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Abstract: Given the increasing climate variability, it is becoming difficult to predict flooding events.
We may be able to manage or even prevent floods if detecting global climate patterns, which affect
flood occurrence, and using them to make predictions are possible. In this study, we developed a
deep learning-based model to learn climate patterns during floods and determine flood-induced
climate patterns using a convolutional neural network. We used sea surface temperature anomaly as
the learning data, after classifying them into four cases according to the spatial extent. The flood-
induced climate pattern identification model showed an accuracy of ≥89.6% in all cases, indicating
its application for the determination of patterns. The obtained results can help predict floods by
recognizing climate patterns of flood precursors and be insightful to international cooperation projects
based on global climate data.

Keywords: climate model data; sea surface temperature anomaly; flood-induced climate pattern;
convolutional neural network

1. Introduction

Heavy rains caused by extreme climates result in floods in worldwide. Although
several studies aiming to predict such floods occurrences, the climate variability and
uncertainty makes such predictions and subsequent preparations difficult. If we are able
to forecast the occurrence of floods through the climatic factors affecting them, we can
effectively prepare for the incoming damage [1–5]. For example, for the El Niño (La Niña)
phenomenon, a major global event, climate information is provided through sea surface
temperature anomalies within the monitoring zone in the tropical Pacific Ocean (5◦ S to
5◦ N, 170◦ W to 120◦ W). This event is well known for causing massive floods, particularly
across South Asia and Australia [6]. Also, recently, an unprecedented flood occurred in
Pakistan for the second consecutive year. Given the occurrence of these floods, several
studies have been conducted using El Niño (La Niña) projections for climate prediction.

The relationship between various global climate factors and climate patterns have
been studied globally [7–14]. For example, Nurutami and Hidayat (2016) analyzed the
effects of the Indian Ocean dipole (IOD), El Niño-Southern Oscillation (ENSO), and sea
surface temperature (SST) on seasonal rainfall changes in Indonesia [15]. They confirmed
a clear association between climate patterns, SST, and rainfall patterns and proposed a
method to more accurately analyze the highly variable rainfall patterns in Indonesia.

The effects of climate factors on the occurrence of extreme hydrological events (i.e.,
floods and droughts) have been extensively studied [16–20]. Fang et al. (2021) found a
correlation between spatiotemporal variability of droughts and various climatic factors in
Central and East China [21]. Specifically, they found that the variability of droughts in the
spring and winter was related to different climatic factors and concluded that identifying
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them can contribute to efficient water resource management and improve the accuracy of
drought early warning systems. In addition, Tong et al. (2005) analyzed the correlation
between ENSO and the occurrence of floods and droughts in the Yangtze River—one
of the most representative rivers of China [22]. They found strong correlations between
flooding and El Niño and between droughts and La Niña in the lower reaches of the river.
Wu et al. (2020) used Pearson-correlation coefficients and the cross-wavelet transform
method to investigate the correlation between hydrological droughts and various climatic
factors [23]. They found that two climatic factors, namely, ENSO and Pacific Decadal
Oscillation (PDO), had a strong relationship with the hydrological drought index which
is called as Streamflow Index. In addition, an intra-annual and inter-decadal relationship
between the Streamflow Index and ENSO was observed, showing a clear causal relationship
between the hydrological drought phenomenon and climatic factors.

Machine learning is a technique mainly used for classification, regression, and pre-
dictive problems based on relationships between data. In other words, it combines and
analyzes external data based on relationships between data “learned” by the computer.
Since the 1990s, the development of data observation systems and the improvement of
big data technology have enabled the scope of machine learning to rapidly expand. Deep
learning, a field of machine learning, involves connecting artificial neural networks, one of
the representative machine-learning technologies, in the form of numerous layers. Deep-
learning techniques are often used in image analysis, prediction of time series data, and
language translation [24–28].

In hydrology, research is being actively conducted using machine learning and deep
learning is also actively underway. In general, these techniques have been used for devel-
oping rainfall-runoff models or for temporal predictions of various hydrological factors.
More recently, hydrological analysis with grid-based image data has been conducted using
advanced deep-learning technologies [29,30]. Using machine learning or deep learning
technology, it is possible to identify how various climate factors are related to the occurrence
of floods and droughts in different regions; specific methods are being developed for the
prediction of such adverse events according to changes in climate factors. Tian et al. (2018)
used two representative climate indices, ENSO and western Pacific subtropical high, to
improve the prediction accuracy of agricultural droughts in the Xiangjing River Basin in
China [31]. The authors used a machine learning technique (called the support vector
regression model; SVR) for prediction and confirmed that prediction accuracy increased
when the western Pacific subtropical high index was used as an indicator. Li et al. (2021)
used three machine learning techniques—support vector regression (SVR), random forest
(RF), and extreme learning machine (ELM)—to analyze how the changing patterns of SST
can act as a predictor for drought in the central United States [32]. They suggested that
drought predictions based on the ELM model showed high accuracy and can therefore be
used as a tool for drought prediction and early warning system construction.

In this study, we applied deep-learning techniques (i.e., Convolution Neural Network)
to identify the global climate patterns that affect flood occurrence in the Korean peninsula.
Flood-induced climate pattern (i.e., sea surface temperature anomaly) was used to describe
a climate pattern affecting flood occurrence. If the flood-induced climate pattern affecting
the occurrence of floods was observed in the model, we considered that mid- to long-term
flood predictions can be made based on the obtained pattern.

2. Methods
2.1. Study Area and Data Collection
2.1.1. Study Area

In this study, the Korean peninsula was selected as study site. The Korean peninsula
is located in the middle latitude on the western boundary of the North Pacific Ocean
(33–43◦ N and 124–132◦ E). The extreme domestic climate, including floods, is affected by
circumglobal teleconnection (CGT) patterns, such as the Pacific sea level and temperature
deviations, including the El Niño phenomenon [4,33]. However, as the peninsula is located
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in a mid-latitude region and is affected by complex climate factors, its correlation with the
known climate index is low. We therefore intended to identify the CGT pattern affecting
the occurrence of domestic floods, by applying deep-learning techniques.

2.1.2. Definition of Flood Events

To build a deep-learning-based classification model, we first defined flood events from
1982 to 2021. Data on the extent of large-scale flood damage by period in Korea [34], na-
tionwide precipitation statistics [35], and flood alert (watch and warning) information [36]
from four flood control centers (Han River, Nakdong River, Geum River, and Yeongsan
River) were collected. We defined flood occurrence based on three criteria: (1) large-scale
flood damage, (2) monthly precipitation deviation of >100 mm, and (3) flood warnings or
watches issued at three or more points during the flood season from June to September.

Among the data for 4880 days from June to September during 1982–2021, 1830 days
were classified as flooding (37.5%) and 3050 days were classified as non-flooding (62.5%)
days. To develop the classification model, there should not be a large difference in the ratio
of flood occurrence to non-occurrence days; therefore, to match this ratio, data for flood
non-occurrence days were selected at random.

2.1.3. Climate Data

To identify climate patterns affecting the occurrence of floods, we used sea surface
temperature anomaly (SSTA) data, which are known to affect domestic precipitation, for
analysis. Data provided from the U.S. National Oceanic and Atmospheric Administration
National Climatic Data Center (NOAA NCDC), OISST AVHRR anom/SSTA (Optimum
Interpolation 1/4 Degree Daily Sea Surface Temperature Anomaly Analysis version 2.1)
were collected and analyzed [37–39]. These data are global ocean analysis data with a
0.25◦ × 0.25◦ grid resolution and are relevant from September 1981 until June 2022. For
the analysis, data from the flood period of June to September during the period 1 January
1982–31 December 2021 were used.

In the case of spatial scope, four cases (Cases 1–4) were formed to compare and review
the applicability of the classification model when constructing the classification model
(Table 1 and Figure 1). For Cases 2–4, a relatively coarse grid was used by reducing the
number of parameters constituting the model and lowering the resolution of the data to
2.5◦ × 2.5◦ to find the CGT pattern [40,41].
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Table 1. SST Data descriptions.

Case Temporal Range Spatial Range Resolution

NOAA NCDC OISST version 2p1 AVHRR anom/SST anomaly

Case 1
1 Janauary 1982–31

December 2021;
June to September

33.5◦ N–39.25◦ N, 123.0◦ E–130.5◦ E Daily, 0.25◦ × 0.25◦

Case 2 30◦ S–0◦ N, 160◦ E–130◦ W Daily, 2.5◦ × 2.5◦

Case 3 60◦ S–60◦ N, 70◦ E–70◦ W Daily, 2.5◦ × 2.5◦

Case 4 60◦ S–60◦ N, 0◦ E–0◦ W Daily, 2.5◦ × 2.5◦

2.2. CNN Model Construction
2.2.1. CNN Model Structure

Deep learning is an upgraded method over the existing machine learning-based
techniques. Deep learning, like machine learning, is effective for analyzing patterns within
vast datasets based on complex and non-linear relationships. The CNN model is a deep-
learning model based on the data-driven approach mainly used for image classification.
As shown in Figure 2, the CNN model, which was used to create a classification model by
extracting the features of two-dimensional data, was applied to further develop a model
for determining global flood-induced climate patterns.
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The CNN model has previously shown good performance, mainly in the context of
image-based classification. This is because learning is performed while maintaining the
spatial information of the image using convolutional filters—one of the defining character-
istics of CNN [42–44]. The CNN model primarily consists of three layers: a convolutional
layer, a pooling layer, and a fully connected layer. After the convolutional and pooling
layers are repeatedly constructed, classification is performed through the fully connected
layer and the activation function. The activation function exists between the layers and
plays a role in facilitating learning as well as in determining the shape of the output value.
Generally, the main types of activation functions are Sigmoid, Softmax, and Relu functions.
CNN model learning is performed through this process, and recently, new models, such as
VGGNet and ResNet, have been developed that mix additional ideas based on CNN.
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2.2.2. Establishment of a Model to Identify Flood-Induced Climate Patterns

To construct a model for determining flood-induced climate patterns, it is necessary to
analyze patterns from global climate data and to subsequently determine flood-inducing
patterns using the obtained results. We analyzed climate patterns in the global climate
model using a CNN-based deep-learning algorithm that could analyze images effectively.
For this study, a CNN model for image classification was constructed using Python pack-
ages (Keras). The CNN model consisted of an input layer, three convolutional layers, three
pooling layers, one fully connected layer, and one output layer. For model optimization, the
structure and hyperparameters of each layer were determined through trial and error. Each
convolutional layer used a 3 × 3 convolution filter, each pooling layer had a maximum
pooling layer of 2 × 2, and the fully connected layer consisted of 64 nodes (Figure 2).
ReLu and Softmax were used as activation functions, with a batch size of 64. Training was
performed for a maximum of 100 epochs. In this study, the training period used in CNN
model was from 1982 to 2006 and the model validating period was from 2007 to 2021.

Figure 3 shows the loss and accuracy that occurred during training and validating
as the epoch increases. For both training and validating, as the epoch increased, the loss
decreased, and the accuracy increased simultaneously. This confirmed that the model was
built correctly without overfitting.
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2.2.3. Model Performance Evaluation Index

A confusion matrix, the most common method for performance evaluation of pre-
dictive models that perform binary classification and where the obtained results can be
verified with various indicators through the combination of error matrices, was used in the
study. An actual occurrence was categorized as True (1) and a non-occurrence as False (0).
Actual occurrences predicted as 1 were called True Positives (TPs), actual occurrences
predicted as 0 were called False Negatives (FNs), non-occurrences predicted as 1 were
called False Positives (FPs), and non-occurrences predicted as 0 were called True Negatives
(TNs) (Table 2).

Table 2. Confusion matrix for performance evaluation of predictive models.

Flood
Predicted as

True False

Actual
True True Positive (TP) False Negative (FN)

False False Positive (FP) True Negative (TN)
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The performance of the model was evaluated using precision, recall, specificity, accu-
racy, and the F1 score(Table 3). Precision, also referred to as the positive predictive value
(PPV), is defined as the proportion of predictions that are predicted to occur. Recall, also
called sensitivity, refers to the proportion of events that have occurred. Specificity refers to
the proportion of correctly predicted events among events that did not occur, and accuracy
is the proportion of correctly predicted events among all events. A high value in just one
of the parameters precision, recall, or specificity does not necessarily mean the prediction
performance is good. For example, model evaluation can be biased if only the recall for
predicting actual occurrences and the specificity for predicting non-occurrences are con-
sidered [45]. In the case of accuracy, this bias can be reduced, but accurate performance
evaluation is difficult when there is an imbalance between True and False values. The F1
score is an index that presents the harmonic average of precision and recall and is effective
when there is an imbalance between True and False values.

Table 3. Equation of evaluation index.

Evaluation Index Equation

Accuracy TP + TN
TP + TN + FP + FN

Precision, also known as the positive predicted value TP
TP + FP

Recall, also known as sensitivity TP
TP + FN

Specificity, also known as the true negative rate TN
TN + FP

F1 score 2 × Precision × Recall
Precision + Recall

Notes: TP: True positive; TN: True negative; FP: False positive; FN: False negative.

3. Results

The spatial range and resolution of the SSTA data were classified into four cases,
and subsequently, a model was developed to determine the climate patterns of flooding
occurrence and flooding non-occurrence. As a result of classifying the flood occurrence
and non-occurrence days of the climate pattern identification model for each case, the case
where all four models were correct was 46.6% of the total number of tests when a flood
occurred. When the flood did not occur, the case of fitting all four models was found to be
39.2% of the total number of tests. Comparing some of the sea surface temperature anomaly
data when all four models are matched, it is shown in Figures 4–9 below. Figure 4 shows
the global sea surface temperature anomaly when all four model correct to classify flood
occurrences, Figure 5 shows when all the results are correct that there is no flood. Figures 6
and 7 and Figures 8 and 9 show the spatial extent of Case 1 and Case 2, respectively. In
case 1, which has a small spatial range, the difference in sea surface temperature anomaly is
clearly distinguished, and in general, it can be seen that when the sea surface temperature
of the neighboring sea is lower than the average year (blue), it is classified as a flood
occurrence day, and when the sea surface temperature is higher (red), it is classified as a
non-flood day. In case 2, a temperature pattern according to ocean currents appeared, and
the number of cases in the pattern increased (Figures 6 and 7). The flood occurred when the
sea surface temperature in the lower left part was low or the temperature in the middle part
was low. It can be seen that flooding did not occur when the sea surface temperature was
generally lower than the average year and when the sea surface temperature in the central
diagonal part was high (Figures 8 and 9). In Cases 3 and 4, the spatial range was wide, so
it was expressed as a global range. Although it was difficult to interpret with the naked
eye because the number of occurrence patterns was too large, it can be seen that various
large-scale climate patterns are appearing including El Niño and La Niña phenomenon.

To evaluate the performance of this model, an error matrix was presented for each
case, and precision, recall, accuracy, specificity, and the F1 score were calculated using this
matrix (Tables 4 and 5). These tables represent classification results based on validation
data after model training.
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Table 4. Results of the confusion matrix for evaluation of the developed model.

Flood

Predicted

Case 1 Case 2 Case 3 Case 4

True False True False True False True False

Actual
True 353 23 372 4 370 6 371 5

False 55 316 25 346 15 356 13 358

Table 5. Results of model performance evaluation.

Evaluation Index Case 1 Case 2 Case 3 Case 4

Accuracy 89.6% 96.1% 97.2% 97.6%

Precision 0.87 0.94 0.96 0.97

Recall 0.94 0.99 0.98 0.99

Specificity 0.85 0.93 0.96 0.96

F1 score 0.90 0.96 0.97 0.98
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this matrix (Tables 4 and 5). These tables represent classification results based on valida-
tion data after model training. 

Table 4. Results of the confusion matrix for evaluation of the developed model. 

Flood 
Predicted 

Case 1 Case 2 Case 3 Case 4 
True False True False True False True False 

Actual 
True 353 23 372 4 370 6 371 5 
False 55 316 25 346 15 356 13 358 

Table 5. Results of model performance evaluation. 

Evaluation Index Case 1 Case 2 Case 3 Case 4 
Accuracy 89.6% 96.1% 97.2% 97.6% 
Precision  0.87 0.94 0.96 0.97 

Recall 0.94 0.99 0.98 0.99 
Specificity 0.85 0.93 0.96 0.96 

Figure 9. Sea surface temperature anomaly of flood non-occurrence days (case 2) (unit: ◦C). (Latitude:
30◦ S–0◦ N, Longitude: 160◦ E–130◦ W).

As shown in Table 5, the precision was 0.87 for Case 1, 0.94 for Case 2, 0.96 for Case 3,
and 0.97 for Case 4 (range, 0.87–0.97). The recall was 0.94 for Case 1, 0.99 for Case 2, 0.98
for Case 3, and 0.99 for Case 4 (range, 0.94–0.99). The specificity was 0.85 for Case 1, 0.93
for Case 2, 0.96 for Case 3, and 0.96 for Case 4 (range, 0.85–0.96). The accuracy was 89.6%
for Case 1, 96.1% for Case 2, 97.2% for Case 3, and 97.6% for Case 4 (range, 89.6–97.6%).
Finally, the F1 score calculated using precision and recall was 0.90 for Case 1, 0.96 for
Case 2, 0.97 for Case 3, and 0.98 for Case 4, indicating that the overall performance was
good (range, 0.90–0.98). Overall, from Case 1 to Case 4, the larger the spatial range of the
learning material, the better the performance.

These results show that the wider the spatial range, the more climate patterns that
affect the occurrence of floods can be considered. This suggests a teleconnection between
the local climate and a wide range of other climates. If the spatial range of the learning
materials is narrow, the effect of teleconnection cannot be considered, and various climatic
patterns, such as solar thermal energy and changes in local and temporary sea levels because
of temperature change, are detected in addition to flood-inducing patterns resulting from
complex factors. Therefore, the accuracy of flood identification of the developed was
relatively low.
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4. Conclusions

In this study, we developed a model to determine the occurrence of floods using
SSTA data of past flooding events. The results from the flood-induced climate pattern
identification model were evaluated by classifying the SSTA (that is, learning) data into
four cases according to their spatial range. As the identification accuracy was >89.6%,
we validated the applicability of our CNN-based method for determining flood-induced
climate patterns.

Our study was different from previous ones that analyzed climate teleconnection
through time series values of global climate data or climate index values. However, since
our model uses binary classification that simply determines whether or not a flood occurs,
the location or intensity of the flood could not be identified. In addition, as the time
preceding the flood event is not considered, the preceding climate pattern that causes
flooding could not be determined. Further studies expanded the present one are warranted
to develop a model that can classify flood occurrence area, type, and intensity while
considering the length of time preceding the flood event. Along the lines of the present
study, we suggest the following future scalable studies:

(1) The goal of this study was to develop a model that categorizes climate patterns during
flooding, without considering the length of time preceding the flood. Future studies
are warranted to build a prediction model for leading times (estimated 1–6 months)
to use for flood preparation.

(2) This study can be extended to research into dynamic causes of flood-induced climate
patterns and analysis of the characteristics of each climate pattern change in the case
of floods by water systems or points in detail.

(3) We strongly suggest the study to be expanded to propose teleconnection climate
indices induced by the extreme climate in Korea.

Although this study determines the climate pattern during flooding, we anticipate
that it can be used to predict floods in advance by recognizing previous climate patterns
preceding flooding. In addition, the results of this study have scientific and technological
significance in terms of improving climate analysis technology, especially in other countries
located at mid-latitudes where climate prediction is difficult, as well as contributing to
resolving the global issue of water disasters.
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Abbreviations

CGT Circumglobal teleconnection
CNN Convolutional neural network
DOISST Daily optimum interpolation sea surface temperature
ELM Extreme learning machine
ENSO El Niño-Southern Oscillation
FN False Negative
FP False Positive
IOD Indian Ocean dipole
NAO North Atlantic Oscillation
NOAA National Oceanic and Atmospheric Administration
PDO Pacific Decadal Oscillation
PPV Rred to as the positive predictive value
RF Random forest
SST Sea surface temperature
SSTA Sea surface temperature anomaly
SVR Support vector regression
TN True Negative
TP True Positive
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