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Abstract: A strain of Bacillus pumilus BP-171 with the ability of heterotrophic nitrification-aerobic
denitrification was isolated from a shrimp culture pond and showed good denitrification ability under
laboratory conditions. In order to investigate the effects of strain BP-171 and its combinations with
different carbon sources, i.e., poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) and molasses,
on the growth performance of shrimp, water quality and bacterial community in culture system of
Penaeus vannamei, this experiment was set up. Four experimental groups were designed, i.e., group B
applied with a single B. pumilus BP-171, the BP added with BP-171 and PHBV, the BM added with
BP-171 and molasses, and the control DZ without the probiotic and carbon source. The results showed
that the specific growth rate, final body weight, gross weight, feed efficiency rate and survival rate of
shrimp in the BP and BM groups were better than those in the control (p < 0.05), while the survival
rate and gross weight of shrimp in group B were also better than those in the control (p < 0.05). Among
them, the best growth performance of shrimp was observed in the group BP. The concentrations of
ammonia, nitrite, nitrate and total nitrogen were significantly lower in all treatment groups than in
the control (p < 0.05). The lowest concentrations of ammonia and nitrite were found in group B, while
those of nitrate and total nitrogen were found in group BP (p < 0.05). The concentrations of dissolved
organic carbon and total organic carbon in both BP and BM groups were significantly higher than
in group B and the control (p < 0.05). Compared to the control, the abundance and diversity of the
bacterial community in water did not change with the addition of probiotics and carbon sources.
However, altered structure and predicted function, as well as improved stability of the ecological
network of the bacterial community, were observed in water. In view of the above, the addition of
B. pumilus BP-171 and PHBV significantly promoted the growth performance of shrimp, effectively
improved water quality, and enhanced the stability of the ecological network of bacterial communities
in water, which could have great potential for the application in intensive culture of P. vannamei.

Keywords: growth performance; water quality; bacterial community; Bacillus pumilus BP-171;
molasses; PHBV; Penaeus vannamei

1. Introduction

Penaeus vannamei has become the most dominant species in shrimp farming world-
wide [1]. The high demand in the market has led to the expansion of shrimp production and
the widespread availability of high stocking density culture patterns. However, with the
increasing intensification of shrimp farming, feed residues and shrimp metabolic products
led to the accumulation of nitrogen pollutants, including ammonia, nitrite and nitrate
nitrogen, in cultured water [2,3]. This problem is of increasing concern in intensive farming
practices. The continued increase of nitrogen pollution in culture systems not only leads to
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the deterioration of water quality in the culture system but also affects the normal phys-
iological functions and immune performance of shrimp and eventually possibly causes
frequent diseases in shrimp culture [4–6]. Therefore, it is urgent to develop healthy farming
modes and good water quality management technologies for the sustainable development
of aquaculture.

Previous studies have shown that the concentration of harmful nitrogen such as
ammonia, nitrite and nitrate in culture water could be effectively controlled by adding
appropriate probiotics [7–9], ultimately reducing the morbidity of farmed species and
increasing the production of farmed animals [10–12]. Probiotics can not only reduce the
concentration of hazardous nitrogenous substances accumulated in water through the
process of nitrification, denitrification and assimilation but also inhibit the growth of
pathogenic microorganisms by competing for physical space and nutrients and secreting
bacteriocins and lysozyme [13–15], and thus are widely used in aquaculture.

The addition of a carbon source at an appropriate dosage to the culture water can
increase the carbon-to-nitrogen ratio (C/N ratio) and promote the proliferation of het-
erotrophic bacteria so that ammonia, nitrite and nitrate nitrogen can be removed by the
assimilation and denitrification of heterotrophic bacteria [2,16,17]. Molasses is currently
one of the most commonly used carbon sources in shrimp aquaculture [18]. However,
molasses as an added carbon source is highly soluble and can lead to the rapid growth
of heterotrophs and consumption of oxygen, which can easily lead to a rapid decrease in
dissolved oxygen, affect the stability of water quality, and eventually threaten the survival
of aquatic animals [18,19]. For example, Pérez-Fuentes et al. [18] found that dissolved
oxygen decreased significantly from 3.2 mg·L−1 to 1–1.5 mg·L−1 when the concentration
of added molasses exceeded 0.12 g·L−1, which may lead to mortalities of aquatic animals.
PHBV (poly-3-hydroxybutyrate-co-3-hydroxyvalerate) produced by bacteria has many
excellent properties, such as thermoplastic, biodegradable, and can exist as a solid material,
and has been used as a carbon source for denitrifiers in wastewater treatment systems with
good results [20–22]. Compared with conventional carbon sources such as molasses, PHBV
is characterized by slow carbon release and easy control, which means the concentration
of dissolved organic carbon in water that can be used by heterotrophic bacteria will keep
appropriate and stable, so it is a continuous carbon source after application in water and can
be used as a biofilm carrier for bacteria [20,22]. However, to our knowledge, the practical
application of PHBV as a carbon source in shrimp culture has rarely been reported [3,20].

Biological denitrification is considered one of the most effective, environmentally
friendly, and inexpensive biotechnologies for reducing nitrogen levels in aquaculture
wastewater [23]. As more heterotrophic nitrifying-aerobic denitrifying bacteria have been
isolated, interest in their use for the effective removal of nitrogen accumulated in aquacul-
ture systems has increased in recent years [24–27]. Studies have shown that heterotrophic
nitrifying bacteria can convert nitrogen-containing compounds into NH2OH, NO2

−-N or
NO3

−-N, etc., by nitrification while using carbon sources for their growth [20,28]. Mean-
while, some bacteria also have simultaneous aerobic denitrification, which can convert
NO2

−-N or NO3
−-N into gasses such as NO, N2O and N2 [20,28]. Therefore, denitrification

treatment with heterotrophic nitrifying-aerobic denitrifying bacteria has the advantages
of high economic benefits and environmental friendliness and has gradually become a
research focus in recent years [24,26,27]. Unlike the traditional methods of nitrogen removal
by autotrophic nitrification and anaerobic denitrification, heterotrophic nitrifying-aerobic
denitrifying bacteria can not only avoid the manipulation of separation of aerobic and
anaerobic zones but also have the advantage of rapid growth and high denitrification
efficiency [24,29]. Heterotrophic nitrifying and aerobic denitrifying microorganisms such
as Halomonas spp., Pseudomonas spp., Alcaligenes spp., Bacillus spp. and other genera have
been isolated successively [26,27]. However, the relevant research was conducted only on
the laboratory scale, with few reports on the pilot scale and above, and most of them are
based on biofortification, i.e., aerobic denitrifying microorganisms are exogenously added
to the bioreactor in the form of microbial agents to improve the denitrification efficiency of
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the reactor [24,25,29]. A strain of Bacillus pumilus BP-171 with the ability of heterotrophic
nitrification-aerobic denitrification was isolated from a shrimp culture pond and showed
good denitrification ability under laboratory conditions [29]. In addition, Li et al. [20] found
that BP-171 significantly reduced nitrite concentration when added to a P. vannamei culture
system with two other probiotic strains and PHBV simultaneously.

In this study, a shrimp culture experiment was set up to determine the possible effects
of different treatments by adding a single BP-171, the combination of BP-171 and PHBV,
and the combination of BP-171 and molasses on shrimp growth performance, water quality,
and water microbiota in a P. vannamei culture system to understand the mechanisms of
action of B. pumilus BP-171 and provide necessary information for its potential application
in shrimp culture practice.

2. Materials and Methods
2.1. Experimental Animals

The juvenile P. vannamei were purchased from Qingdao Zhengda Agricultural Devel-
opment Co., Ltd. (Qingdao, China). Before the culture experiment, shrimp were allowed
to acclimate under experimental conditions for two weeks. During acclimation, the water
temperature was controlled at 25 ± 0.5 ◦C and salinity at 29.0 ± 1.0‰. Water was ex-
changed once daily at a 10% exchange rate and continuously aerated. P. vannamei was fed
three times a day (7:00, 12:00 and 18:00). At the end of acclimation, healthy P. vannamei of
similar size were used for the culture experiment. The feed was obtained from Guangdong
Yuehai Feeds Group; the main components and nutrient contents of the feed are shown in
Supplementary Table S1.

2.2. Experimental Strain and Carbon Sources

Bacillus pumilus BP-171 was obtained from the Microbial Culture Collection, Lab
of Aquaculture Ecology, Ocean University of China, a heterotrophic nitrifying-aerobic
denitrifying strain [29]. PHBV was purchased from Ningbo Tianan Biological Material
Co., Ltd. (Ningbo, China). It is white and cylindrical, with a height of 4 mm and an inner
diameter of 1 mm. PHBV was activated in seawater with sufficient aeration for 10 d before
the experiment [22]. Molasses (23.7% of total organic carbon content) was purchased from
Jinan Pengduo Trading Co., Ltd. (Jinan, China).

2.3. Experimental Design

The experiments were performed in 12 white polyethylene tanks with a volume of
500 L. Four experimental groups were designed, i.e., the probiotic group B applied with
a single B. pumilus BP-171, the group BP added with the strain BP-171 and PHBV, the
group BM with the strain BP-171 and molasses, and the control group DZ without the
probiotic and carbon source. Three replicates were set up for each treatment group, and
each replicate was randomly stocked with 70 shrimp, and the average weight of the shrimp
was 6.06 ± 0.02 g.

The viable bacteria of B. pumilus BP-171 were regularly added to the water every seven
days. The final concentration of probiotic bacteria in the water of each treatment group was
designed as 1 × 107 cfu·L−1.

PHBV particles were placed in a PVC pipe with an inner diameter of 10 cm and a
height of 35 cm, and the ends of the PVC pipe were covered with suitable sieves to prevent
the PHBV particles from leaking. For aeration, an air stone was placed in the PVC pipe to
allow the continuous release of the carbon source into the water with water currents. After
assembly, the entire device containing 500 g of PHBV was placed in the corresponding
tanks [20].

The molasses was applied with reference to the formula of Avnimelech [30] as follows:

∆N = (Feed × N%) × %N excretion

∆CH = ∆N × [C/N] mic/(%C × E)
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∆N is the amount of nitrogen required to produce new bacteria. Feed is the amount of
feed fed, and N% is the percentage of nitrogen in the feed, %N excretion is the percentage
of feed nitrogen converted to ammonia in the culture system and is approximately 50%.
∆CH is the amount of molasses added. [C/N] mic is the C/N ratio of the heterotrophic
bacteria themselves, %C is the carbon content of the added carbohydrate, and E is the
efficiency of assimilation by heterotrophic bacteria, approximately 0.4.

An appropriate amount of molasses was diluted with seawater and poured evenly
into the experimental tanks twice daily.

2.4. Experimental Management

The strain of B. pumilus BP-171 was inoculated into 2216E liquid medium and cultured
at 160 r/min, (28.0 ± 1.0) ◦C to logarithmic phase, and the concentration of viable bacteria
in the fermentation broth was 1 × 109 cfu·mL−1.

During the experimental period, P. vannamei was fed 5% of the total weight of shrimp
three times daily (7:00, 12:00, and 18:00). Uneaten feed particles and feces were collected
for 1 h after feeding, dried at 60 ◦C, and weighed. Using a portable dissolved oxygen meter
(YSI 550A, Fisher Scientific, Hanover Park, IL, USA), a salinity meter (YSI EC300A, Fisher
Scientific, Hanover Park, IL, USA), and a pH meter (YSI pH100A, Fisher Scientific, Hanover
Park, IL, USA), temperature (25–28 ◦C), salinity (28–31‰), pH (7.8–8.0), and dissolved
oxygen (>5 mg·L−1) were measured daily.

The feeding trial was conducted in workshop 16 of Qingdao Ruizi Group Co. (Qingdao,
China) and lasted for 30 days.

2.5. Sample Collection and Measurement
2.5.1. Growth Performance of Shrimp

The shrimp were counted and weighed for each treatment group at the beginning and
end of the experiment, respectively. The survival rate, feed efficiency rate, and specific
growth rate of P. vannamei were calculated as follows.

Survival rate (SR) = (Nt/N0) × 100%;

Feed efficiency rate (FER) = (Wt −W0)/Wf × 100%;

Specific growth rate (SGR) = (lnWt − lnW0)/T × 100%.

Nt is the number of alive shrimp on the day the feeding trial ended, and N0 is the
number of shrimp put in the tank when the feeding trial started. Wt is the final wet weight
of shrimp when the feeding trial ended, and W0 is the initial wet weight when the feeding
trial started. T represented the days from the start to the end of the experiment.

2.5.2. Water Quality Parameters

The water sample of 500 mL was collected every seven days. The parameters of
ammonia, nitrite, nitrate, total nitrogen, soluble reactive phosphate, and total phosphorus
were determined using an automatic chemical analyzer (Clever Chem 380G, DeChem-
Tech. GmbH, Germany) according to the instructions. Water samples for DOC (Dissolved
organic carbon) and TOC (Total organic carbon) were analyzed by a multi-2100s TOC
analyzer (Analytik Jena). Besides, the average values at different time points of the above
parameter were calculated to compare the difference of corresponding parameters among
different treatments.

2.5.3. DNA Extraction, Amplification, Purification, and Sequencing

Bacterial samples were collected on Day 30 when the feeding trial ended. A 1L water
sample was filtered through a filter membrane with a pore size of 0.22 µm, then the
bacterial samples were stored in a −80 ◦C refrigerator. Total genomic DNA was extracted
from the water sample using the E.Z.N.A.® Water DNA Kit (Omega, GA, USA), and PCR
amplification was performed using primers 338F (5′-ACTCCTACGGGAGGCAGCA-3′)
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and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) specific for the V3 and V4 regions of the
16S rRNA gene. PCR products were then recovered to generate sequencing libraries, and
the constructed libraries were sequenced at high throughput using the Illumina HiSeq
platform. Raw reads were processed by splicing, filtering, and removal of chimeras to obtain
effective reads. The sequences were clustered to obtain operational taxonomic units (OTUs)
using UPARSE software (version 7.0) [31] with sequenced reads at a 97.0% similarity level.
OTUs were taxonomically annotated using the Silva database (http://www.arb-silva.de/
(accessed on 1 July 2022)).

2.6. Statistical Analysis

Mothur software (version 1.30.2) was used to analyze the diversity of sample se-
quences, including alpha diversity such as ACE index, Chao1 index, Shannon index, Simp-
son index, and Good-coverage as well as beta diversity such as PCA (Principal Component
Analysis), PCoA (Principal Co-ordinates analysis), and PLS-DA (Partial Least Squares
Discriminant Analysis). Chao index and ACE index were used to estimate the number
of OTU, the total number of species, reflecting the species richness of α diversity in a
community, but the algorithms are different. Both the Shannon index and Simpson index
were used to estimate the α diversity of the bacterial community in samples. They consider
not only the richness of species in the community but also the evenness of species. However,
the algorithms of the two are different. In addition, the higher the Shannon value is, the
higher α-diversity is. However, the higher the Simpson value is, the lower α-diversity
is. Analysis and visualization of OTU-based Venn diagrams were performed using the
VennDiagram package in R (v3.3.1). Based on the species composition of each treatment
group at each taxonomic level, bar graphs were generated using the ggplot2 package in
R (v.3.3.1), which can be used to visualize the dominant species of each group at a given
taxonomic level and the relative abundance of each dominant species. Using the stats
package in R (v.3.3.1) and the scipy package in Python, hypothesis tests were performed
among species in the different groups based on the species abundance data of bacterial
community using the one-way test ANOVA or the Kruskal-Wallis H test to evaluate the
significance level of differences in species abundance and obtain species with significant
differences between groups.

RDA analysis (redundancy analysis) was performed using the vegan package in R
(v.3.3.1), and the significance of RDA analysis was determined by permutest analysis similar
to ANOVA. Spearman correlation coefficients between environmental factors and selected
species were calculated using the vegan package in R (v.3.3.1) for correlation analysis, and
Spearman correlation significance tests were performed using the corrplot package in R
(v.3.3.1). Ecological networks were created based on CoNet software in Cytoscape (v.3.8.2)
and visualized using Cytoscape (Faust et al., 2016). The KEGG Module database was used
to link bacterial taxa to gene sets with particular metabolic capacities and other phenotypic
traits. The Shapiro-Wilk test was used to test the data for normal distribution (p > 0.05),
and Levene’s test was used to test for chi-square (p > 0.05). One-way analysis of variance
(ANOVA) and Duncan’s multiple comparison method in IBM SPSS Statistics 24.0 software
were used to analyze the significance of differences between groups. The Kruskal-Wallis
test was used for analysis when the data were not normally distributed or when there was
unequal overall variance. p < 0.05 indicated significant differences.

3. Results
3.1. Growth Performance of Shrimp

The growth performance of shrimp is shown in Table 1. The survival rate of shrimp in
groups B, BP, and BM was significantly higher than that in the control (p < 0.05), and there
was no significant difference among groups B, BP, and BM (p > 0.05). The final body weight
and specific growth rate (SGR) of shrimp were significantly higher in groups BP and BM
than in groups B and the control (p < 0.05), and they were highest in group BP (p < 0.05).
The gross weight of shrimp in the BP group was the highest and significantly higher than

http://www.arb-silva.de/
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that of the other groups (p < 0.05), while that of groups B and BM was significantly higher
than that of the control group (p < 0.05). The feed efficiency rate of shrimp in the BP group
was significantly higher than that in other groups (p < 0.05), while no significant difference
was found between other groups and the control (p > 0.05).

Table 1. Gross weight, survival rate, specific growth rate, and the feed efficiency rate of P. vannamei
(Mean ± S.E.).

Treatment B BP BM DZ

Initial body weight (g) 6.05 ± 0.05 6.07 ± 0.07 6.03 ± 0.06 6.12 ± 0.01
Final body weight (g) 13.64 ± 0.63 a 17.23 ± 0.18 c 15.12 ± 0.13 b 12.92 ± 0.53 a

Gross weight (g) 504.23 ± 7.74 b 637.78 ± 14.89 c 526.13 ± 16.88 b 478.15 ± 12.56 a

Survival rate (%) 70.00 ± 0.06 b 88.57 ± 0.01 b 82.74 ± 0.03 b 64.31 ± 0.03 a

SGR (%) 2.70 ± 0.13 a 3.47 ± 0.07 c 3.07 ± 0.06 b 2.48 ± 0.14 a

FER (%) 51.36 ± 6.96 a 70.27 ± 2.65 b 55.77 ± 3.50 a 45.34 ± 1.94 a

Note: The group B, a single B. pumilus BP-171 was added; the group BP, B. pumilus BP-171 and PHBV were added;
the group BM, B. pumilus BP-171 and molasses were added; the group DZ, the control without any probiotics
and carbon sources addition. Data are expressed as mean ± standard error, n = 3. Values in the same row with
different superscripts are significantly different among treatments (p < 0.05).

3.2. Water Quality Parameters
3.2.1. Changes in Ammonia, Nitrite, Nitrate, and Total Nitrogen

The average values of the temperature, dissolved oxygen, and pH in the water changed
from 25.6 ± 0.3 ◦C, 7.21 ± 0.51 mg/L, and 7.46 ± 0.21 ◦C to 25.9 ± 0.3 mg/L, 7.43 ± 0.17
and 7.62 ± 0.19 during the period of the experiment, and no significant differences were
found among the groups (p > 0.05). The salinity of the water was (30.0 ± 1.0) ‰ during the
feeding experiment.

The concentrations and changes of nitrogen in water during the feeding experiment are
shown in Figure 1. The concentration of total ammonia nitrogen (TAN) in groups B, BP, and
BM was significantly lower than that in the control (p < 0.05), and the concentration in group
BM was significantly higher than that in groups B and BP. The lowest concentration occurred
in the B group and was reduced by 70.22% compared with the control (p < 0.05). The
concentrations of TAN in the control increased during the experimental period (Figure 1A).
In contrast, the TAN concentration in the BM group peaked at about Day 18, whereas the
concentration in the B and BP groups leveled off after Day 6 and was significantly lower
than that in the control group during the experiment (p < 0.05).

Similarly, the concentration of nitrite nitrogen in the B, BP, and BM groups was
significantly lower than that in the control (p < 0.05). The concentration in the B group
was significantly lower than that in the other groups (p < 0.05) and reduced by 76.88%
compared to the control. In addition, the nitrite-nitrogen concentration in the control group
increased from Day 1 to Day 24, stabilized after Day 24, and was significantly higher than
all treatment groups (Figure 1B). In comparison, the concentration in the treatment groups
leveled off after Day 6 and was significantly lower than that in the control during the
experiment (p < 0.05).

The concentration of nitrate nitrogen in groups B, BP, and BM was significantly lower
than that in the control group (p < 0.05). The concentration in the BP group was significantly
lower than that in the other groups (p < 0.05) and reduced by 26.24% compared to the
control. Moreover, the nitrate-nitrogen concentration in water showed an increasing trend
in all treatment groups until Day 18 and stabilized after Day 18 in groups B and DZ
(Figure 1C). However, concentration in groups BP and BM continued to increase until
the end of the experiment. From Day 18 to 30, the nitrate-nitrogen concentration was
significantly higher in the control group than in groups B and BP.
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Figure 1. Changes of Ammonia nitrogen (A), Nitrite nitrogen (B), Nitrate nitrogen (C), and Total
nitrogen (D) in the water of different groups. Note: group B, a single B. pumilus BP-171, was added;
the group BP, B. pumilus BP-171, and PHBV were added; the group BM, B. pumilus BP-171, and
molasses were added; the group DZ, the control without any probiotics and carbon sources addition.
Values with different superscripts on the same day are significantly different among treatments in
each figure (p < 0.05).

The concentration of total nitrogen was significantly lower in groups B, BP, and BM
than in the control group (p < 0.05). The concentration in group BP was significantly lower
than in the other groups (p < 0.05) and was reduced by 40.02% compared to the control. The
concentration of total nitrogen in the control group showed an increasing trend (Figure 1D).
The values in the treatment groups leveled off between Day 6 and 30 and were significantly
lower than that in the control group (p < 0.05).

3.2.2. Changes in Soluble Reactive Phosphorus (SRP) and Total Phosphorus (TP)

The concentrations of SRP and TP are presented in Figure 2. There was no significant
difference in SRP and TP concentrations among all the groups during the experiment, with
an overall increasing trend.

3.2.3. Changes of Dissolved Organic Carbon (DOC) and Total Organic Carbon (TOC)

The concentrations and changes of organic carbon are presented in Figure 3, respec-
tively. The concentrations of DOC and TOC in the groups without the addition of carbon
sources (DZ and B) were significantly lower than those in the groups with the addition of
carbon sources (BP and BM) (p < 0.05). The DOC and TOC concentrations in the DZ and B
groups showed a trend of stabilization, while the concentrations in the culture system with
carbon source addition increased until Day 18. After Day 18, the concentrations of DOC and
TOC in the BP group increased slowly and stabilized gradually, while the concentrations in
the BM group decreased rapidly. The average concentrations of DOC and TOC between
the B group and the control group showed no significant difference (p > 0.05).
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3.3. The Microbial Diversity, Community Structure, and Function
3.3.1. Microbial Diversity

The bacterial diversity indices are shown in Table 2. The coverage indices of all
groups were above 0.99, indicating that the sequencing data were adequate to represent the
bacterial community structure. The Shannon, Simpson, Chao, and Ace indices of bacterial
communities of all groups did not show significant differences, indicating that the addition
of probiotics and carbon sources did not change the abundance and diversity of bacterial
communities in the culture system.

As shown in Figure 4, the similarity analysis among groups using partial least squares
discriminant analysis (PLS-DA) showed that the samples of group BP were separated from
those of groups BM, DZ, and B along the COMP1 axis. Meanwhile, the samples of group B
were separated from those of groups BM and DZ along the COMP2 axis. In addition, the
samples within the same group clustered together while the samples from different groups
moved away from each other.
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Table 2. α-diversity indices of bacterial communities in shrimp culture systems.

Groups
α-Diversity Index

Coverage
Shannon Simpson Ace Chao

B 3.23 ± 0.69 0.10 ± 0.07 438.93 ± 97.23 440.16 ± 87.69 0.998
BP 2.74 ± 0.69 0.18 ± 0.11 443.16 ± 134.35 435.90 ± 122.11 0.997
BM 3.56 ± 0.46 0.06 ± 0.02 459.62 ± 30.45 447.41 ± 31.13 0.998
DZ 3.36 ± 0.08 0.07 ± 0.01 411.01 ± 29.19 370.11 ± 19.18 0.998

Note: group B, a single B. pumilus BP-171, was added; the group BP, B. pumilus BP-171, and PHBV were added;
the group BM, B. pumilus BP-171, and molasses were added; the group DZ, the control without any probiotics and
carbon sources addition. Data are expressed as mean ± standard error, n = 3.
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Figure 4. PLS-DA analysis based on OTU level of different P. vannamei culture systems. Note: group B,
a single B. pumilus BP-171, was added; the group BP, B. pumilus BP−171, and PHBV were added;
the group BM, B. pumilus BP-171, and molasses were added; the group DZ, the control without any
probiotics and carbon sources addition.

3.3.2. Bacterial Community Composition

There were 501, 605, 626, and 565 OTUs in the DZ, B, BP, and BM groups, respectively
(Figure 5). In addition, the unique OTUs in the DZ, B, BP, and BM groups were 34, 86, 144,
and 66, respectively. The group with the lowest number of specific OTUs was the control
group, while the most were found in the BP group.

The predominant phyla were Proteobacteria, Bacteroidetes, Actinobacteria, and Verrucomi-
crobia (Figure 6A). The relative abundance of the phylum Bacteroidetes was significantly
lower in the BP group than in the control group (p < 0.05). However, the relative abundance
of the phylum Proteobacteria was distinctly higher compared with the control (p < 0.05).
In addition, the relative abundance of the phylum Verrucomicrobia in the B group was
observably higher than that in the other groups (p < 0.05).

Additionally, the classes Alphaproteobacteria, Flavobacteriia, Actinobacteria, and Verru-
comicrobiae dominated each group (Figure 6B). The relative abundance of Flavobacteria was
significantly lower in the BP group than in the other groups (p < 0.05). Compared to the
control, the relative abundance of Alphaproteobacteria was significantly increased in the BP
group (p < 0.05). Besides, the relative abundance of Verrucomicrobiae was remarkably higher
in the B group than in the other groups (p < 0.05).
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Figure 6. Bacterial composition at different levels of phylum (A), class (B), order (C), family (D), and
genus level (E) in different culture systems. Note: group B, a single B. pumilus BP-171, was added; the
group BP, B. pumilus BP-171, and PHBV were added; the group BM, B. pumilus BP-171, and molasses
were added; the group DZ, the control without any probiotics and carbon sources addition.



Water 2022, 14, 4037 11 of 21

At the order level, Rhodobacterales, Flavobacteriales, Propionibacteriales, Rhizobiales, and
Verrucomicrobiales were the dominant bacterial taxa in each treatment (Figure 6C). The
relative abundance of Flavobacteriales was significantly lower in the BP group than in the
other groups (p < 0.05). In contrast, the abundance of Rhizobiales and Rhodobacterales, which
belong to the bacterial taxonomic class Alphaproteobacteria of the phylum Proteobacteria, was
significantly increased in the BP group compared with the control (p < 0.05). In addition,
the relative abundance of Verrucomicrobiales was prominently higher in the B group than in
the other groups (p < 0.05).

At the family level, Rhodobacteraceae, Flavobacteriaceae, Propionibacteriaceae, Phyllobacteri-
aceae, and Verrucomicrobiaceae were relatively abundant and dominant in each treatment
(Figure 6D). The relative abundance of Flavobacteriaceae in the BP group was notably lower
than that in the other groups (p < 0.05), while the abundance of Phyllobacteriaceae and
Rhodobacteraceae in the BP group was significantly higher than that in the control group
(p < 0.05). Furthermore, Verrucomicrobiaceae in the B group was more abundant than in the
other groups (p < 0.05).

At the genus level, the unclassified Rhodobacteraceae, Donghicola, Ruegeria, Tessaracoccus,
Oricola, and Marivita dominated the B, BP, and BM groups (Figure 6E). As depicted in
Figure 7, the relative abundance of Oricola spp., Donghicola spp., and Marivita spp. was
significantly higher in the BP group than in the other groups (p < 0.05). Compared with the
control, the relative abundance of Bacillus spp. in groups B, BP, and BM was significantly
increased, and the relative abundance of Bacillus spp. in the BP group was significantly
higher than that in groups B and BM (p < 0.05).
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BP, B. pumilus BP-171, and PHBV were added; the group BM, B. pumilus BP-171, and molasses were
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different superscripts are significantly different among treatments in each figure (p < 0.05).

3.3.3. The Correlation of Water Quality Indexes and Microbial Community Structure

Redundancy analysis (RDA) revealed the effects of environmental variables (TAN,
NO2

−-N, NO3
−-N, TN, SRP, TP, DOC, and TOC) on microbial community structure. It

can be seen that TAN, NO2
−-N, NO3

−-N, and TN had strong positive impacts on the
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distribution of flora at the phylum level on the first typical axis, and the above four
environmental factors had synergistic effects on community structure (Figure 8A). In
contrast, DOC and TOC had strong negative effects on the distribution of flora at the
phylum level on the first typical axis, and the two environmental factors had synergistic
effects on community structure. In addition, nitrate nitrogen was the most influential
variable that had a significant effect on bacterial community structure (r2 = 0.538, p = 0.043).
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Figure 8. The Redundancy Analysis on phylum (A) and genus (B) level and the correlation heatmap
analysis between bacterial taxa and water quality parameters on phylum (C) and genus (D). Note:
group B, a single B. pumilus BP-171, was added; the group BP, B. pumilus BP-171, and PHBV were
added; the group BM, B. pumilus BP-171, and molasses were added; the group DZ, the control without
any probiotics and carbon sources addition.

Similar to the phylum level, TAN, NO2
−-N, NO3

−-N, and TN had strong positive
effects on the distribution of flora at the genus level on the second typical axis, and the
four environmental factors had synergistic effects on community structure (Figure 8B). In
addition, DOC and TOC had strong negative effects on the distribution of flora at the genus
level on the second typical axis, and the two environmental factors also had synergistic
effects on community structure. Moreover, nitrate nitrogen had the greatest effect on
bacterial community structure at the genus level (r2 = 0.409, p = 0.038).

The correlation between environmental variables and bacteria was explored by cal-
culating Spearman coefficients of water quality factors and bacterial taxa at phylum and
genus levels, respectively. At the phylum level, Proteobacteria showed a significant positive
correlation with TOC (p < 0.05), while it showed a significant negative correlation with
nitrate nitrogen and total nitrogen, respectively (p < 0.05) (Figure 8C). In addition, the
phylum Firmicutes was significantly negatively correlated with ammonia nitrogen, nitrite
nitrogen, nitrate nitrogen, and total nitrogen, respectively (p < 0.05). Besides, the phylum
Bacteroidetes had a significant negative correlation with TOC (p < 0.05) but had a significant
positive correlation with total nitrogen (p < 0.05).
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At the genus level, Bacillus spp. showed a significant positive correlation (p < 0.05)
with DOC and TOC but had a significant negative correlation with nitrate nitrogen and
total nitrogen (p < 0.05) (Figure 8D). Additionally, Oricola spp. was positively correlated
with TOC (p < 0.05) while negatively correlated with total nitrogen (p < 0.05). The unclassi-
fied_f__Flavobacteriaceae spp. and Demequina spp. both had a significant negative correlation
with TOC, while they had a significant positive correlation with nitrate nitrogen and total
nitrogen (p < 0.05).

3.3.4. Ecological Network Analysis

Ecological network analysis showed that there were more nodes in groups B, BP, and
BM than in the control group (Table 3). However, no significant difference was found
in negative or positive interactions among different groups. There were more functional
modules in the groups to which carbon sources were added (BP and BM) than in the control
and B groups, with the highest number of modules in the BP group (Figure 9). The number
of functional modules in the B, BP, BM and DZ groups was 7, 26, 16, and 7, respectively.

Table 3. Topological properties of the networks.

B BP BM DZ

Nodes 328 323 334 285
Edges 1270 1056 1256 1223

Positive relationship 800 616 753 733
Negative relationship 470 440 503 490

negative interactions/positive interaction ratio 58.75% 71.43% 66.80% 66.85%
Module number 7 26 16 7

Note: group B, a single B. pumilus BP-171, was added; the group BP, B. pumilus BP-171, and PHBV were added;
the group BM, B. pumilus BP-171, and molasses were added; the group DZ, the control without any probiotics and
carbon sources addition. Data are expressed as mean ± standard error, n = 3.

Figure 9. Ecological Network based on OTUs of the bacterial community in the different culture
systems. Note: In the ecological network diagram, different nodes represent bacteria from different
OTUs, and the line between two nodes indicates that there is some interaction between bacteria from
two OTUs, and the red line represents a positive relationship between bacteria from two OTUs, the
green line represents a negative relationship. The group B, a single B. pumilus BP-171 was added; the
group BP, B. pumilus BP-171, and PHBV were added; the group BM, B. pumilus BP-171, and molasses
were added; the group DZ, the control without any probiotics and carbon sources addition.
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3.3.5. Predictive Functions of Microbiota in the Water

As shown in Figure 10, compared to the control, eight functional modules (Cationic an-
timicrobial peptide resistance, photosystem II, coenzyme M biosynthesis, bacilysin biosyn-
thesis, kanosamine biosynthesis, cytochrome aa3-600 menaquinol oxidase, photosystem I
and lysine biosynthesis) were significantly improved in the B group (p < 0.05). In the BP
group, 12 functional modules (ketone body biosynthesis, pentose phosphate pathway, ethyl-
malonyl pathway, entner-Doudoroff pathway, hydroxypropionate-hydroxybutylate cycle,
urea cycle, cobalamin biosynthesis, D-Galacturonate degradation, purine degradation,
tyrosine biosynthesis, and molybdenum cofactor biosynthesis and nicotinate degradation)
were significantly higher than the control (p < 0.05). However, 19 functional modules
(tetrahydrobiopterin biosynthesis, C4-dicarboxylic acid cycle, nodulation, N-glycan precur-
sor biosynthesis, tetrahydrofolate biosynthesis, threonine biosynthesis, biotin biosynthesis,
biotin biosynthesis of BioW pathway, methionine degradation, assimilatory sulfate re-
duction, abscisic acid biosynthesis, tetrahydrofolate biosynthesis, ascorbate biosynthesis,
dTDP-L-rhamnose biosynthesis, pyrimidine ribonucleotide biosynthesis, and coenzyme
A biosynthesis) were significantly decreased (p < 0.05). In the BM group, three functional
modules (coenzyme M biosynthesis, N-glycan biosynthesis, and assimilatory nitrate reduc-
tion) were enriched (p < 0.05), whereas one functional module (D-Glucuronate degradation)
was significantly decreased (p < 0.05).
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Figure 10. Differences of predicted functions based on the KEGG Module database using STAMP.
Note: Only data with significant differences (p < 0.05) between groups are shown. (A) DZ and B
group, (B) DZ and BP group, (C) DZ and BM group. The group B, a single B. pumilus BP-171 was
added; the group BP, B. pumilus BP-171, and PHBV were added; the group BM, B. pumilus BP-171, and
molasses were added; the group DZ, the control without any probiotics and carbon sources addition.
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4. Discussion
4.1. Effects of Addition of B. pumilus 171 and Carbon Sources on the Growth Performance
of Shrimp

Many previous studies have shown that the addition of probiotics to culture water
can promote the growth of aquatic animals by improving FER and regulating the balance
of aquatic flora, and reducing toxic substances such as ammonia and nitrite [8,9,32,33]. The
results from the present study were consistent with the above findings. Higher survival
rate and gross weight of shrimp were observed in the group with the single addition of
B. pumilus BP-171 compared to the control. In addition to probiotics, carbon sources with
the property of improving growth performance were also observed [34–39]. In this study,
the shrimp in the group to which both B. pumilus BP-171 and carbon sources were added
showed better growth performance than the group to which only one probiotic was added,
and the group using PHBV as a carbon source showed the best performance. The above
results suggest that B. pumilus BP-171 promoted the growth performance of shrimp, and a
suitable carbon source such as PHBV could further enhance the growth-promoting function
of probiotics.

4.2. Effects of the Addition of B. pumilus 171 and Carbon Sources on the Water Quality

Some probiotics, such as Bacillus spp. could be used to improve water quality by
reducing the concentration of ammonia and nitrite in the culture system [7–9]. For example,
Lee et al. [40] found that total NH4

+ concentration was significantly lower when Bacillus
spp. were added to the culture system. Decreased nitrite concentration was observed when
B. subtilis FY99-01 was used in the culture system of P. vannamei [32]. Barman et al. [23]
also found that B. cereus PB45 could consume nitrite in the culture pond effluent. The
addition of carbon sources could also promote the removal of nitrogen from water by
increasing the C/N ratio [2,16,17]. However, to our knowledge, the effects of combining
probiotics and carbon sources on aquaculture water quality have rarely been reported. In
this study, B. pumilus BP-171, a heterotrophic nitrifying-aerobic denitrifying strain isolated
from shrimp ponds [29], was tested in a shrimp culture system. This strain can not only
convert ammonia nitrogen into bacterial biomass by heterotrophic assimilation but also
convert nitrite and nitrate nitrogen into gaseous nitrogen by denitrification [29]. This study
showed that the concentration of ammonia nitrogen was reduced by more than 60% in
the B and BP groups compared to the control, while the concentration of nitrite nitrogen
was reduced by more than 69% in the B and BP groups. The removal rates of ammonia
and nitrite nitrogen in the B group reached 70.22% and 76.88%, respectively. The average
concentrations of nitrate nitrogen in the B and BP groups were reduced by more than
17%, while the concentrations of total nitrogen in the B and BP groups were reduced by
more than 35%. The nitrate and total nitrogen removal rates in group BP were 26.24% and
40.02%, respectively. In conclusion, the addition of B. pumilus BP-171 alone could reduce
the concentrations of ammonia and nitrite in the culture system, while the simultaneous
addition of B. pumilus BP-171 and PHBV could reduce the concentrations of nitrate and
total nitrogen. In addition, PHBV was better than molasses both as a solid carbon source
and as a biofilm carrier when used together with B. pumilus BP-171.

4.3. Effects of Addition of B. pumilus 171 and Carbon Sources on the Microbial Diversity and
Microbiota Compositions in Water

Bacillus spp. is a type of common probiotic used as a water quality improver in aqua-
culture systems [7–9,41]. BP-171 is a strain of heterotrophic nitrifying-aerobic denitrifying
bacteria isolated from shrimp environments with high nitrogen removal capacity [29].
In this study, a single B. pumilus BP-171 and various combinations of B. pumilus BP-171
with PHBV and molasses were added to the shrimp culture system. Interestingly, no
significant difference in the Ace, Chao, Shannon, and Simpson indices of microbiota was
observed between the groups in this study, which was in agreement with the results of
Kokkuar et al. [3]. However, the addition of B. pumilus BP-171 and carbon sources altered
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the microbiota composition in the water. The number of OTUs and unique OTUs in the B,
BP, and BM groups were all higher than that in the control, and that in the BP group was
the highest. In addition, the microbial composition at various taxonomic levels differed
distinctly in the different groups.

The abundance of the phylum Verrucomicrobia, the class Verrucomicrobiae, the order
Verrucomicrobiales, and the family Verrucomicrobiaceae was significantly higher in group B, to
which only B. pumilus BP-171 was added, than in the other groups. Although the role of
Verrucomicrobia in aquaculture has rarely been reported, some studies have shown that they
were widely distributed in drinking water, freshwater lakes, and marine sediments [42]. In
addition, some Verrucomicrobia taxa isolated from seawater have been shown to be strictly
aerobic chemoheterotrophs that use mono- or disaccharides as carbon and energy sources
and can convert nitrate nitrogen to nitrite nitrogen [43,44]. Besides, some Verrucomicrobia
taxa, which can utilize a variety of organic and inorganic gas molecules such as methane,
carbon dioxide, ammonia, and nitrogen gas, were involved in the natural carbon and
nitrogen cycles [45]. Thus, Verrucomicrobia might involve in the conversion of nitrogen in
the culture system, leading to the low concentration of ammonia and nitrite nitrogen in the
B group.

The relative abundance of the phylum Proteobacteria in the BP group was significantly
increased compared with the control when B. pumilus BP-171 and PHBV were added
simultaneously. Previous studies have shown that the phylum Proteobacteria was widely
distributed in various regions of the marine environments [46], and many microorganisms
involved in nitrogen removal belong to this phylum, including nitrifying and denitrifying
bacteria [47]. In this study, it was demonstrated that the abundance of phylum Proteobacteria
had a negative correlation with the concentration of nitrate and total nitrogen, which might
be one origin of a lower concentration of nitrate and total nitrogen in the BP group. In
addition, the relative abundance of the class Alphaproteobacteria in the BP group reached
75.01%, which was strikingly higher than in other groups. Alphaproteobacteria have been
shown to have excellent denitrification ability [47,48]. Moreover, the abundance of several
dominant bacteria of various taxonomic levels belonging to the class Alphaproteobacteria
was significantly higher in the BP group than in the control. For example, the order
Rhodobacterales and Rhizobiales, the family Erythrobacteriaceae and Rhizobacteriaceae, and the
genus Donghicola, Oricola, and Marivita as well as Bacillus, whose relative abundance was
significantly higher in the BP group than in the control. Rhodobacterales is considered to
be the most abundant denitrifying bacterium widely distributed in the environment [49].
Hu et al. [50] found that the family Rhodobacteraceae, as one of the core taxa in shrimp
culture ponds, removed nitrite nitrogen from the system mainly by denitrification. Besides,
the genus taxa of Donghicola and Marivita, which were isolated from seawater and are both
Gram-negative and aerobic, belong to the class Rhodobacteraceae, but their role in bacterial
communities has hardly been studied [51]. The order Rhizobiales, a type of heterotrophic
bacteria with denitrification character, was found to be the second most abundant functional
bacterium in ammonia-oxidizing anaerobic systems with a relative abundance of 18.2% [52].
The family Phyllobacteriaceae was a group of aerobic bacteria that can utilize various forms
of nitrogen for reproduction and was found in marine environments [53,54]. In addition,
Zheng et al. [55] identified the most abundant transporter proteins involved in the transport
and uptake of carbohydrates from a strain of Oricola sp. based on metagenomic and
metaproteomic analysis. Among them, three proteins involved in ammonia assimilation
and a large number of genes involved in the uptake and metabolism of inorganic nitrogen
were also observed in this strain [55]. These results suggest that Oricola sp. might be able to
utilize carbon sources in the environment and participate in the conversion and removal
of nitrogen.

Many studies have shown that Bacillus plays an important role in nitrogen cycling
via nitrification [56] and denitrification [57]. B. pumilus BP-171 was periodically added
into different shrimp culture systems in this study. Although an increase in the relative
abundance of Bacillus spp. compared to other taxa in the microbial community was not
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observed, the relative abundance of Bacillus spp. in groups B, BP, and BM was significantly
higher than in the control. Of course, due to methodological limitations, it could not be
determined whether the Bacillus spp. was the strain BP-171. The results of the present
study showed that the microbial composition shifted distinctly at different taxonomic levels
when B. pumilus BP-171 and different combinations of the strain BP-171 with PHBV and
molasses were added. It was also found that the relative abundance of Oricola spp. was
positively correlated with TOC concentration, while the relative abundance of Bacillus
spp. was positively correlated with the concentration of TOC and DOC, indicating that
the addition of carbon source promoted the proliferation of Oricola spp. and Bacillus
spp. Furthermore, the relative abundance of Bacillus spp. showed a significant negative
correlation between the concentration of nitrate nitrogen and total nitrogen, while the
relative abundance of Oricola spp. showed a significant negative correlation with total
nitrogen concentration, suggesting an increase in the abundance of Bacillus spp. and Oricola
spp. promoted the conversion and removal of nitrogen. The above correlations between the
relative abundance of bacteria, the concentration of TOC and DOC, and the concentration of
nitrate and total nitrogen might partially explain the higher removal rate of nitrate nitrogen
and total nitrogen in the BP group.

4.4. Effects of Addition of B. pumilus 171 and Carbon Sources on the Ecological Network and
Function of the Microbial Community

The complicated ecological network consisted of negative interactions and positive
interactions of interspecies in the bacterial community, which sustained the stability of
the bacterial ecosystem in water [58,59]. In general, the cooperative network involving
mutualism or synergy bacteria can be efficient but not stable [60]. Negative interactions
such as competition can weaken the efficiency of the cooperating network but enhance its
stability [60]. In this study, a higher ratio of negative to positive interactions was observed
in the ecological network of the BP group, suggesting that the addition of PHBV might
strengthen the stability of the shrimp culture ecosystem. Moreover, each module was
considered a functional unit, performing an identifiable task [58,61]. In the present study,
the largest number of modules was observed in the BP group, which indicated that the
addition of PHBV could alter the bacteria in the water to perform more biological functions.

The functional modules in the KEGG Module database represent cellular and organis-
mal level functions, and these modules generally contain various molecular level functions
stored in the KO (KEGG Orthology) database [62]. The bacterial community in water can
affect the growth of aquatic animals in various ways, such as the inhibition of pathogenic
bacteria and the secretion of nutrients [9,11,13,15]. The antimicrobial effect of organic acids
has been demonstrated [63–65]. Hydroxybutyrate can exert its inhibitory effect against
pathogenic Vibrio bacteria [66,67]. In this study, the function prediction analysis showed
that 8, 12, and 3 functional modules were significantly enhanced in groups B, BP, and BM,
respectively. The hydroxypropionate-hydroxybutylate cycle, ethylmalonyl pathway, and
the metabolic activity of organic acids, such as fumarate, were significantly enhanced in the
BP group. In addition, previous studies have shown that urea dissolved free amino acids,
as well as inorganic nitrogen together sustained the nitrogen demand of bacteria for growth
in natural water [68,69]. In the present study, the urea cycle, metabolic activities of nutrient
substances such as tyrosine, pyruvate, glyceraldehyde-3P, ribose 5P, and cobalamin, as
well as molybdenum cofactor were also remarkably enhanced. Just as previous research
has shown that many invertebrates like shrimps have demonstrated the ability to take up
a variety of organic compounds, including amino acids, even against the concentration
gradient [70–74]. Therefore, the overall promotion of numerous metabolic functions of the
microbial community in the water might be partially responsible for the improvement in
shrimp growth performance.



Water 2022, 14, 4037 18 of 21

5. Conclusions

In summary, probiotics and various combinations of probiotics with different carbon
resources had differential impacts on the growth performance of shrimp, water quality, and
bacterial community in the P. vannamei culture system. The addition of BP-171 and carbon
sources could promote the growth of shrimp to varying degrees and improve the yield of
farmed shrimp, with the best in the group of simultaneous addition of BP-171 and PHBV.
The single addition of BP-171 could effectively reduce the concentration of ammonia and
nitrite nitrogen in the culture system, and the simultaneous addition of BP-171 and PHBV
could effectively improve the removal rates of nitrate and total nitrogen. In addition, the
addition of BP-171 and carbon sources did not change the abundance and diversity of the
bacterial community in the shrimp culture system but altered the structure and function of
the bacterial community and enhanced the stability of the community’s ecological network.
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