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Abstract: Accurate projection of floods is of great significance to safeguard economic and social
development as well as people’s life and property. The development of hydrological models can
improve the level of flood projection, however, the numerous uncertainties in the models limit
the projection accuracy. By adding observations to correct the operation of prediction models, the
accuracy can be improved to some extent. In this paper, taking the Xun River, of the Hanjiang River
Basin in China, as the research object, combined with the soil moisture satellite data obtained by
the soil moisture active and passive satellite (SMAP), the ensemble Kalman filter (EnKF) algorithm
was used to assimilate the upper soil water content (WU) of the Xinanjiang model. In addition,
based on the simultaneous assimilation of state variables and parameters, two improved assimilation
schemes were proposed here, namely, the augmented ensemble Kalman filter (AEnKF) scheme and
the dual ensemble Kalman filter (DEnKF) scheme. The results showed that compared with the WU
assimilation scheme, the simultaneous assimilation of parameters and WU improved the prediction
ability of the Xinanjiang model to a greater extent. The two improved schemes had similar effects on
flood prediction accuracy, and improved the overall Nash–Sutcliffe efficiency coefficient (NSE) from
0.725 for non-assimilated, and 0.758 for assimilated WU, to 0.781. Among them, AEnKF and DEnKF
schemes, respectively, improved the NSE by 10.1% and 11% at maximum. This study demonstrated
that the application of data assimilation for the Xun River effectively improved the flood forecast
accuracy of the Xinanjiang model, which will provide a reference basis and technical support for
future flood prevention and mitigation and flood projection in this basin.

Keywords: Xinanjiang model; data assimilation; ensemble Kalman filter; parameter estimation;
model uncertainties

1. Introduction

The frequent occurrence of extreme hydrological events creates flood disasters causing
more and more damage to people’s lives [1], which has become an important issue affecting
economic and social development. The complex and diverse topography and continental
monsoon climate cause most of the rainfall in China to be concentrated within a period of
time, which to a certain extent also exacerbates the frequency and extent of floods [2]. In
July 2021, the city of Zhengzhou, China, was hit by a once-in-a-millennium extraordinarily
heavy rainfall [3], with more than 200 mm of precipitation in just one hour from 16:00 to
17:00 on the 20th; and about 620 mm of precipitation in three days, from the 17th to the
20th. According to the “7.20 rainstorm disaster investigation report” released by the State
Council Disaster Investigation Group in China, a total of 150 counties (cities and districts)
in Henan Province, with a population of 14.78 million people, were affected, with direct
economic losses amounting to RMB 120.6 billion. This shows that flood prevention and
mitigation is of great significance to ensure people’s safety, social stability and economic
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development. Based on the available hydro-meteorological data, flood projection can
qualitatively and quantitatively analyze and predict possible future floods [4]. It is regarded
as a very important non-engineering initiative to provide a reference for flood control and
scheduling decisions. Timely and accurate flood projection is useful for making scientific
flood control decisions to avoid risks, but the question of how to further improve flood
projection accuracy above the current level is still a research focus for hydrologists.

Hydrological models can simulate a real system and predict changes in relevant
variables [5]. With the development of hydrology, more and more practical hydrological
models have been put forward, such as the Stanford model [6], API model [7], Xinanjiang
model [8], SWAT model, etc. These models can be classified into three categories: empirical
models, conceptual models, and physically based models [5]. Of these, empirical models
lack the relevant physical mechanism; they only obtain information from the existing
data, resulting in a large randomness of prediction results. Physically based models are
constructed based on the principles of physical processes. They require a large number
of data, and the non-linear calculation process is complicated, causing their application
to be limited. Compared with the above two types of models, conceptual models are
both physical and empirical, and can describe the water cycle process in the basin with
simplified equations. The conceptual models have good applicability to most basins in
China because of their low requirements regarding the number of parameters and accuracy
of the modeling data, and simple structure. Actually, the widely used Xinanjiang model
is a conceptual model type. Considering that the Xun River in the Hanjiang River Basin
belongs to the subtropical semi-humid climate zone, which meets the storage and flow
production mechanism of the Xinanjiang model, this paper has chosen it as the appropriate
flood prediction model.

Hydrological model parameters can quantify the characteristics of vegetation, soil, and
stream channels in a watershed [9]. In general, it is not easy to obtain their true values due
to the numerous uncertainties in the models, but it is necessary to estimate the parameters
in a practical study that takes into account the spatial and temporal heterogeneity of the
watershed and the scale of the parameters. The parameter values affect the accuracy of
the models. The mainstream method used by hydrologists to determine the parameters
is to continuously tune them to obtain simulation results that are highly consistent with
past observations, which is called parameter calibration [10]. It is essentially a robust opti-
mization problem under the model uncertainties from a mathematical point of view [11].
Compared with manual calibration methods with certain subjectivity and experience, auto-
matic calibration has been favored by many scholars because of its efficiency and objectivity.
However, due to the randomness and uncontrollability of hydrological processes, predict-
ing future floods by using parameters obtained from historical hydrological data calibration
will lead to inestimable errors. Therefore, it is necessary to correct the hydrological state
variables and model parameters by means of relevant technical methods. At present, the
correction algorithms have been greatly enriched, such as feedback simulation technology,
error autoregression algorithm (AR) [12], recursive least squares algorithm (RLS) [13,14],
Kalman filter (KF) [15,16] and dynamic system response curve algorithm (DSRC) [17], etc.
Generally, AR and RLS are more commonly used to estimate the model parameter, while
KF is used to estimate the state.

The development of remote sensing observation technology has broadened the access
to data and enriched the existing sources of observation data, which makes data assimila-
tion more applicable to hydrological projection. Data assimilation takes into account both
forecast and observational information, helps to quantify and reduce uncertainty in hydro-
logical applications, and is effective in water level forecasting and/or flood forecasting [18].
The assimilation methods currently used in hydrology are divided into two categories
according to the optimization path: one is the variational assimilation for global fitting,
and the other is the sequential assimilation for real-time optimization [19]. Variational
assimilation transforms the data assimilation process into a solution of extreme values
by constructing a cost function to represent the difference between the analyzed and true
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values of the variables. After meeting the dynamic constraints, the state variable value that
minimizes the difference between the observed and predicted values is taken as the optimal
analysis value. However, the adjoint model established by variational assimilation requires
continuous differentiability of the state variables, and the nonlinearity of the hydrological
model makes it difficult to satisfy this, thus, limiting its application. Based on the error
estimation theory, sequential assimilation updates the forecast in time sequence by adding
new observations at each time step, generates the forecast background at the next moment,
advances forward by time, and finally obtains the optimal estimation of parameters or state
variables for the whole period. KF is the basic form of sequential assimilation, which was
proposed by R.E. Kalman in 1960 [20]. It has the advantages of simplicity, small dependence
on initial values, and good convergence, but it can only have unbiased optimal estimation
if the system is linear and the noise is Gaussian white noise [21]. For nonlinear systems,
some processing of KF is required.

Based on this, Evensen used the idea of ensemble projection in Kalman filtering and
proposed the ensemble Kalman filter (EnKF) algorithm, which solved the shortcomings
of the traditional KF when applied to a nonlinear system [22]. EnKF adds Gaussian white
noise disturbances to model state variables and observation data, calculates Kalman gain
and generates analysis ensemble at that time. Assuming that the mean value of analysis
is the truth, the errors of the members of the analysis ensemble are calculated, and the
error covariance of the analysis can be obtained. The mean value of the analysis and the
error covariance matrix at that moment are applied to initialize the background in the next
moment, so that the simulation is more consistent with the real probability distribution
of the state variables. Reichle et al. [23] applied EnKF to the retrieval problem of soil
moisture distributions and investigated the effect of ensemble size and non-Gaussian
forecast errors on estimation accuracy, and the results showed that EnKF was a flexible and
robust data assimilation option that could give satisfactory estimates. Reichle et al. [24]
assessed the performance of the extended Kalman filter (EKF) and EnKF for soil moisture
estimation, and the results indicated that EnKF was a promising approach for soil moisture
initialization problems. Zhang et al. [25] investigated the ability to retrieve the true soil
moisture profile by assimilating near-surface soil moisture into a soil moisture model with
an EnKF assimilation scheme. Shen et al. [26] analyzed the basic theory and steps for
data assimilation by using EnKF with an example based on numerical modeling, and
drew the conclusion that EnKF can be used in groundwater level forecasting and pre-
warning. Li et al. [27] applied a coupling model of support vector machines (SVM) and
EnKF (SVM + EnKF) for rainfall–runoff simulation, and found that this model could
substantially improve the accuracy of flood prediction compared with SVM. KF with state
and parameter updating is the so-called adaptive Kalman filter (AKF). Additionally, there is
the corresponding adaptive EnKF, e.g., [28], which can accelerate the speed of convergence
and significantly improve the identification accuracy and search efficiency.

In this paper, the EnKF algorithm was applied to the Xinanjiang model to construct
the EnKF data assimilation model, taking the Xun River of the Hanjiang River Basin as
the study area. Combined with the measured data, WU and sensitive parameters (i.e., soil
storage capacity curve index (B), and basin average free water storage capacity (SM)) of
the model were assimilated and updated. The improvement of flood projection accuracy
after assimilation was analyzed to assess the practicality of the data assimilation for flood
projection for the Xun River, with a view to providing a reference basis and technical
support for future flood prevention and mitigation, and flood projection. The paper is
organized as follows: Section 2 introduces an overview of Xun River and the data, Section 3
describes the methods, Section 4 provides the results, and Section 5 is a summary.

2. Study Area and Data
2.1. Study Area

The Xun River originates from Ningshan County, Shaanxi Province, and is a first-class
tributary of the Hanjiang River, with a length of 218 km. The upper reaches of the Xun



Water 2022, 14, 4061 4 of 24

River are located above Chaiping Station, with a length of 117 km and a watershed area
of 2364 km2. Abundant rainfall causes frequent floods in this area, which is characterized
by a large peak volume (2690 m3/s). Therefore, accurate flood projection is necessary to
maintain the safety of downstream power stations and people’s lives.

In this paper, the flood projection study was carried out for the watershed above
Chaiping Station, the specific location of which is shown in Figure 1. The measured
discharge of Chaiping Station in 1999–2021 was used for the flow data, in hourly units.
Based on the rainfall observation data of four local major rainfall stations, the mean rainfall
in the area for the corresponding period was calculated using Tyson polygon. For the
surface evaporation observation E0, due to the lack of actual measurement data, this study
assumed 0.1 mm uniformly with reference to the adjacent watershed.
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Figure 1. The watershed above Chaiping Station in Xun River.

2.2. Data
2.2.1. Precipitation and Discharge Data

In this study, the measured runoff data from 1999 to 2021 at Chaiping Station in the
upper reaches of Xun River were used. Rainfall data were selected from four rainfall
stations in this area, namely, Gangtie, Dongjiangkou, Dongchuan and Chaiping. The
Tyson polygon method was applied to determine the mean rainfall in this basin for the
corresponding period, and the locations and weights of each rainfall station are shown in
Table 1. The 27 floods with better rainfall–flow relationships were selected based on the
above information for subsequent analysis and research.

Table 1. Location of each rainfall station and Tyson polygon weights.

Rainfall Stations Gangtie Station Dongjiangkou Station Dongchuan Station Chaiping Station

Location
(east longitude/◦) 108.42 108.64 108.84 108.94

Location
(northern latitude/◦) 33.60 33.65 33.54 33.33

Weights 0.0865 0.3889 0.3903 0.1343
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2.2.2. Soil Moisture Data

Soil moisture is one of the key variables characterizing the earth’s energy flow and
hydrological cycle, which not only reflects evaporation, infiltration and runoff in hydrologi-
cal models, but also has an important impact on flood prediction accuracy [29]. Currently,
soil moisture data can be obtained by three main means, including traditional monitoring,
model simulation and remote sensing observation. Among them, traditional monitoring
methods rely on the establishment of meteorological stations in the field. Such data are
generally of high accuracy, but the cost of manpower and material resources is large and
not easily accessible to the public. The spatial heterogeneity of soil vegetation also limits
the data obtained by this means for large watershed studies. Based on the principle of
water balance, real-time soil moisture data can also be simulated by models, but it is still
difficult to obtain accurate data in the modeling process and parameter setting. Remote
sensing observation can monitor the earth’s soil moisture with the help of remote sensing
satellites, which has the advantages of wide coverage, high accessibility, real time and
convenience. Active microwave remote sensing and passive microwave remote sensing
together constitute the current soil moisture data observed by satellites. The best perfor-
mance in soil moisture observation is currently recognized as L-band, because it reflects
higher sensitivity to the observed variables, compared with other bands.

SMAP is an L-band satellite that can be used to observe soil moisture, launched by the
National Aeronautics and Space Administration (NASA) in 2015 [30]. It has a combination
of active and passive microwave sensors. Although the SMAP active radar is no longer
available, its radiometer still provides highly accurate observations that can acquire surface
5 cm soil moisture data at spatial resolutions of 3 km, 10 km, and 40 km, and temporal
resolutions of 1 to 3 days [31]. As the latest soil moisture monitoring satellite in orbit, the
global soil moisture information provided by SMAP will make an important contribution to
hydrometeorological studies and flood and drought prediction. The soil moisture data used
in this paper were from the SMAP L4 product, which provides global 3-hour 9-km surface
5 cm soil moisture based on EASE-Grid 2.0. The global soil moisture data downloaded
from the SMAP official website (Figure 2) were imported into ArcGIS for batch cropping to
generate the corresponding raster data for the watershed above Chaiping (Figure 3), and
the average soil moisture values of the watershed at each time were extracted as the data
used for this assimilation.
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The soil moisture observation data provided by SMAP represent the volumetric water
content θ (cm3/cm3), and their characteristic values corresponding to the eight floods that
will be assimilated are shown in Table 2. Since the subsequent state variables to be assimi-
lated include WU of the Xinanjiang model, these data should be converted into watershed
surface water depth Dw (mm) in advance when used, as shown in Equation (1). In addition,
the soil moisture data observed by SMAP, which had a temporal resolution of 3 h, was
interpolated into a 1-hour form in this study to correspond to the rainfall–runoff data.

Dw = h× θ × 10 (1)

where h is the soil thickness observed by SMAP, taken as 5 cm; due to the unit conversion
involved (cm converted to mm), it is also multiplied by 10.

Table 2. Characteristic values of water content (cm3/cm3) corresponding to floods for assimilation.

Flood Number

Volumetric Water Content
Maximum Value Minimum Value Average Value

1 (No. 20170927) 0.272 0.392 0.309
2 (No. 20171004) 0.304 0.361 0.322
3 (No. 20180704) 0.223 0.349 0.266
4 (No. 20190628) 0.149 0.329 0.196
5 (No. 20190807) 0.151 0.329 0.222
6 (No. 20190915) 0.210 0.357 0.297
7 (No. 20200819) 0.229 0.352 0.291
8 (No. 20210424) 0.213 0.372 0.272

3. Methodology
3.1. Xinanjiang Rainfall–Runoff Model

Zhao [32] proposed the Xinanjiang model after years of research and practical work
experience, which was proved to achieve good results in flood simulation in most humid
and sub-humid areas in China. Initially, the model divided the runoff into two parts, i.e.,
surface runoff and underground runoff. It did not take into account the subsurface runoff,
which caused a high degree of nonlinear variation in the confluence process, and the flood
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simulation differed greatly from the actual situation. Subsequently, many domestic and
foreign research results on production and confluence were referred, and a three-source
model was formed by adding the subsurface flow [32]. Based on the good simulation
effect of the Xinanjiang model for most areas in China, and the fact that Xun River in
Hanjiang River Basin belongs to the subtropical semi-humid climate zone, which satisfies
the mechanism of flood storage and production of the model, the Xinanjiang model was
chosen as the flood projection model in this paper.

Due to the spatial and temporal heterogeneity of the rainfall in an actual basin, the
Xinanjiang model uses a scattered structure to determine the basin outlet runoff, which
mainly involves four steps: evapotranspiration calculation, runoff generation calculation,
water source division, and confluence calculation. The calculation of runoff generation in
the second step is particularly critical and has a significant impact on the accuracy of flood
simulation. The runoff yield can be calculated according to the principle of full flow, i.e.,
when precipitation causes the soil water content of a watershed to meet its storage capacity,
the difference between the storage capacity and soil moisture value at the beginning of
rainfall is considered as the rainfall loss. At the same time, the uneven distribution of soil
water shortage is solved through the basin water storage capacity area distribution curve,
and the total runoff volume calculated is used for flood simulation [33]. The Xinanjiang
model takes rainfall P and surface evaporation EM as inputs, and basin outlet section flow
Q and actual evapotranspiration E as outputs [8].

At the beginning of rainfall, the amount of soil water content in the vadose zone will
influence the process of rainfall forming runoff. Under the same rainfall conditions, a larger
soil water content will produce more runoff volume. In the Xinanjiang model, the soil
water content of the watershed is generally based on the evaporation, runoff and rainfall
process in the early period, and can be derived from the water balance principle using the
following recursive formula:

Wt+1 = Wt + Pt − Et − Rt (2)

where Wt is the soil water content at the initial moment at time t, measured in mm; Pt is the
rainfall at time t, measured in mm; Et is the evapotranspiration at time t, in mm; and Rt
is the runoff produced at time t, measured in mm. A constraint needs to be added in the
calculation, namely, 0 ≤W ≤Wm, and Wm, which is the upper limit of soil water content
in the basin, also known as the basin storage capacity.

3.2. SCE-UA Method

In principle, Xinanjiang model parameters should be determined by actual mea-
surements or experiments according to their physical significance, but in practice, many
parameters exist in the absence of observations or due to unsatisfactory observations. Many
methods of parameter calibration have been developed. The general process is as follows:
firstly, assume a set of initial parameters to drive the model simulation, compare the simu-
lation with the measured data to further optimize the parameters, and gradually determine
the parameter values that are closest to the actual situation. Finally, the unreasonable
values should also be corrected by combining their physical meanings. Among them, the
shuffled complex evolution (SCE-UA) algorithm developed by Duan et al. [34] is considered
as a classic algorithm in this field because of its mature development, high efficiency in
processing the non-smooth, insensitive and non-convex conditions of the reflection surface
of the objective function, and its ability to ignore the influence of local minima.

The SCE-UA algorithm can consider both deterministic search and stochastic search,
treating globalized search as a process of natural biological evolution. The algorithm
constitutes a competitive complex evolutionary algorithm (CCE) by linking the complex
search approach with the theory of competitive evolution of natural organisms. In this
paper, the Xinanjiang model of Xun River in the basin above Chaiping was constructed
based on the available hydrological data, and 27 representative floods were selected for
the study. In view of the relatively mature development of the SCE-UA algorithm, its
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fast convergence speed and high operational efficiency, this paper adopted it to optimize
the parameters of the Xinanjiang model with NSE as the objective function. The first
19 floods (1999–2013) were used for parameter calibration, and the last 8 floods (2017–2021)
were applied for parameter verification. The parameter values, objective function, and
calibration results of SCE-UA used in this paper are described as follows.

(1) SCE-UA algorithm parameters

The first step in SCE-UA is to determine the number of complex forms, p. Zhang and
Jiang [35] studied the influence of different p values on model parameter calibration when
data are ideal. The results showed that, when the value of p is 1 or 2, the parameter truth
value basically cannot be searched. When the value of p is increased (4 and 10 examples),
the true values of most parameters can be searched. In general, when the data are in
good condition, p ≥ 4 can basically meet the needs of optimization parameters. The more
complex the shapes, the better the applicability to higher-order nonlinear scenarios. The
parameter settings of SCE-UA in this study are shown in Table 3.

Table 3. Parameter values in SCE-UA.

Parameter n m q p s α β k P

Value 15 31 16 4 124 1 31 5 0.01%

In this table, n is the number of parameters; m is the number of complex vertices; q is
the number of subcomplex vertices; p is the number of complex forms; s is the population
size; α is the number of children generated by the parent; β is the number of generations
generated by the parent; k is the number of cycles to stop the iteration; and P is the critical
precision to stop the iteration.

(2) Objective function

In this paper, NSE was chosen as the objective function. When NSE is closer to 1, it
indicates the better simulation effect of the Xinanjiang model. The NSE calculation formula
is as follows:

NSE = 1− ∑T
t=1
(
Qt

o −Qt
m
)2

∑T
t=1(Qt

o −Qo)
2 (3)

where Qt
o is the measured runoff at time t; Qt

m is the simulated runoff at time t; and Qo is
the average of the observed runoff in this flood.

(3) Parameter calibration results

The SCE-UA was used to optimize the parameters of the Xinanjiang model in the
Xun River watershed above Chaiping, where the first 19 floods (1999–2013) were used for
parameter calibration and the last 8 floods (2017–2021) were used for parameter validation
and data assimilation. The parameter calibration ranges and final values are shown in
Table 4.

Table 4. SCE-UA algorithm parameter calibration range and values.

Parameter K UM LM DM C IM B SM

Upper limit 1.1 30 100 50 0.2 0.05 0.6 100
Lower limit 0.1 10 50 20 0.1 0.01 0.1 30

Value 0.38 20 73.30 48.61 0.18 0.04 0.5 70.6

Parameter EX KI KG CS CI CG L

Upper limit 1.5 0.6 0.6 0.99 0.99 1 10
Lower limit 1 0.1 0.1 0.70 0.70 0.98 0.1

Value 1.24 0.25 0.5 0.92 0.90 0.998 4.92
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(4) Evaluation Indicators

Common indicators for evaluating a flood simulation include the relative error of
flood peak (Qre), peak time difference (∆T), and NSE. NSE is given in Equation (3), and the
remaining two indicators are as follows:

Qre =
Qm,max −Qo,max

Qo,max
× 100% (4)

∆T = |Tm − To| (5)

where Qo,max and Qm,max are the measured and simulated flood, respectively; and To and
Tm are the measured and simulated peak occurrence times, respectively.

3.3. Ensemble Kalman Filter

KF is only suitable for linear systems. For nonlinear systems, some processing of
KF is required. To improve the traditional KF algorithm, Evensen [22] used the idea
of ensemble projection and proposed EnKF. The main idea is that after considering the
model’s characteristics and the error distribution of the background and observation, a
set of Gaussian white noise perturbations are added to the model state variables and
observation data, respectively. The background and observation after the addition of
the perturbations will enter the analysis step and generate the analysis ensemble at that
moment. The statistical samples of the analysis errors are determined by the differences
among the members of this ensemble, from which the error covariance of the analysis fields
is estimated. This ensemble of analysis values is used to determine the initial state of the
model at the next moment, to calculate the prediction ensemble of the next model run,
and estimate the covariance of the prediction error according to the differences among the
members of the ensemble.

The EnKF algorithm uses the Monte Carlo method to determine the prediction error
covariance of state variables, and makes the calculation of the error covariance less difficult
by ensemble. The advantage of this method is not only its lightweight computation, but
also its usability in nonlinear systems. Due to its simplicity and efficiency, it is widely used
in hydrology. The algorithm consists of two steps: prediction step (time update) and the
analysis step (observation update). The prediction step is the update of the state variable
in time dimension, predicting the value by the previous value. The analysis step is to add
observation data to the prediction model and obtain the analysis value of state variables
based on the update. The EnKF algorithm is as follows [36]:

(1) Initialize background: given the background ensemble of EnKF X0 = (Xa
0,1, Xa

0,2 , . . .
Xa

0,n), the set number is n, and the state variable Xa
0,i obeys the Gaussian distribution

with mean Xa
0 and covariance Pa

0 ;
(2) Add the state variable ensemble at time t to the prediction model, and calculate the

next moment state variables X f
t+1,i and the prediction error covariance P f

t+1.

X f
t+1,i = M

(
Xa

t,i, αt+1, βt+1
)
+ Wi (6)

P f
t+1 =

1
n− 1

n

∑
i=1

(
X f

t+1,i − X f
t+1

)(
X f

t+1,i − X f
t+1

)T
(7)

where X f
t+z,i is the i-th value in the state variable predicted ensemble at time t + 1;

X f
t+1 is the average of the state variable predicted ensemble at time t + 1; Xa

t,i is the
i-th value in the analysis ensemble at time t; M(*) is the prediction model, which refers
to the Xinanjiang model in this paper; at+1 and βt+1 correspond to the driving data
and parameters of the model at time t + 1; and Wi is the prediction error, which is
assumed to be Gaussian white noise with mean 0 and variance Q;
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(3) Calculate the gain matrix Kt+1 at t + 1.

Kt+1 = P f
t+1HT

(
HP f

t+1HT + R
)−1

(8)

P f
t+1HT =

1
n− 1

n

∑
i=1

(
X f

t+1,i − X f
t+1

)
[H(X f

t+1,i − H
(

X f
t+1

)
]
T

(9)

HP f
t+1HT =

1
n− 1

n

∑
i=1

[
H
(

X f
t+1,i

)
− H

(
X f

t+1)

)][
H
(

X f
t+1,i

)
− H

(
X f

t+1)

)]T
(10)

where H(*) is the observation operator, which reflects the link between the predicted
and observed values of state variables—a linear observation operator was used in this
paper; and R is the observation error covariance;

(4) Combine the predicted ensemble and observation at t + 1, and calculate the analysis
ensemble Xa

t+1,i and the analysis error covariance Pa
t+1 at this moment.

Xa
t+1, i = X f

t+1,i + Kt+1

(
Zt+1 − H

(
X f

t+1,i

)
+ ui

)
(11)

Pa
t+1 =

1
n− 1

n

∑
i=1

(
Xa

t+1,i − Xa
t+1

)(
Xa

t+1,i − Xa
t+1

)T
(12)

where Xa
t+1,i and Xa

t+1,i are the i-th value in the predicted and analyzed ensembles of
state variables at t + 1, respectively; Xa

t+1 is the average of the state variables analyzed

ensemble at t + 1; Zt+1 is the observation corresponding to t + 1; H(X f
t+1,i) is the

projection of state variables on the observation space; ui is the perturbation added to
the observation, obeying a Gaussian distribution with mean 0 and variance R;

(5) After the prediction update step, the cycle moves to the next moment.

3.4. Augmented Ensemble Kalman Filter

The augmented ensemble Kalman filter (AEnKF) also treats the model parameters as
special state variables, and combines the assimilated parameters and other state variables
to form a multidimensional vector [37]. When there are observations, the parameters
and state variables will be updated simultaneously to obtain the optimal estimate at
that moment. In other words, parameters are added to X = [X1, X2, . . . Xm]

T to make
it X = [X1, X2, . . . Xm, β1, β3, . . . , βn]

T . m and n are the number of state variables X and
model parameters β, respectively. The observation operator in this algorithm also needs to
be adjusted to adapt to the vector dimension after adding the parameters. The subsequent
filter process is the same as EnKF, where the ensemble of parameters and state variables is
continuously updated during the assimilation process.

In this section, the original single-state variable WU was represented as a multi-state
variable X = [WU, B, SME]T after adding the parameters. B as the soil storage capacity
curve index. The observed data were SMAP remote sensing soil moisture data, and the
corresponding operator was H = [1, 0, 0]T . Generally, the value of observation error
variance is 5% to 10% of the observed value, while the initial error variance tends to be
higher due to the initial conditions are uncertain [38]. Thus, the observation error variance
was set as 1, which was about 7% of the observed value, and the initial error variance
was empirically set as 5, which was large enough to account for their uncertainties. The
mean value of the WU initial ensemble was taken as the observed soil moisture at the
initial moment to generate the background. For parameters B and SM, the mean values
of the initial background ensemble were taken as the calibration value of SCE-UA, and
the variances were taken as 0.12 and 102, i.e., B ∼ N(0.5, 0.12) and SM ∼ N(70, 102),
respectively. During the model operation, WU and parameters B and SM of the Xinanjiang
model were updated as a continuous forward filter. For comparison with the scheme of
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assimilating WU, other settings remained unchanged and the number of ensemble samples
was still 200. The flow of the AEnKF algorithm is shown in Figure 4.
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3.5. Dual Ensemble Kalman Filter

The dual ensemble Kalman filter (DEnKF) cycled through EnKF twice when estimating
parameters and state variables at a certain time, and its algorithm diagram is shown in
Figure 5. First, the parameter background was added to the model to predict the state
variables. The filter gain of parameters Kβ

t+1 was calculated when there were observations,
and the parameter analysis ensemble Ka

t+1 was obtained. The parameter analysis ensemble
was input to the model again at that moment to obtain the new prediction ensemble of
state variables Xa

t+1. The DEnKF algorithm was divided into two filters to determine the
optimal estimation of parameters and state variables. The optimal parameter obtained by
the first filter was used to predict the state variables, and the optimal estimation of state
variables was obtained by the second filter.
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The two gains were calculated as follows:

Kβ
t+1 = ∑βy

t+1 [∑
yy
t+1 +∑y

t+1]
−1

(13)

Kx
t+1 = ∑xy

t+1 [∑
yy
t+1 +∑y

t+1]
−1

(14)

where ∑
βy
t+1 is the covariance of the parameter with the state variable on the observed

projection, ∑
xy
t+1 is the covariance of the state variable with the state variable on the observed

projection, ∑
yy
t+1 is the variance of the state variable on the observed projection, and ∑

y
t+1 is

the observation error.
It should be noted that the initial background was uniformly sampled in the parameter

space. After parameters were updated each time, the parameter ensemble needed to be
resampled using the kernel smoothing algorithm, as shown in Equation (15) [39]. This
sampling method avoided the potential sample divergence and information loss, and
ensured the stability of parameter assimilation. In addition, the parameter background
error needed to be reflected by the function of the mean and variance of the parameter
ensemble at the previous moment.

βi
t+1 ∼ N

(
αβi

t + (1− α)βt, h2Vt

)
(15)

where a = 3δ−1
2δ and δ are in the range of 0 to 1, h =

√
1− a2.

4. Results
4.1. Simulation of Xinanjiang Model

With NSE as the objective function, the model parameters were determined by the SCE-
UA algorithm, in which the first 19 floods (1999–2013) were used for parameter calibration,
and the last 8 floods (2017–2021) were applied for parameter verification. The flood peak
relative error, peak time difference and NSE were used as indexes to evaluate the simulation
results of the Xinanjiang model, as shown in Tables 5 and 6, and Figure 6.
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Table 5. Results of simulated floods in the Xinanjiang model (calibration period).

Flood Number Flood Peak Relative Error Peak Time Difference (h) NSE

No. 19990705 0.31 0 0.860
No. 20000628 0.00 0 0.823
No. 20000713 0.36 1 0.815
No. 20000808 0.23 4 0.873
No. 20030716 0.17 0 0.898
No. 20030920 0.31 3 0.854
No. 20040930 0.16 3 0.882
No. 20050817 0.31 4 0.840
No. 20060927 0.01 4 0.943
No. 20070705 0.04 10 0.731
No. 20070720 0.14 0 0.835
No. 20090803 0.03 5 0.912
No. 20090819 0.14 1 0.703
No. 20090829 0.11 3 0.815
No. 20100608 0.01 7 0.872
No. 20109010 0.15 8 0.804
No. 20110622 0.28 4 0.851
No. 20110805 0.05 2 0.775
No. 20130719 0.08 5 0.853

Average 0.15 3.37 0.839

As can be seen from Table 6, the Xinanjiang model had applicability in the Xun River,
and the floods simulated by this set of parameters fit well with actual floods. In the
calibration period, the overall flood peak error and NSE of the simulated floods were 0.15
and 0.839, respectively, among which the flood peak error of 13 floods was within 0.2, and
the peak time difference of more than half the floods was controlled within 3 h. The NSE of
all floods was above 0.7, and the NSE of simulated floods closest to the measured flood
was as high as 0.943.

Table 6. Results of simulated floods in Xinanjiang model (validation period).

Flood Number Flood Peak Relative Error Peak Time Difference (h) NSE

1 (No. 20170927) 0.23 0 0.846
2 (No. 20171004) 0.39 4 0.580
3 (No. 20180704) 0.31 2 0.622
4 (No. 20190628) 0.54 2 0.661
5 (No. 20190807) 0.06 0 0.805
6 (No. 20190915) 0.36 3 0.779
7 (No. 20200819) 0.39 1 0.604
8 (No. 20210424) 0.25 6 0.910

Average 0.32 2.25 0.725

It can be seen from Table 6 and Figure 6 that the Xinanjiang model had applicability
in the runoff simulation of the Xun River. In the validation period, the overall flood peak
error and NSE of the simulated floods were 0.32 and 0.725, and the peak time difference
of most floods could be controlled within 3 h. The NSE of the simulated flood was as
high as 0.910, which was closest to the measured value. However, generally speaking, the
flood peak error was relatively large compared with the calibration period, and there were
also unsatisfactory simulated floods with an NSE less than 0.7. Improving the prediction
accuracy of such floods was the focus of subsequent data assimilation.
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4.2. Assimilation Scheme of WU

To explore the application effect of data assimlation in the flood prediction of the Xun
River Basin above Chaiping, an assimilation scheme for soil moisture was proposed for
eight floods during the validation period (2017–2021). The assimilation results were subse-
quently analyzed with the original simulations of the Xinanjiang model. The state variable
in assimilating soil moisture was the WU of the Xinanjiang model, and the observation
utilized SMAP remote sensing soil moisture data. The observation error variance was set
as 1, and the initial error variance was set as 5. The mean value of the initial ensemble was
taken as the soil moisture at the initial observation time to generate the initial background
of WU, which was input to the Xinanjiang model to update WU through a continuous
forward filter. The sample number N was set to 200. Based on the above settings, EnKF
was used to assimilate the WU of the Xinanjiang model to explore its improvement effect
on flood projection in the Xun River Basin above Chaiping, and the results are shown in
Table 7 and Figure 7.

Table 7. Simulation results of assimilated WU.

Flood Number Flood Peak Relative Error Peak Time Difference (h) NSE

1 (No. 20170927) 0.22 0 0.845
2 (No. 20171004) 0.36 3 0.655
3 (No. 20180704) 0.31 2 0.662
4 (No. 20190628) 0.53 2 0.668
5 (No. 20190807) 0.06 0 0.873
6 (No. 20190915) 0.36 3 0.781
7 (No. 20200819) 0.36 1 0.656
8 (No. 20210424) 0.22 5 0.924

Average 0.30 2 0.758
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As can be seen from Table 7, assimilation after the addition of soil moisture data
observed by remote sensing improved the prediction accuracy of the eight floods in the
validation period to a certain extent. The overall flood peak relative error decreased from
0.32 to 0.3, NSE increased from 0.725 to 0.758, and the peak time difference also improved
to a certain extent. The flood peak error of flood no. 20170927, flood no. 20171004, flood
no. 20190628, flood no. 20200819 and flood no. 20210424 were all reduced, and the best
decrease was by 3%. The peak time difference has been reduced by 1 h for flood no.
20171004 and flood no. 20210424. In terms of NSE, except for flood no. 20170927, which
had a slight decrease (0.1%) after assimilation, the other floods all improved to a certain
extent, increasing by 7.5%, at most.

On the whole, flood no. 20170927, flood no. 20190807 and flood no. 20210424
performed well in flood simulation, and the NSE reached above 0.8. As for the flood peak
overestimation of flood no. 20190807, the possible reason was that the rainfall concentrated
in the upper reaches of the basin after the area mean conversion did not take into account
the flood attenuation. Although most flood peak errors are large, they basically reflect each
flood peak. For multi-peak flooding, such as flood no. 20190915 and flood no. 20200819,
although the largest flood peak for each was underestimated, there were smaller flood
peaks whose simulations were very close to those observed. In general, the assimilation
of WU was shown to improve the accuracy of flood prediction to a certain extent, but its
ability was limited. In the future, SMAP remote sensing data could be combined with the
soil moisture data measured at watershed stations or other remote sensing data to further
explore the improvement of flood prediction by soil moisture assimilation.

4.3. Simultaneous Assimilation of Parameters and WU

The parameters applied in the previously established model were the optimal parame-
ters obtained by SCE-UA using the historically measured floods. However, the parameters
in the actual situation are often not definite values. They usually change with climate
and underlying surface. It is not reliable to predict future floods with fixed parameters
determined by historical hydrological data. In this paper, the scheme of assimilating WU
was improved, i.e., the model parameters were assimilated and updated in the prediction
process. Referring to the parameter sensitivity analysis of the Xinanjiang model performed
by Lü, et al. [40], two sensitive parameters (i.e., soil storage capacity curve index (B) and
basin average free water storage capacity (SM)) and WU were assimilated simultaneously
in this paper.

WU was assimilated with the parameters B and SM simultaneously by augmented
ensemble Kalman filter, and the corresponding AEnKF assimilation scheme has been
proposed here. The obtained results are shown in Table 8.

Table 8. Simulation results of AEnKF assimilation.

Flood Number Flood Peak Relative Error Peak Time Difference (h) NSE

1 (No. 20170927) 0.21 0 0.825
2 (No. 20171004) 0.32 3 0.709
3 (No. 20180704) 0.39 3 0.763
4 (No. 20190628) 0.45 1 0.674
5 (No. 20190807) 0.07 1 0.872
6 (No. 20190915) 0.30 2 0.827
7 (No. 20200819) 0.29 1 0.655
8 (No. 20210424) 0.21 5 0.926

Average 0.28 2 0.781

As can be seen from Table 8, the ensemble Kalman filter assimilation considering the
parameters and WU at the same time was shown to improve flood prediction accuracy. The
overall NSE increased from 0.725 without assimilation, and 0.758 with assimilated WU, to
0.781, and the peak time difference also improved. After assimilation, the peak relative
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errors of the eight floods decreased to different degrees, except for flood no. 20180704 and
flood no. 20190807. Compared with the unassimilated and assimilating WU schemes, the
flood peak errors reduced by 9% and 8%, at most, respectively. The peak time difference
between flood no. 20190628 and flood no. 20190915 decreased by 1 h compared with
assimilating WU. The NSEs of all floods improved except for flood no. 20170927, which
reduced by 2%. Compared with the unassimilated simulations by the Xinanjiang model,
NSE increased by a maximum of 14.1%, and the number of floods with an NSE of 0.7 in the
eight floods, increased from four to six. Compared with the simulations of WU assimilation,
NSE increased by 10.1% at most, and the number of floods with NSE above 0.7 in the eight
floods also increased by two.

On the whole, flood no. 20170927, flood no. 20190807, flood no. 20190915 and flood
no. 20210424 performed well in flood simulation, and their NSEs reached above 0.8. The
results showed that assimilating WU and model parameters SM and B by state variables
expansion had a positive effect on the improvement of flood prediction accuracy.

The dual ensemble Kalman filter method was used to assimilate WU with parameters
B and SM simultaneously, and the corresponding DEnKF assimilation scheme has also
been proposed here. The obtained results are shown in Table 9.

Table 9. Simulation results of DEnKF assimilation.

Flood Number Flood Peak Relative Error Peak Time Difference (h) NSE

1 (No. 20170927) 0.21 0 0.822
2 (No. 20171004) 0.29 3 0.655
3 (No. 20180704) 0.42 3 0.772
4 (No. 20190628) 0.41 1 0.695
5 (No. 20190807) 0.09 1 0.874
6 (No. 20190915) 0.32 2 0.804
7 (No. 20200819) 0.31 1 0.692
8 (No. 20210424) 0.16 6 0.925

Average 0.27 2.125 0.779

It can be seen from Table 9 that the dual ensemble Kalman filter method better simu-
lated the flood process by assimilating parameters and WU at the same time. The overall
NSE increased from 0.725 for unassimilated, and 0.758 for assimilated WU, to 0.779, and
the peak time difference also improved. Compared with the results of unassimilated and
assimilating WU, the peak error with parameter updating reduced by 13% and 12%, at most,
respectively. The peak time difference between the two floods was improved compared
with assimilating WU. The NSEs of all floods improved except for flood no. 20170927,
which reduced by about 2.3%. Compared with the results of unassimilated and WU assimi-
lation, NSE improved by a maximum of 15% and 11%, respectively. The number of floods
with NSE above 0.7 increased to five.

On the whole, flood no. 20170927, flood no. 20190807, flood no. 20190915 and flood no.
20210424 still performed well in flood simulation, and NSEs reached above 0.8. Combined
with the results of the WU assimilation scheme, it was seen that the dual ensemble Kalman
filter method effectively improved the accuracy of flood prediction by simultaneously
assimilating parameters and WU.

4.4. Comparison of Results

The two schemes (AEnKF scheme and DEnKF scheme) with simultaneous assimilation
of parameters and state variables were compared with the simulations of the unassimilated
scheme and WU assimilation scheme. The flood peak error of each scheme was calculated,
as shown in Table 10. The overall flood peak error of the four simulation schemes from
large to small was: unassimilated, assimilated WU, AEnKF, and DEnKF, thus, proving
that assimilating parameters and WU had a certain reduction effect on flood peak error.
Compared with the unassimilated scheme, the overall flood peak error of assimilated WU
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was reduced by 2%, and the flood peak error of three floods was reduced by 3%. Compared
with the results of WU assimilation, the flood peak errors of the two improved schemes
decreased except for flood no. 20180704 and flood no. 20190807. In the AEnKF scheme and
DEnKF scheme, the flood peak errors decreased by 8% and 12%, at most. Both of these
considered parameter assimilation schemes reduced the flood peak error in more than half
of floods by 4% or more.

Table 10. Comparison of flood peak errors.

Flood Number

Flood Peak Error
Unassimilated WU Assimilation AEnKF DEnKF

1 (No. 20170927) 0.23 0.22 0.21 0.21
2 (No. 20171004) 0.39 0.36 0.32 0.29
3 (No. 20180704) 0.31 0.31 0.39 0.42
4 (No. 20190628) 0.54 0.53 0.45 0.41
5 (No. 20190807) 0.06 0.06 0.07 0.09
6 (No. 20190915) 0.36 0.36 0.30 0.32
7 (No. 20200819) 0.39 0.36 0.29 0.31
8 (No. 20210424) 0.25 0.22 0.21 0.16

Average 0.32 0.30 0.28 0.27

Using the data in Table 10 to draw Figure 8, it can also be visually concluded that the
flood peak errors, when assimilating parameters and WU simultaneously, were reduced to
different degrees, compared with both unassimilated and WU assimilation. WU assimila-
tion had little effect on flood peak error. The schemes with assimilating parameters reduced
flood peak error and had a better assimilation effect. In general, the data assimilation
method reduced the error of flood peak prediction, and the Xinanjiang model with simulta-
neous assimilation of parameters and state variables was better in flood peak prediction.
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Figure 8. Comparison of flood peak errors for each flood of each scheme.

According to Table 11, the number of floods with a peak time difference exceeding
3 h was two in the unassimilated scheme, and one flood in the other three schemes,
indicating that data assimilation played a role in reducing the flood peak time difference.
The maximum peak time difference was 6 h in the unassimilated scheme. After assimilating
WU, the peak time difference of flood no. 20171004 and flood no. 20210424 decreased by
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1 h, respectively. After adding the parameter assimilation, the peak time differences of
flood no. 20190628 and flood no. 20190915 were both reduced by 1 h.

Table 11. Comparison of peak time difference.

Flood Number

Peak Time Difference (h)
Unassimilated WU Assimilation AEnKF DEnKF

1 (No. 20170927) 0 0 0 0
2 (No. 20171004) 4 3 3 3
3 (No. 20180704) 2 2 3 3
4 (No. 20190628) 2 2 1 1
5 (No. 20190807) 0 0 1 1
6 (No. 20190915) 3 3 2 2
7 (No. 20200819) 1 1 1 1
8 (No. 20210424) 6 5 5 6

Using the data in Table 11 to draw Figure 9, it can also be seen visually that with the
addition of the parameter assimilation, the peak time difference of the AEnKF scheme
was reduced in four and two floods, respectively, compared with those unassimilated and
WU assimilation. The peak time difference of the DEnKF scheme compared with that of
unassimilated and assimilating WU decreased in three and two floods, and both decreased
by 1 h. In general, data assimilation predicted flood peak time closer to the actual situation.
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Through the NSE statistics of each scheme for each flood, it can be seen from Table 12
that the average NSE of the four simulation schemes, from large to small, were: AEnKF,
DEnKF, WU assimilation and unassimilated. It proved that considering parameters and
WU assimilation at the same time improved the accuracy of flood simulation. Compared
with the unassimilated scheme, the overall NSE improved by 3.3% after assimilating WU.
The NSE of flood no. 20171004 and flood no. 20190807 increased by 7.5% and 6.8%,
respectively. Compared with the unassimilated and WU assimilation, the average NSE
of eight floods in the AEnKF scheme increased by 5.6% and 2.3%, respectively, and those
in DenKF increased by 5.4% and 2.1%, respectively. Compared with WU assimilation,
the number of floods with NSE above 0.7 after adding parameters assimilation increased
by two and one, respectively. For flood no. 20180704, NSE improved the most after
considering parameters assimilation, with AEnKF increasing the NSE by 14.1% compared
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with unassimilated, by 10.1% compared with WU assimilation, and the DEnKF increasing
NSE by 15% compared with unassimilated and by 11% compared with WU assimilation.

Table 12. Comparison of NSE.

Flood Number
NSE

Unassimilated WU Assimilation AEnKF DEnKF

1 (No. 20170927) 0.846 0.845 0.825 0.822
2 (No. 20171004) 0.580 0.655 0.709 0.655
3 (No. 20180704) 0.622 0.662 0.763 0.772
4 (No. 20190628) 0.661 0.668 0.674 0.695
5 (No. 20190807) 0.805 0.873 0.872 0.874
6 (No. 20190915) 0.779 0.781 0.827 0.804
7 (No. 20200819) 0.604 0.656 0.655 0.692
8 (No. 20210424) 0.910 0.924 0.926 0.925

Average 0.725 0.758 0.781 0.779

Using the data in Table 12 to draw Figure 10, it can also be visually concluded that,
after assimilating WU with the observational data, the NSE of all floods except flood no.
20170927 improved, but some only had a small increase. Assimilation of model parameters
and WU improved the NSE to a greater extent. Compared with assimilating WU, AEnKF
had a better NSE improvement effect on flood no. 20171004 and flood no. 20180704, while
DEnKF performed better on flood no. 20180704 and flood no. 20200819. On the whole, the
improvement effect of AEnKF and DEnKF on NSE were similar, and NSE was improved to
a certain extent compared with the unassimilated and WU assimilation schemes.
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Root mean square error (RMSE) is another common indicator used to measure the de-
viation between model simulations and measured values when evaluating flood prediction.
The RMSE can reflect the deviation between observation and prediction. The smaller it is,
the closer the predicted value is to the measured value, and the better the prediction is, as
shown in Equation (16):

RMSE =

√
∑T

t=1(Qt
o −Qt

m)
2

T
(16)

where T is the total time duration (h) corresponding to each flood, Qt
o is the measured

runoff at t, and Qt
m is the predicted runoff at t.

In this paper, the results of the above four simulation schemes were compared with
the measured runoff data. The RMSE of runoff in each flood was counted, as shown in
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Table 13. Except that the RMSE of flood no. 20170927 increased slightly in the two schemes
of assimilating parameters and WU, the RMSE of the other floods decreased to different
degrees compared with WU assimilation. The overall RMSE from large to small was:
unassimilated, assimilated WU, DEnKF and AEnKF scheme.

Table 13. Root mean square error results of runoff (m3/s).

Flood Number
RMSE

Unassimilated WU Assimilation AEnKF DEnKF

1 (No. 20170927) 30.033 30.100 31.991 32.279
2 (No. 20171004) 79.529 72.073 66.196 72.111
3 (No. 20180704) 68.184 64.442 53.311 52.966
4 (No. 20190628) 53.793 53.216 53.069 51.032
5 (No. 20190807) 22.188 17.888 17.938 17.787
6 (No. 20190915) 89.175 88.673 78.769 83.995
7 (No. 20200819) 44.267 41.245 41.315 39.048
8 (No. 20210424) 33.213 30.685 29.884 30.376

Average 52.548 49.790 46.559 47.449

Figure 11 was drawn based on the RMSE of runoff for each flood in Table 10. It can also
be seen visually that the simultaneous assimilation of model parameters and state variables
effectively reduced model errors in flood prediction. Except for flood no. 20170927, the
RMSE of the other floods all reached the maximum in the unassimilated scheme, which
indicated that the prediction of the Xinanjiang model without assimilation was quite
different from the measured data, and data assimilation was effective in improving the
simulation accuracy. On the whole, the AEnKF scheme had a better flood prediction
effect than DEnKF, and its average RMSE was smaller. By comparing the RMSEs of WU
assimilation, DEnKF and AEnKF schemes, it could be seen that the schemes with dynamic
parameter update performed better in reducing the runoff prediction errors.
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5. Conclusions

The numerous uncertainties in flood projection models have limited the forecast ac-
curacy, while data assimilation has been proved to improve the flood prediction accuracy
by combining the prediction model with the actual observations. In addition, the develop-
ment of remote sensing technology has broadened access to data, which provides more
possibilities for the application of assimilation in flood projection. In this study, the Xun
River of the Hanjiang River Basin was selected as the research object. The EnKF algorithm
was applied to the Xinanjiang model, and a data assimilation scheme for the WU of the
Xinanjiang model was proposed to explore the improvement effect of assimilation on the
forecast accuracy. Thereafter, the WU assimilation scheme was further improved, and
two novel assimilation schemes (AEnKF scheme and DEnKF scheme) were proposed to
update the model-sensitive parameters and WU simultaneously. The main conclusions are
as follows.

(1) Using SMAP remote-sensing soil moisture data, WU assimilation improved the
flood forecast accuracy to some extent. The overall flood peak error of the eight floods in
the validation period decreased from 0.32 to 0.3, the NSE improved from 0.725 to 0.758,
and the peak time difference also improved to a certain extent. The flood peak error of
flood no. 20170927, flood no. 20171004, flood no. 20190628, flood no. 20200819 and flood
no. 20210424 improved, and the flood peak error decreased by 3% at most. The peak time
difference of flood no. 20171004 and flood no. 20210424 were each reduced by 1 hour. In
terms of the NSE, except for flood no. 20170927, whose NSE had a slight decrease (0.1%),
all the other floods improved to some extent, and NSE was increased by 7.5%, at most;

(2) The dynamic update of model parameters during the projection process was
more realistic than taking fixed values. Compared with the WU assimilation scheme,
the simultaneous assimilation of parameters and WU effectively improved the prediction
ability of the Xinanjiang model. The AEnKF scheme improved the overall NSE of flood
from 0.725 for unassimilated, and 0.758 for assimilated WU, to 0.781. Compared with the
unassimilated simulation results, NSE increased by 14.1%, at most. In comparison with
the results of assimilating WU, NSE improved by 10.1% at most, and the number of floods
with NSE above 0.7 increased by two. The overall NSE of flood in the DEnKF scheme was
improved to 0.779, and it was close to that of the AEnKF scheme. Compared with the
results of unassimilated and WU assimilation, the flood peak errors after considering the
parameter update reduced by 13% and 12% at most, respectively, and the NSE improved
by a maximum of 15% and 11%, respectively. The above results indicated that the two
improved schemes with simultaneous assimilation of model parameters and WU performed
better in terms of improvement of forecast accuracy compared with the assimilating WU
scheme.
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