), and a homogeneous Poisson process is used to forecast the occurrence of
both types of events. Based on the above, several histories of scour–fill depths are made; such simulations
are then used to develop time-dependent scour hazard curves. Different hazard curves associated with
different time intervals are estimated for a bridge located in Oaxaca, Mexico.

Keywords: scour; stochastic analysis; forecasting; extreme events

1. Introduction

A bridge built over a river creates an obstruction to the water flow, changing the
local flow field. The erosion around the obstruction is accelerated due to the following
three variables: (a) a velocity surge, (b) a difference in pressure between upstream and
downstream areas produced by the perpendicular action of the flow, and (c) the generation
of vortices. Scour begins when a certain level of shear stress, known as critical Shields
stress, is reached. The sediment at the river bed lifts due to the action of vortices and travels
downstream; such vortices produce shear stress on the sediment particles lying on the river
bed and contribute to the scour process. The critical Shields stress is a function of size,
shape, and material of the sediment particles.

There are two current trends that study sediment transport: trend one uses computer
fluid dynamics (CFD) to solve the Navier–Stokes equations; such an approach is useful for
deterministic analyses and is the best option to precisely simulate the phenomenon under
study, but it demands both a great amount of computer time and a high level of capabilities.
Trend two consists of a stochastic approach that is not useful to accurately forecast the
outcome of a single event, but it is efficient to forecast events in probabilistic terms, and it
can be a good tool to study time-dependent problems such as the case of the thickness of
the sediment layer on a river bed that changes over time. The sediment transport at any
given point in a time lapse, t, is assumed to have two possible outcomes: erosion, which
is also known as scour, and accretion, which is also known as fill. Regarding the latter,
a mathematical model that consists of both a data generation process (DGP) and a set of
suitable simplified sediment transport equations can be used to forecast the fluctuations of
the sediment layer thickness within a reasonable error.

The mechanics of sediment transport is a complex issue to study from a stochastic point
of view. Thus, assumptions need to be made in order to develop a simplified mathematical
approach that is useful to a probabilistic approach. Research dealing with semi-empirical
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equations for the sediment deposit is scarce. The rate at which sediment is deposited in
the river bed is dependent on the availability of sediment and, thus, from the erosion
of the bed and walls of the river from upstream. Variables of hydraulics, geometry, and
geotechnical are fundamental for sediment transport; they also govern the behavior of
secondary variables such as turbulence, flow velocity, and shear stress in the sediment
particles [1]. Many studies related to the probabilistic assessment of scour hazard have
been developed [2–13]. A simulation that allows forecasting the outcome of an event is a
mathematical representation of events that have already happened; such simulation cannot
add any new knowledge about the behavior of previous events, but it can provide useful
information about possible future events.

In the last 20 years, Mexico has experienced an average of 2.5 bridge collapses per year
due to scour effects [14], making scour the leading cause of bridge collapses in Mexico and
most of the world [15]. The Mexican coastal highway system comprises geographic zones that
are prone to extreme rainfall. For example, in 2005, hurricane Stan severely damaged highway
infrastructure and caused the collapse of several bridges in the state of Chiapas. Thus, it is
important to develop tools and methodologies to reduce bridge collapses due to scour.

This paper aims to propose a methodology to estimate scour hazard curves considering
the following: (a) a preprocessing stage to fix missing data issues using data augmentation,
(b) an information criterion for the probability distribution selection, and (c) the interaction
of scour and fill events through time. The proposed methodology is illustrated in a bridge
with potential scouring problems located in Mexico. Such an approach can deal with
missing data, or problems such as outliers, and also has the novelty feature of addressing
the accretion process that lowers maximum scour depth, making the mathematical model
more complete. Moreover, the methodology is compared with the approach proposed
by [5] in which the scour survival function is obtained by the SRICOS EFA method.

2. Data Processing

Most databases in Mexico are somewhat flawed: they either have missing data or
have outliers. Such issues introduce an additional source of uncertainty that needs to be
reduced in a preprocessing stage. First, outliers are defined as any value above or below
1.5 of the interquartile range, IQR. Such values are removed from the data set and then
treated as missing at random, as per Rubin [16]. This mechanism considers data that are
not systematically related to hypothetical values of known data. Thus, it is possible to
use statistical inference to obtain probable values for the missing data without having to
include any information about the missing data. Hence, a methodology that produces the
least amount of bias is needed, such as data augmentation, K nearest neighbors, multiple
imputation, etc. [17–20]. In this paper, the data augmentation technique [21] is used to
address the missing data issue. Such a technique has two advantages: (a) it produces a low
amount of bias, and (b) it is relatively simple when compared with complex optimization
techniques used for missing data analysis.

2.1. Preprocessing

The available data that are recorded from the observation of a natural phenomenon
such as discharge , Q, for a time interval t ∈ Z can be used to form an observation
set, F, in which its members are termed events, and denoted by ω ∈ F. Let Ω be a set
representing all the possible outcomes of the phenomenon. Then, the probability space
of the phenomenon is (Ω, F, Pθ |θ ∈ I), where the parameter space, I, has two sources of
statistical uncertainty: one is called stochastic uncertainty, which deals with the uncertainty
about a fixed parameter θ (Figure 1); the other is called inductive uncertainty.
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Figure 1. Probability space, parameter space, and probability distribution.

The uncertainty associated with each event of the subset F is represented by a proba-
bility function, P, which contains all possible outcomes of ω (if the sample is large enough).
If the uncertainty of P is contained in the parameter space, then, for each I there is a
possibility of having a different probability distribution, Pθ , θ ∈ I, where θ is a set of
parameters that govern the distribution function. Hence, stochastic problems are referred
to as inductive, meaning that they provide predictions about events that have not yet
happened using prior observations.

2.2. Statistical Inference of θ

The statistical estimation of the conditional distribution parameters of an observed
data set θ ∈ I is known as inference. In order to infer the parameters for a given distribution
F = Pθ [X< x | θ ∈ I], an inference approach must be chosen first.

Frequentist inference is based on the idea of a limiting frequency. One of the issues
of using this approach is the intrinsic epistemic uncertainty of the parameters θ. Such
approach does not provide statements about θ, which is a fixed value. Thus, the uncertainty
lies only in the observations ω (aleatory uncertainty). A frequentist approach usually has
a predetermined sample size because p values are calculated over a sample space Ω [22].
In Bayesian inference, θ is considered a random variable. Some knowledge about the
distribution of θ is assumed to be available, which is called a prior distribution. Then, after
observing some data ω, the distribution of θ must be updated to match the knowledge
obtained during the observation process. The Fisherian approach uses the likelihood
function, L, to compare different values of θ with the probability of the observed data so
that L(θ) = Pθ [17]. Such likelihood provides a relative measure of the set of parameters θ,
whose exact value is impossible to know. Hence, the parameter values that maximize the
likelihood function L(θ) must be found. Based on the above, the Fisherian approach is used
because maximizing the likelihood function L(θ) does not require previous knowledge of
the phenomena, and θ does not have an underlying distribution to propose. The combined
likelihood for a given distribution of n parameters can be expressed as

L(θ|data) = ∏
n=1

Pθ(data |θ) (1)

The maximum of the likelihood function is obtained by two steps. The log-likelihood
function is obtained, and then the score function, S, is calculated as follows:

S(θ) ≡ ∇loglog L(θ) (2)

Hence, we obtain the maximum likelihood estimators, MLE, and the solution of θ,
S(θ) = 0. MLE is not flawless, and for small data samples, the Simpson’s paradox could
occur. Moreover, most of the real score functions do not have a closed solution. Thus, a
numerical method must be used to approach the solution. Maximum likelihood estimators
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(MLE) are often the best way to deal with stochastic uncertainty because they require no
prior knowledge about the phenomena.

2.3. Missing Data Inference

The second source of uncertainty is known as inductive uncertainty and deals with
the lack of information of the observations available. Rubin [23] uses multiple imputation
techniques to reduce the inductive uncertainty. When a small data set is used, stochastic
uncertainty becomes relevant, and inductive uncertainty becomes critical [17]. Hence, it
is important to rely on data sets with reasonable sizes. In order to reduce the inductive
uncertainty, the missing at random mechanism (MAR) is used as follows [21]:

f (Q, M |θ, ψ) = f (Q | θ)× f (M|Q, ψ ) (3)

where M is the missing data indicator with values between 0 and 1, which represent an
observed value and no observed value, respectively; f (ω, M |θ, ψ ) is the joint probability
distribution of (ω, M). The set of parameters that governs the distribution of the observed
data in the subset Fobs is θ, whereas for the missing data Fmiss is ψ. Hence, under the
premise of MAR, given a set of observed data ω that is augmented by a quantity Z, the
augmented posterior distribution P(θ|ω, Z) can be calculated as

f (M |Fobs, Fmiss, ψ) = f (M |Fobs, ψ )× f (Fobs |θ) (4)

which means that the parameters from the data model θ are independent of the parameters in
the missing data. Authors in [24,25] developed the following data augmentation algorithm:

Fmiss
(t+1) ≈ Pr(Fmiss|Fobs, θt) (5)

θ(t+1) ≈ Pr(F|Qobs, Fmiss
(t+1)) (6)

where Pr is the probability associated to Fmiss. Equation (5) is the imputation step, which
generates imputed values for Fmiss using the missing data probability distribution, observed
data Fobs, and the set of parameters θ at the given iteration t. Equation (6) generates
parameter values for the posterior distribution, using the observed data Fobs and the
imputed values of Fmiss at the iteration t + 1. This procedure is performed iteratively until
convergence is reached, and a new “complete” data set Ff ull is generated.

2.4. Suitable Probability Distribution

The suitable distribution function of the data F(ω, t ∈ T) is the backbone of the
DGP. In order to select the best fitting distribution to the data set, the Akaike information
criterion [26], AIC, is used, which selects the best probability distribution based on the
parsimony principle. AIC is obtained using the following equation:

AIC = −2n L(θ|F) + 2k (7)

where n is the number of observations in F, L(θ|F) is the log-likelihood function, and k is
the number of parameters in the mathematical model.

2.5. Simulation of Events for the Proposed Approach

The block maxima approach (BMA) is used to estimate the intensity and occurrence of
extreme river discharges associated with extreme rain falls. Such an approach divides the
observations of the “complete” data set, Ff ull , into non-overlapping blocks that restrict the
observation of the maximum on such periods. One-year blocks are used in this research
since there is no seasonality in the maximum annual discharge [27]. The generalized
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extreme value distribution (GEV) is used to describe the annual maximum discharge,
whose CDF is

F(x | σ, µ, ξ 6= 0) = exp

{
−
[

1 + ξ

(
x− µ

σ

)]− 1
ξ

}
(8)

F(x | σ, µ, ξ = 0) = exp
{
− x− µ

σ

}
(9)

where µ, σ, ξ are the location, scale, and shape parameters, respectively. The law of small
numbers provided the basis for the selection of the Poisson stochastic process for the time
of occurrence of events that trigger scour and fill. Using this law, the stochastic process of
events that exceed a given threshold is

P(k ≥ K |t = T) = e−λT (λT)k

k!
(10)

where

λe =
∑n

i=1 m | ∀ m ≥ ψ

n
(11)

and
ψ ∼= 0.85IQR (12)

Since there is only interest in the probability of occurrence of a single event [28], the
cumulative distribution function (CDF) of the arrivals Fa(t) in the Homogeneous Poisson
Process (HPP) is obtained as follows:

Fa(t) =
∫ ∞

0
1− e−λt dt (13)

Having characterized the intensity of the events and its occurrence, the joint probability
distribution (JPD) is

fxy(x, y) =
n

∑
y=1

λye−λ

y!

(∫ ∞

−∞

1
σ

exp

{
−
[

1 + ξ

(
x− µ

σ

)]− 1
ξ

}[
1 + ξ1

(
x− µ

σ

)]−1− 1
ξ

dx

)
(14)

where y is the number of events in a one-year block maxima.
Events that trigger fill have a random nature and have a somewhat fixed occurrence in

a year. Such events occur both at the beginning and at the end of the rainy season, when the
discharge is at its weakest intensity, but it is still sufficiently strong to transport sediment
from the upstream river flow. Therefore, a stochastic model is needed to account for these
observations that will trigger the accretion process. The intensity of the discharge, qt, is
considered to follow a lognormal distribution function whose CDF is

F(x | µ, σ) =
1

σ
√

2π

∫ x

0

1
t

exp

{
− log(t− µ)2

2σ2

}
dt (15)

where µ and σ are the shape and location parameters, respectively. The occurrence is obtained
in a similar way as extreme events, with the difference in the threshold ψ2 as follows:

λr =
∑n

i=1 m | ∀ m ≤ ψ2

n
(16)

where ψ2
ψ2 ∼= 1.2IQR (17)



Water 2022, 14, 273 6 of 17

Thus, the JPD for the fill is

fxy(y, t) =
n

∑
y=1

λye−λ

y!
(

1
σ
√

2π

∫ x

0

1
t

exp

{
− log(t− µ)2

2σ2

}
dt (18)

2.6. Simulation of Time Series for SRICOS-EFA Method

A time series process is a set of observations that are well defined and have regular
intervals; thus, it is a set of random variables {Xt} indexed by integers t (often associated
by dates). A stochastic process is a parametrized collection of random variables {Xt}t∈T
defined on a probability space (Ω, F, Pθ |θ ∈ I). Then, a time series can be understood
as a realization of a stochastic process. Time series are often studied on the time domain
using an autoregressive approach. According with the above, an autoregressive moving
integrated average model (ARIMA) is used as follows:

y′t = c + φ1y′t−1 + . . . φpy′t−p + θpεt−1 + . . . θqεt−q + εt (19)

where y′t is the difference series, p is the order of the autoregressive, d is the degree of the
first differencing, and q is the order of the moving average. The ARIMA model that best
fits the data is selected by the AIC criterion [26].

Once the model is selected, simulations are performed under a random walk approach
for the extreme events data set (maximum annual discharge) and then used to estimate the
scour depth using the SRICOS-EFA methodology [5]. These results are then compared to
the proposed approach explained in Section 2.5.

3. Scour and Fill
3.1. Scour

Local scour depth, ys around a bridge pier is obtained using the one-dimensional HEC
18 approach [19] as follows:

ys = ynK4

[
2K1K2K3

(
b

yn

)0.65
F0.43

]
(20)

where yn is the height of the stream (derived from the Manning equation), K4 is a bed
material coefficient, K1 is a correction factor for the pier nose shape, K2 is a correction factor
for the angle of attack of the flow, K3 is a correction factor for bed condition, b is the pier
width, and F is the Froude number. The local scour area, As, and wetted perimeter of the
scour hole, Pmh, are calculated as

As ∼= ys
2 (21)

Pmh ≈ 2.33ys (22)

When calculated, these values are added to the hydraulic area and wetted perimeter
after each scouring event.

3.2. Fill

Haschenburguer [29] proposed a model to estimate the mean fill using both the Shields
stress and the hydraulic radius, which are both considered discharge-dependent variables.
The Haschenburguer fill model estimates the sediment deposit from a given intensity for
small-scale events in stable channels. The model uses the Shields stress as the fundamental
variable, and it does not limit the amount of accretion, a fact that could lead to unrealistic
heights of the sediment layer. Such issue is also present in the HEC 18 equations for scour.
Hence, it is considered to have a sufficient degree of approximation [30,31].

The scour–fill process is controlled by the transfer of material in the river bed. Thus,
scour depths are time-dependent random variables. The underlying process which governs
sediment transport has been a constant topic for research [32–34]. A Poisson distribution
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coupled with a homogeneous Poisson process (HPP) is used, so that the occurrence of the
phenomenon can be expressed with a semiempirical PDF as [35]

f
(

y f

)
= φe−φyy f (23)

where f
(

y f

)
is the proportion of stream bed fill for a given flow depth, yy f , which is the

flow depth obtained from the minimum discharge at the start of the rainy season.

φ = 3.3e−1.52τ∗/τ (24)

where the Shields mean stress, τ∗, is

τ∗ =
ρwRHS

(ρs − ρw)D50
(25)

where ρw is the density of the sediment, ρs is the density of water at 20 ◦C, D50 is the
mean size value of the particles, and RH is the hydraulic ratio at the beginning and at the
end of the rainy season. The hydraulic ratio is different from the one considered in the
scour process, and S is the slope of the hydraulic grade line. A shear velocity criterion for
incipient motion of sediment is used as follows [36]:

τ ∼= 0.215 +
6.79

D501.70 − 0.75× exp
(
−2.61× 10−3 × D50

)
(26)

The local fill area, As f , and the wetted perimeter, Pm f , are subtracted after each event
and are calculated as

As f
∼= f

(
y f

)2
(27)

Pm f ≈ 2.33 f
(

y f

)
(28)

4. Scour Hazard Curves
4.1. Simulation of Random Events

Both the hydraulic radius (Ht) and the Froude number (F) change through time as
scour and fill develop. Hence, an analytical solution to the stochastic process is difficult to
obtain. A numerical approximation to the solution is used instead. Monte Carlo simulation
(MCS) is a tool for the analysis of complex systems. The MCS approach used in this
research simulates a large number of independent histories of occurrence–intensity, which
are then used to estimate the time progression of scour. Each simulated history is one
possible outcome in the probability space. Each history behaves differently because of the
intrinsic stochastic nature of the state variables (scour depth, flow, Froude number, etc.).
If a sufficient number of simulated histories is known, the probability function P of the
phenomena can be approximated (law of large numbers).

Usually scour and fill in a bridge system (a collection of variables and components)
are dealt with in a discrete time fashion, especially when a probabilistic approach is used.
In this research, a discrete-event system is used, assuming that the state variables change
instantly through discrete points in the simulation time. Since the form of the solution is
unknown, a raw sampling approach was used.

4.2. Hazard Curves

Hazard curves show the intensity of scour depth and its corresponding probability of
exceedance. The probabilistic scour assessment provides the scour intensity corresponding
to a target hazard level (annual probability of exceedance). The proposed hazard curve for
scour is site specific, which means that there is not a variable that deals with the source-
to-site distance, which is a consequence of the fundamental approach to the phenomena.
The location of the phenomenon does not have an influence on the model in the approach
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proposed. Therefore, the effects of the phenomenon govern the model, and its location
is negligible. The annual rate of exceedance for a given scour depth can be estimated as
follows [37]:

P[ys(te) > y] =
λe

ξ0

[
ξyt
]

(29)

where ξ0 is the mean number of events that exceed a given scour threshold, (ψs), during an
interval t. P[ys(te) > y] is the probability that one or more scour depth events ys(te) are
greater than a threshold (y), and ξyt is the exceedance rate given a time interval t and is
estimated as

ξyt = 1− (1− P[ys(te) > y])t (30)

Thus, the annual rate of exceedance can be obtained by

ξ0 =

[
1−

∫ x
−∞ exp

[
−
(

1 + ξ
x−µ

σ

)− 1
ξ

]
dx
]
∗ ξyt

λe
(31)

5. Case Study

The bridge is located in the state of Oaxaca in one of the highest scour-prone zones
in Mexico. The bridge is a four-span, simply supported bridge; each span has a length of
56 m, as shown in Figure 2a. Bridge piers and foundation piles are built with reinforced
concrete in a multi-column bent type with circular columns of 1.2 m in diameter, as seen in
Figure 2a. A simplified trapezoidal cross-section is used, as shown in Figure 2b.
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Figure 2. Study case: (a) typical pier of the bridge; (b) simplified cross-section of the river. 
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m1
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H m2

Figure 2. Study case: (a) typical pier of the bridge; (b) simplified cross-section of the river.

The properties of the simplified cross-section for a given value of H are as follows:

Ah = H
{

b +
H(m1 + m2)

2

}
(32)

Pm = b + H
[√

1 + m2
1 +

√
1 + m2

2

]
(33)

Q =
1
n

AhR
2
3
h S

1
2
h (34)
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where Ah is the hydraulic area, Pm is the wetted perimeter, Rh = Aht/Pm, and H is the
height of the stream for a given discharge Q. Equation (34) can be written as

Q =
1
n


(

H
{

b + H(m1+m2)
2

})5/3

(
b + H

[√
1 + m2

1 +
√

1 + m2
2

])2/3

S
1
2
h (35)

Ht is the new value of ys, and in a similar way τ∗ is deducted from the river discharge
for recurring events; thus, two different hydraulic ratios are used to find the values of ys
and τ∗. The values used in Equation (35) are taken from the Monte Carlo simulation. For
this case study b = 80 m, m1 = 0.8, m2 = 1, s = 0.0068, and n = 0.025.

5.1. Data Augmentation

Figure 3 shows the river discharge, Q, obtained from the National Superficial Water
Database for this river. Both the maximum annual record and the minimum annual
discharge are presented. Scour phenomenon is controlled by events that are infrequent in
nature and have a high magnitude; these are known as “extreme events”. Extreme events
are represented in the maximum annual discharge data base, and they are used to forecast
scour depths. Unlike scour, fill is controlled by recurring events at the beginning and end of
the rainy season; then, the minimum discharge is used to forecast sediment deposit depths.
From the data set shown in Figure 3, a “complete” data set is estimated using the data
augmentation algorithm described in Section 2. Results are shown in Figure 4.

Figure 3. Discharge data.
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Figure 4. Comparison between original data set and data augmentation set.

5.2. Fit to a Probability Distribution

Different probability distribution functions (PDFs) are tested to find the appropriate
PDF that best characterizes the maximum annual discharge and, in a similar fashion, the
minimum annual discharge. Therefore, the PDF with the lowest AIC is selected. Figure 5a
shows the AIC for different PDFs such as generalized extreme value (GEV), Weibull 2P,
normal, exponential, and logistic. It is noticed that the general extreme value distribution
is the best fit for the maximum annual discharge. Figure 5b shows different PDFs to
characterize the minimum annual discharge data at the beginning and end of the rainy
season. Figure 5b indicates that the lognormal distribution presents the minimum AIC;
thus, it is the best fit for the minimum flow.

Figure 5. Different probability distribution functions: (a) data histogram of maximum annual flow;
(b) histogram of minimum flow.

The selected PDFs that characterize the maximum and minimum annual discharge are
represented in probability papers. The probability paper can be defined as a mathematical–
graphic technique to verify if the data follow a PDF. Figure 6a shows the maximum annual
discharge and the GEV PDF with a continuous line in probability paper. Figure 6b shows
the probability paper of the minimum annual discharge with a lognormal PDF.
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Figure 6. Probability papers for (a) maximum annual discharge; (b) minimum annual discharge.

Once the probability distribution for the intensity of events has been found, the mean
number of events at a specific time interval is found, as described in Section 2.5, and then
the joint probability distribution (JPD) is used with the simulations, as shown in Figure 7.

Figure 7. Joint PDF of maximum annual flow and number of events per year.

Table 1 shows all the constants and variables needed to carry out the simulations of
scour and fill events; k1, k2 = 1 for the scour process.

Table 1. Variables and their distributions.

Variable Description Distribution σ µ ξ λ

ωq Maximum annual discharge GEV/Poisson 230 209 0.512 ∼= 0.409
qt Minimum annual discharge Log normal/Poisson 1.74 1.73 - ∼= 0.818

d50 Characteristic particle size (mm) 8 4
k3 Bed condition correction factor Rand (Normal) 1.15
da Soil density kg/m3 Normal 2000 250

5.3. Simulation of Events

Monte Carlo simulations were carried out to generate random events that could trigger
the scour and fill process. In this context, the necessary number of simulations to have a
probability α ≡ 0.99 providing a percentage error ε ≤ 5 %, is 1060, which is the number of
simulations carried out to solve the stochastic processes for each simulated time interval.
Figure 8a,b shows the outcome of the simulations for a time interval equal to 170 years
for the extreme and recurring events. The discharge extreme events are several orders of
magnitude bigger than the recurring events. The simulations of occurrences and intensity
are used for the estimation of scour and fill in a discrete time model.
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Figure 8. Simulation outcome of occurrences and intensity in accordance with both phenomena and
its occurrence rates λ: (a) maximum annual streamflow; (b) minimum annual streamflow.

For comparison’s sake, a set of 1024 simulations of 175 years of daily mean discharge is
investigated using an ARIMA model as described in Section 2.6. The mean daily discharge
data used are shown in Figure 9a. Figure 9b shows the outcome of the simulations. It can
be noted that Figure 9a has outliers that have a negative impact on the forecasting precision.
Since the data sets used for time series are generally much larger than that used to forecast
extreme events (because of the BMA approach), outliers are more common and hard to
deal with. This is a limitation on the use of time series such as ARIMA. In addition, when
the data series is large and complex, advanced forecasting techniques such as wavelet
multiresolution analysis should be used to improve accuracy.

5.4. Scour Survival Function

Considering that the bridges in Mexico are designed for a service life of 100 years, sev-
eral simulated histories were developed for time intervals of 20, 30, 40, 60, 75, 90, 110,
130, 150, and 170 years, in order to track the degradation of thickness of the sediment layer.
Figure 10a shows one simulation of the thickness of the sediment layer ys(t) in the river
bed as a function of time; positive values denote scour, whereas negative values denote
fill. Figure 10a shows the result of a single simulation for t = 170 years (simulation starts
at the end of the recorded data year 64). Scouring events and fill events are added in the
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simulation. Since scour is controlled by extreme events, its magnitude is bigger than fill.
Figure 10b shows the outcome of 1064 simulations.

Figure 9. Mean daily discharge: (a) available readings of mean daily discharge at the bridge site;
(b) 175 years of mean daily discharge simulation using ARIMA model with p:5, d:1, q:7 and a
Gaussian innovation distribution.

Figure 10. Simulation outcome for scour–fill depth over time (simulation starts at year 64): (a) one
170-year simulation; (b) 1064 simulations of 170 years.
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The maximum scour depth value is obtained from each one of the 1064 simulations,
and the best fit distribution is obtained as per 2.4 of this study. Once the probability function
is found, the survival function is obtained as follows:

P[ys(te) > y | t] = 1−
∫ t

−∞
exp

[
−
(

1 + ξ
t− µ

σ

)− 1
ξ

]
dt (36)

Figure 11a shows the survivor function of the GEV function for different time intervals,
and Figure 11b shows the PDF of the maximum scour depth.

Figure 11. Outcome of the simulations for different time intervals of maximum scour depth: (a) GEV
survivor function, 100-year return period scour depth is shown as a blue line; (b) GEV PDF.

Results show that, as expected, scour accumulates through time. Figure 11b shows the
PDFs of several time intervals of the simulation; the distribution tends to zero skewness as
time increases, and it has a negative skewness and positive kurtosis at lower time intervals.
A scour depth of 2.67 m was computed using the HEC 18 methodology assuming a flood
with a return period of 100 years, and it is used for comparison. Such a threshold has
a notable probability of exceedance, as shown in Figure 11a. Multiple events of scour
with low return periods can accumulate in time, and they can be larger than the design
event when the bridge is not repaired. As time tends to infinity, the maximum scour depth
increases because, with the approach proposed, scour depth is not limited by harder soils
that are naturally found in deeper layers.

Figure 12a shows the scour survivor function of several time intervals using the
SRICOS-EFA methodology [5]. Figure 12b shows a comparison between the proposed
approach that takes in to account an estimation of sediment deposit, which lessens the
severity of scour accumulation in time, and the SRICOS-EFA methodology.

Figure 12. Simulations for different time intervals of maximum scour depth: (a) SRICOS EFA survivor
function; (b) comparison between the proposed methodology and SRICOS EFA [5].
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5.5. Discussion

The difference in results shown in Figure 12b are due to the differences in event
simulation and in the methodology used to estimate the scour depths. Some notable
differences are as follows: (a) SRICOS-EFA does not take in to account every event for the
scour accumulation (flood has to be larger than flood to produce scour), and in a similar
way a shear threshold is needed to produce scour. (b) It relies on average daily discharge
produced by an ARIMA model, which has limitations in dealing with outliers. (c) It does
not take in to account the accretion process (thus the sharp fall in the survivor function).
(d) The SRICOS-EFA method uses equations obtained from flume test conducted at Texas
A&M University [5], which are not equal to the HEC 18 equations for scour depth, and this
leads to a natural spread on the comparison.

The proposed model has the following key aspects that differ from the SRICOS-EFA:
(a) larger scour depths in the proposed methodology are likely due to the BMA approach
on the maximum annual flow, and this approach leads to higher discharge and, thus, higher
scour depths; (b) the addition of the accretion process leads to a heavy tail in the GEV
distribution and a smoother fall in the survivor function; (c) in the proposed approach the
hydraulic radius changes in every time step (unlike the SRICOS-EFA); (d)every discharge
causes scour since the HEC 18 methodology does not establish a shear threshold for the
scour development.

5.6. Scour Hazard

Scour hazard curves provide annual exceedance probabilities of scouring events
having different intensities. Since scour is time-dependent, several time interval curves
are needed because such curves are developed using all the available data of the events
that could trigger the scour or fill. They reflect the behavior of the phenomena in a time-
dependent fashion, and they can be used to evaluate both new and deteriorating bridges
(Figure 13). The estimates of maximum scour are derived from simplified 1D equations.
Such estimates are not exact and do not predict the future, but they provide a reasonable
approximation to it.

Figure 13. Scour hazard curves.

Figure 13 shows different exceedance rates due to scour or scour hazard curves for
different time intervals. It is noticed that the scour depth increases as the time interval
increases, which means that a certain scour depth takes different values for each time
interval. Scour hazard curves may be improved if the next items are included in the
model. First of all, a multi-layer approach is needed to improve the estimation of the
scour process, and either a nonstationary stochastic process or an autoregressive integrated
moving average with additive outliers in the ARIMA-AO model is needed to calculate the
discharge forecast. In addition, it is important to consider climate change, which could
impact the parameters related to discharge. It is also important to verify the computed
scour depth with the actual bridge scour.



Water 2022, 14, 273 16 of 17

6. Concluding Remarks

A time-dependent scour hazard model that took into account missing data and the
interaction between erosion and accretion was developed. The proposed model is straight-
forward, can be easily applied, and can be useful for the design and the re-design of new
bridges prone to scour deterioration. In the case of existing bridge structures, the model
can be used to estimate the time instant in which the structure could present an undesirable
performance level caused by scour effects.

The proposed stationary stochastic model developed to study the scour and fill process
shows that a single event with a high return period, such as Tr = 100 years, might not be
adequate to represent the maximum scour that could be developed throughout the return
period. Bridges subjected to continuous events of scour and fill without maintenance can
acquire scour depths greater than the designed scour depth. This phenomenon makes
bridges more vulnerable and partially explains why scour is the leading cause of bridge
collapses in Mexico.

Scour hazard curves for different time intervals were estimated based on a reinforced
concrete bridge located in one of the zones with high values of river discharge, such as
Oaxaca. The scour hazard curves provide both an idea of an expected exceedance of scour
associated with different time intervals and represent an important tool to estimate the
reliability due to scour. Moreover, in zones with a high frequency of seismic occurrences,
the scour hazard and seismic hazard can be treated from a multi-hazard point of view to
estimate reliability indicators such as fragility curves, exceedance demand rates, mean
annual rate of failure, or confidence factor. The above indicators lead engineers and
decision-makers to re-design or repair the structural system in the case of new or existing
bridges, respectively. The approach used to preprocess, characterize, and simulate events
can be used for any phenomenon that has an “extreme” nature. In addition, the inclusion
of missing data in the model improves the scour hazard estimation.
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