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Abstract: On 25 April 2015, an M7.8 large earthquake happened in Nepal, and 4312 landslides were 

triggered during or after the earthquake. The 2015 earthquake happened years ago, but the risk of 

rainfall-induced landslides is still high. Rainfall-induced shallow landslides threaten both human 

lives and economy development, especially in the Rasuwa area. Due to financial conditions and 

data availability, a regional-scale rainfall threshold can be an effective method to reduce the risk of 

shallow landslides. A physically based model was used with limited data. The dynamic 

hydrological model provides the soil moisture and groundwater change, and the infinite slope 

stability model produces the factor of safety. Remote sensing data, field investigation, soil sample 

tests, and literature review were used in the model parameterization. The landslide stability 

condition of 2016 was simulated. In addition, intensity-antecedent rainfall thresholds were defined 

based on the physically based modelling output. Sixty groups of data were used for validation, and 

the 15-day intensity-antecedent rainfall threshold has the best performance with an accuracy of 

88.33%. 
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1. Introduction 

Nepal is located on the south side of the Himalaya Mountains, and the impact 

between the Tibetan plate and the India plate causes frequent and strong tectonic 

movement in this area. In addition to the highest mountain in the world, the tectonic 

movements also bring Nepal complex geological conditions and active seismic events. 

The plate collision increases the possibility of earthquakes, and developed joints and 

fractures in the rock mass make the slope structure more vulnerable, while the summer 

monsoon brings abundant precipitation. All these factors contribute to the occurrence of 

geo-hazards, especially landslides. 

According to statistical data from Nepal disaster reports, there were 2942 landslides 

recorded between 1971 and 2012. During these landslides, 4511 people died, 1566 were 

injured, and more than 555,000 families have been affected. Moreover, due to the 

environment and climate change, 219 and 241 people died because of floods and 

landslides, respectively [1–3].  

On 25 April 2015, an M7.8 large earthquake happened in Nepal, which was followed 

by more than 250 aftershocks >M 3.0. More than 9000 people were killed in this 

catastrophe. A total of 4312 landslides were triggered during or after the earthquake, and 

491 glacier lakes were found. Human lives and properties were endangered [4].  

This extreme seismic event produced a great amount of loose material and cracks all 

over the mountain area; thus, it will take less precipitation to trigger a landslide. After the 

extreme precipitation in the ongoing monsoon season, the occurrence of shallow 

landslides increases dramatically, and many of the antecedent landslides are reactivated. 
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This condition also occurred after other earthquakes, such as the Chi-Chi and Wenchuan 

earthquakes [5–7]. 

The Rasuwa area is one of the worst-hit regions (Figure 1). The active tectonic 

movement of the Himalaya Mountains makes this region suffer from earthquakes and 

landslides, which leave abundant colluvial deposits on the steep slopes. These deposits 

can be easily reactivated in extreme conditions. More than 528 co-seismic landslides were 

triggered by the 2015 earthquake. Furthermore, during the monsoon season after the 

earthquake, a large amount of precipitation reactivates the unstable slopes, especially 

along roads and rivers. Several severe landslides happened in Rasuwa, including the 

largest debris avalanche, which destroyed the entire Langtang Village [4]. More than 600 

landslides were identified in field work. The infrastructure in this area is not developed, 

and several areas are exposed to shallow landslides. 

 

Figure 1. Study area in Rasuwa, Nepal. 

The 2015 earthquake occurred years ago, but the risk of rainfall-induced landslides 

is still high in Nepal. The rainfall-induced shallow landslides threaten both human lives 

and economy development, especially in the Rasuwa area. Risk reduction measures must 

be taken in this region. A regional-scale rainfall threshold can be an effective method to 

reduce the geohazard risk.  

Thresholds are widely used to indicate the stability or probability of the occurrence 

of landslides. There are two general methods of threshold definition: statistical analysis 

and physically based analysis. Statistical analysis is based on historical rainfall data and 

landslide events. The threshold is defined by the relationship between landslide 

occurrences and antecedent rainfall or cumulated rainfall. In the review paper by Guzzetti 

et al. [8], rainfall thresholds for shallow landslides and debris flow in many parts of the 

world are discussed. They present rainfall thresholds of different times, different events, 

and different areas. Anna Roccati et al. define the rainfall threshold for shallow landslides 

in Italy using statistical methods [9]. Antonello Troncone proposed a rainfall threshold 

due to the rising water table [10]. There are also rainfall threshold studies for the Himalaya 

region. Galanti defined a rainfall threshold for shallow landslides in Italy based on 

statistical methods [11]. Dahal & Hasegawa developed a rainfall threshold for the entire 

Nepal area. A total of 193 landslides and matched rainfall events are used in the analysis 
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[12]. Huang proposed three types of rainfall threshold through landslide susceptibility 

assessment and machine learning [13]. Physically based analysis is based on slope stability 

and hydrological condition. The threshold is defined by modelling that considers soil 

physical properties, slope features, hydraulic change, and other related factors [14]. 

Thiebes built a physical model combining hydrology and stability and put it into the early 

warning system of landslides [15]. Jiaming He applied Transient Rainfall Infiltration and 

Grid-based Regional Slope-stability Model (TRIGRS) and Scoops3D models to rainfall 

threshold definition [16]. There is no effective risk reduction method applied in the 

Rasuwa area, and no physically based rainfall threshold has been done in Nepal. 

In this paper, the main problem is to define a rainfall threshold that is suitable for 

Rasuwa after the 2015 earthquake, but with limited data. A physically based model was 

used. 

2. Model and Parameterization 

2.1. Model Introduction 

Rainfall duration and rainfall intensity are both key factors in triggering landslides, 

especially in the Rasuwa area. Rainfall-induced shallow landslides in this research aim to 

define the movements of slope material within 2 to 3 m of depth, triggered by 

precipitation. Hydrological factors are the main mechanism of these kinds of failures. For 

example, soil moisture increases the weight and reduces the shearing strength, and the 

groundwater level affects the pore water pressure (Figure 2).  

 

Figure 2. Mechanism of rainfall-induced landslides. 

Rainfall directly affects the soil moisture and groundwater table, and other factors, 

such as overflow and discharge, are also influenced by rainfall. In the physically based 

model, however, only soil moisture and groundwater are considered.  

The model used in our research consists of two separate parts: a dynamic 

hydrological model and an infinite slope stability model. These two models are closely 

connected because the outputs of the dynamic hydrological model are the inputs of the 

slope stability model.  

The basic concept in the dynamic hydrological model is that there is origin water 

content and a groundwater level in any pixel. At any time step, pixels obtain precipitation 

and change their hydraulic conditions. When soil is saturated, there will be surface runoff 

and water transfer to the next pixel at the next time step along the hydraulic gradient. 

Another part of the water will evaporate according to the temperature. The water content 

of each pixel can be calculated as: 

outinnn WWRainWW  1  (1)
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where �� is the current water content, ���� is the water content of the last time step, 

Rain is daily rainfall, and ��� and ���� are the water that comes in and out of the pixels. 

  t
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where ��������  is the lateral transfer index and ����(�) is the saturated coefficient. 
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where ����  is the lateral transfer flux and WL(x) is the groundwater level in pixel x. 

The stability model is based on the infinite slope stability equation of factor of safety: 
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In the classic model, where FS is the factor of safety, c’ is the effective cohesion of the 

soil (KPa), � is the internal friction angle (°), U is the pore water pressure, N is normal 

stress, W is weight, D is liner load, α is slope angle, and ψ is the angle between the loading 

and the vertical direction.  

While in the out model, the weight is dynamic due to the water content, and the 

effective cohesion will also change.  
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where �, ���� are the gravity of the soil in the dry, saturated condition and  ��  is the 

gravity of the water. D is the soil depth and Dw is the saturated soil depth. 

Based on the equation above, the unstable pixels and unstable days can be simulated. 

The model can provide dynamic results using dynamic rainfall data, and the stability 

condition of each pixel and each day can be derived. The main source of error, i.e., the 

uncertainty of the data, is a huge problem, especially in a data-limited region such as 

Rasuwa. Therefore, the parameterization has been simplified to improve the accuracy.  

2.2. Parameterization 

Due to data availability, the parameterization has to be simplified. The soil-related 

parameters also come from soil tests and literature values. Soil samples were taken in 

seven different locations in the study area. Grain size and water conductivity tests were 

done with the help of Tribhuvan University. The test results are shown in Appendix A. 

However, these tests are not detailed enough to provide all the soil related input. 

According to the soil water characteristic model proposed by Saxton [17], several 

parameters can be estimated based on field tests results. 

Rainfall data were derived from the Global Precipitation Measurement (GPM) 

database of 2016. The GPM data are open-access rainfall data with decent temporal and 

spatial resolution (maxima 0.1° and 0.5 h). In order to take the antecedent rainfall into 

consideration, the antecedent rainfall was calculated based on the equation below [18]: 

���� = ��� + ���� + ���� + ⋯ + ���� (7)

in which R��� is antecedent rainfall, R� is the daily rainfall of the nth day before the 

current day, and k is a constant related to outflow. The k is set at 0.84, which comes from 
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a study in the US [19,20]. Daily rainfall and different antecedent rainfall data were used 

in the model (Figure 3).  

  

(a) (b) 

Figure 3. The rainfall data used in the physically based model: (a) daily rainfall, (b) antecedent 

rainfall. 

The DEM data were derived from the 1:50000 topographic map (Survey Department 

Government of Nepal). The landslide inventory and land cover map were interpreted 

from remote sensing images and calibrated in the field investigation. Soil depth was 

simulated based on Equation (8).  

�� = � ∗ ������ + � ∗ ��ℎ�����/���� + � ∗ � + � ∗ � + � ∗ � + � ∗ ��� ������⁄  (8)

where SD is the simulated soil depth (m), a-f are calibration constants (-), d����� is the 

distance to the nearest coast (m), d������� is the distance to channels, S is the slope index 

(-), C is the profile curvature (m-1), and W is the wetness index.  

The base maps used in the model are shown in Figure 4. 
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(c) (d) 

Figure 4. The base maps used in the physically based model: (a) digital elevation model, (b) 

landslide inventory, (c) land cover map, (d) soil depth map. 

3. Results 

3.1. Model Result 

Except for the parameters mentioned above, the modelling setup takes only one layer 

above the slip surface into consideration. Only rainfall and vertical fluxes are considered 

in the water level calculation. The stimulation time step is set as 1 day, and 365 steps in 

total are used to simulate the whole year. The rainfall data of 2016 were used in the 

modeling because the only validation source available is based on the field investigation 

in 2016. Part of the model’s outputs are shown in Figures 5–7.  

  

Figure 5. 2016 daily rainfall and corresponding unstable area percentage 
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Figure 6. Unstable area under 2016 rainfall condition.  

  

Figure 7. Number of unstable days. 

In this rainfall condition, a maximum of 7642 pixels (6.87 km2) become unstable, 

which accounts for 4.51% of the whole study area. About 69.93% of the area has a minimal 

factor of safety (FOS) value between 0.8 and 1.0, and 27.88% between 0.6 and 0.8. Only 

2.18% of the area has a FOS lower than 0.6. Further, 46.88% of the unstable area has 

unstable periods less than 50 days, 20.93% of the area has unstable days between 50 to 100 
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days, and 18.32% of the area has unstable days between 50 to 100 days. The most 

dangerous region has more than 150 unstable days. This area has mainly old co-seismic 

landslides that can be triggered easily by rainfall during the entire monsoon season, which 

corresponds to the landslide situation of the Rasuwa area. 

3.2. Threshold Definition 

The rainfall threshold is an effective method of landslide risk reduction, and it can 

also be an important component of landslide Early Warning Systems. Some work has been 

done on threshold research in the Himalaya region [12,21]. The existing study mainly 

focused on the intensity-duration of the rainfall threshold using statistical methods.  

In the empirical intensity-duration threshold definition, historical landslides and 

matched rainfall datasets are needed. The specific rainfall intensity and duration of actual 

landslide dates are plotted in the I-D coordinate system. Threshold curves are defined 

based on the boundaries of the scatters. All these studies were based on historical 

landslide inventories and historical rainfall data, while none of these data are available in 

under-developing region such as Rasuwa. 

Intensity-Duration is not the only part of the rainfall threshold definition. Antecedent 

rainfall plays an important role in the triggering of shallow landslides. The soil moisture 

and groundwater after rainfall stops has a delayed effect because of the soil hydrological 

characteristics. This kind of delay means the antecedent rainfall will influence the factor 

of safety in the current situation. 

In the year 2016, daily rainfall data were analyzed and 159 rainfall events were 

distinguished. In order to define the rainfall threshold without a precise landslide 

database, the output of the physically based model stimulation for the year 2016 was used. 

The FOS map was derived with corresponding rainfall events. The scatters of daily rainfall 

and antecedent rainfall are plotted (Figure 8). The distribution of the three groups of 

scatters was used as the basis of the threshold definition. The threshold lines were defined 

using the nonlinear fit of exponential function. According to the field investigation, a total 

number of 4.2 km2 landslides were identified. Thus, the threshold boundary was defined 

as when the unstable area was larger than 4.2km2, which is about 60% percent of the total 

landslides.  

  
 

(a) (b) (c) 

Figure 8. The scatter graph of rainfall intensity and different antecedent rainfall. (a) 5-day 

antecedent rainfall, (b) 10-day antecedent rainfall, (c) 15-day antecedent rainfall. 

The threshold equations could then be defined as follows:  

� = 5.00 + 943.9 ∗ 0.95�� (9)

� = 3.95 + 674.32 ∗ 0.97��� (10)
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� = 1.89 + 520.13 ∗ 0.98��� (11)

where I is the average daily rainfall and Rn is the antecedent rainfall of n days. 

Data for 60 rainfalls and the corresponding landslide conditions (14 landslides 

occurred) of 2016 were used to validate the rainfall threshold. The results are shown in 

Table 1 

Table 1. Validation results of different threshold. 

Result 

Threshold 
5-Day Threshold 10-Day Threshold 15-Day Threshold 

Positive 37 38 41 

Negative 10 12 12 

False Positive 9 8 5 

False Negative 4 2 2 

The table shows that there are more false positives than false negatives in the results, 

which means more false alarms than missing alarms. More work can be done to improve 

the results with abundant data. Under limited conditions, the validation results reveal 

that the 15-day antecedent rainfall has the best performance with an accuracy of 88.33%. 

4. Discussion  

The research was hindered by the lack of appropriate data: rainfall records, historical 

landslide occurrences, soil data, and digital elevation data were all not optimal for this 

remote study area in Nepal. Parameterization of the physically based model was a 

difficult task in this study due to the lack of reliable information. In addition to the 

parameters from laboratory tests, all other parameters were derived from literature or 

defined by estimation and field observation. These assumptions increased the uncertainty 

of the modelling. The study would provide more realistic results if better soil and rock 

mechanical characteristics could be obtained, as well as other landslide-related 

information.  

Land cover plays a very important role in this model. Further study can be done to 

analyze the vegetation influence in the Rasuwa area because ecological methods are cost-

effective methods for landslide hazard reduction. There is a problem of groundwater level: 

underground recharge is ignored in the model and infiltration must be higher than reality 

to maintain the groundwater level at a reasonable level. A relative groundwater table may 

be helpful in the water stimulation, which can be used to do the validation for the 

hydrological model. The stability model used the infinite slope model equations and fixed 

cohesion. Actually, cohesion is significantly influenced by soil moisture. In this study, the 

cohesion is linked with soil moisture with the relation derived from literature. The relation 

varies a lot among different soil types and clay content. This modification can increase the 

FOS sensitivity with rainfall.  

About 6.87 km2, or 4.51%, of the whole study area become unstable under the 2016 

rainfall scenario, while in the 2016 monsoon, the rainfall-induced landslides only occurred 

in an area of 4.20 km2 in the study area. The model results have the problem of 

overprediction, which leads to more False Positives and less False Negatives. Therefore, 

the practical application of using this threshold as a basis for Early Warning Systems is 

limited. More work is needed to calibrate it. 

The thresholds are not constant values; they may change after major events, such as 

earthquakes [22]. This kind of change is mainly because events destroy the soil and rock 

structure and leave fractures on the slope surface. The fractures increase the infiltration 

speed and static water pressure. It is difficult to take this factor into consideration in the 

physically based model, which means the model results will not significantly change after 

extreme events, as in reality. 
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The results of the modelling only represent the theoretical instability using the factor 

of safety; there are two measures to improve the results to relate this value to realistic 

instability. Regional landslide mapping and accurate triggering time should be acquired 

to improve the performance of the physically based model. Enlarging the rainfall dataset 

is also helpful.  

The thresholds are the initial part of EWS. Detailed warnings, such as using the 

results to derive the frequency of landslides in order to determine hazards (probability of 

occurrence) and risk, are difficult. The uncertainty of the geotechnical parameters should 

be taken into account, and this needs large-scale, detailed field work that will cost a lot of 

resources. Consequently, the current product can be used in local-scale general warning 

and prediction linked with weather forecasts.  

A few suggestions for future work follow. 

(1) Further study can be done to analyze the vegetation influence in the Rasuwa area 

because ecological methods are cost-effective methods for landslide hazard 

reduction. 

(2) Validation and calibration work are needed to relate the thresholds to actual 

landslide instability.  

(3) More emphasis should be given to keep records of the location and dates of landslide 

events, and a national landslide database should be established.  

(4) The threshold is only one part of the EWS. Monitoring, alerts, and social responses 

are needed to establish an integrated EWS. 

5. Conclusions 

Rainfall thresholds as a component of a regional Landslide Early Warning System 

using satellite-derived rainfall in combination with physically based landslide initiation 

modelling have been developed under the condition of very limited data.  

The main mechanism of rainfall-induced landslides is the rainfall that saturates the 

soil layer, reducing the shear strength. The resistant force decrease until less than driving 

force, and the slope become unstable. In this process, rainfall, soil, and topography all play 

important roles. In the physically based model, several assumptions were made to 

simplify the simulation. The modelling setup was changed to only one layer above the 

slip surface. Each soil layer was divided into a saturated zone and an unsaturated zone, 

and the water level was calculated based on the water level from the last time step and 

soil moisture change. The only source of water was rainfall, and only vertical fluxes were 

considered; underground recharge and river recharge were ignored. Buoyancy was the 

only water pressure considered in the infinite slope model, while in reality, static and 

dynamic water pressure also play important roles in slope stability.  

Rainfall thresholds were defined based on physically based modelling. A total of 60 

rainfall events were used to validate the threshold, but no validation was done to test the 

model itself. The 15-day antecedent rainfall has the best performance. 
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No Classification Location 

Sand 

Content % 

(Excluding 

Gravels) 

Organic 

Content % 

Gravel 

Content % 
Compaction Porosity 

Ksat 

mm/hour 

1 farmland Near Dhunche 0.9 5 15 Loose-normal 0.25 28.8 

2 
landslide 

deposition 
Mukharka 0.82 1 30 Dense 0.33 36 

3 
landslide 

deposition 
Grang 0.82 1 40 Hard 0.19 7.2 

4 farmland Ramche 0.89 5 30 Normal 0.22 18 

5 
landslide 

deposition 
Kalikasthan 0.82 1 50 Dense 0.24 14.4 

6 grass land Mailong 0.85 1 50 Dense 0.27 10.8 

7 farmland Kalikasthan 0.9 5 10 Loose-normal 0.30 28.8 

References 

1. Dhakal, S. Disasters in Nepal. In Disaster Risk Management; TU-CDES and UNDP Nepal Publisher: Kathmandu, Nepal, 2016; pp. 

39–74. 

2. DPNet. Nepal Disaster Report, Disaster Preparedness Network, Nepal; DPNet-Nepal: Kathmandu, Nepal, 2013.  

3. MoHA. Nepal Disaster Report. 2011. Available online: 

http://www.moha.gov.np//uploads/document/file/Nepal_Disaster_Report_2011_20130904031242.pdf (accessed on 15 February 

2017). 

4. Collins, B.D.; Jibson, R.W. U.S. Geological Survey Open-File Report. In Assessment of Existing and Potential Landslide Hazards 

Resulting from the April 25, 2015 Gorkha, Nepal Earthquake Sequence; U.S. Geological Survey: Reston, VA, USA, 2015; 50p. 

https://doi.org/10.3133/ofr20151142. 

5. Lin, C.W.; Liu, S.H.; Lee, S.Y.; Liu, C.C. Impacts of the Chi-Chi earthquake on subsequent rainfall-induced landslides in central 

Taiwan. Eng. Geol. 2006, 86, 87–101. https://doi.org/10.1016/j.enggeo.2006.02.010. 

6. Tang, C.; Zhu, J.; Li, W.L.; Liang, J.T. Rainfall-triggered debris flows following the Wenchuan earthquake. Bull. Eng. Geol. 

Environ. 2009, 68, 187–194. https://doi.org/10.1007/s10064-009-0201-6. 

7. Fan, X.; Scaringi, G.; Domènech, G.; Yang, F.; Guo, X.; Dai, L.; He, C.; Xu, Q.; Huang, R. Two multi-temporal datasets that track 

the enhanced landsliding after the 2008 Wenchuan earthquake. Earth Syst. Sci. Data 2019, 11, 35–55. 

8. Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. The rainfall intensity-duration control of shallow landslides and debris flows: 

An update. Landslides 2008, 5, 3–17. https://doi.org/10.1007/s10346-007-0112-1. 

9. Anna, R.; Guido, P.; Fabio, L.; Francesco, F.; Laura, T. Rainfall Threshold for Shallow Landslides Initiation and Analysis of Long-

Term Rainfall Trends in a Mediterranean Area. Atmosphere 2020, 11, 1367. https://doi.org/10.3390/atmos11121367. 

10. Antonello, T.; Luigi, P.; Enrico, C. Rainfall Threshold for Shallow Landslide Triggering Due to Rising Water Table. Water 2022, 

14, 2966. https://doi.org/10.3390/w14192966. 

11. Galanti, Y.; Giannecchini, R.; Avanzi, G.; Barsanti, M.; Benvenuto, G. Rainfall thresholds for triggering shallow landslides in 

Vara Valley (Liguria, Italy). In Landslides and Engineered Slopes. Experience, Theory and Practice; CRC Press: Boca Raton, FL, USA, 

2016; pp. 943–950. https://doi.org/10.1201/b21520-111. 

12. Dahal, R.K.; Hasegawa, S. Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology 2008, 100, 

429–443. https://doi.org/10.1016/j.geomorph.2008.01.014. 

13. Huang, F.; Chen, J.; Liu, W.; Huang, J.; Hong, H.; Chen, W. Regional rainfall-induced landslide hazard warning based on 

landslide susceptibility mapping and a critical rainfall threshold. Geomorphology 2022, 408, 108236. 

14. Capparelli, G.; Tiranti, D. Application of the MoniFLaIR early warning system for rainfall-induced landslides in Piedmont 

region (Italy). Landslides 2010, 7, 401–410. https://doi.org/10.1007/s10346-010-0228-6. 

15. Thiebes, B.; Bell, R.; Glade, T.; Jäger, S.; Mayer, J.; Anderson, M.; Holcombe, L. Integration of a limit-equilibrium model into a 

landslide early warning system. Landslides 2014, 11, 859–875. https://doi.org/10.1007/s10346-013-0416-2. 

16. He, J.; Qiu, H.; Qu, F.; Hu, S.; Yang, D.; Shen, Y.; Zhang, Y.; Sun, H.; Cao, M. Corrigendum to “Prediction of spatiotemporal 

stability and rainfall threshold of shallow landslides using the TRIGRS and Scoops3D models”. Catena 2020, 198.  

https://doi.org/10.1016/j.catena.2020.105074. 

17. Saxton, K.; Rawls, W. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Sci. Soc. 

Am. J. 2006, 70, 1569–1578. https://doi.org/10.2136/sssaj2005.0117. 

18. Glade, T.; Crozier, M.; Smith, P. Applying Probability Determination to Refine Landslide-triggering Rainfall Thresholds Using 

an Empirical “Antecedent Daily Rainfall Model”. Pure Appl. Geophys. 2000, 157, 1059–1079. 

19. Bruce, J.P.; Clark, R.H. Introduction to Hydrometeorology; Pergamon Press: Long Island City, NY, USA, 1966. 



Water 2022, 14, 4074 12 of 12 
 

 

20. Crozier, M.J.; Eyles, R.J. Assessing the probability of rapid mass movement. In Third Australia-New Zealand Conference on 

Geomechanics: Wellington, May 12–16, 1980; Institution of Professional Engineers New Zealand: Wellington, NZ, USA, 1980; p. 2. 

21. Mathew, J.; Babu, D.G.; Kundu, S.; Vinod Kumar, K.; Pant, C.C. Integrating intensity-duration-based rainfall threshold and 

antecedent rainfall-based probability estimate towards generating early warning for rainfall-induced landslides in parts of the 

Garhwal Himalaya, India. Landslides 2014, 11, 575–588. https://doi.org/10.1007/s10346-013-0408-2. 

22. Fan, X.; Hsein Juang, C.; Wasowski, J.; Huang, R.; Xu, Q.; Scaringi, G.; van Westen, C.J.; Havenith, H.-B. What we have learned 

from the 2008 Wenchuan Earthquake and its aftermath: A decade of research and challenges. Eng. Geol. 2018, 241, 25–32. 

https://doi.org/10.1016/j.enggeo.2018.05.004. 

 


