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Abstract: Optimizing irrigation water use efficiency (WUE) is critical to reduce the dependency of
irrigated cotton (Gossypium spp.) production on depleting aquifers. Cropping system models can
integrate and synthesize data collected through experiments in the past and simulate management
changes for enhancing WUE in agriculture. This study evaluated the simulation of cotton growth
and evapotranspiration (ET) in a grower’s field using the CSM-CROPGRO-cotton module within the
Decision Support System for Agrotechnology Transfer (DSSAT) and APSIM (Agricultural Production
Systems simulator)-OzCot during 2017–2018 growing seasons. Crop ET was quantified using the
eddy covariance (EC) method. Data collected in 2017 was used in calibrating the models and in 2018
validating. Over two cropping seasons, the simulated seedling emergence, flowering, and maturity
dates were varied less than a week from measured for both models. Simulated leaf area index (LAI)
varied from measured with the relative root mean squared errors (RRMSE) ranging between 20.6%
to 38.7%. Daily ET deviated from EC estimates with root mean square errors (RMSEs) of 1.90 mm
and 2.03 mm (RRMSEs of 63.1% and 54.8%) for the DSSAT and 1.95 mm and 2.17 mm (RRMSEs
of 64.7% and 58.8%) for APSIM, during 2017 and 2018, respectively. Model performance varied
with growing seasons, indicating improving ET simulation processes and long-term calibrations and
validations are necessary for adapting the models for decision support in optimizing WUE in cotton
cropping systems.

Keywords: leaf area index (LAI); irrigation; Mississippi Delta region; eddy-covariance (EC);
evapotranspiration (ET)

1. Introduction

The United States of America (USA) remains a major producer and leading cotton
exporter, ranking third in the world [1]. The lower Mississippi Delta (Delta) region generally
ranks number two as a producer of US upland cotton (Gossypium hirsutum). Cotton is
sensitive to water stress particularly during the flowering stage, and scheduling irrigation
should consider crop evapotranspiration (ET) estimates [2,3]. In the Delta region, over-
pumping (i.e., beyond natural discharge rates) for irrigation of over four million hectares
of cropland is fast depleting the Mississippi River Valley alluvial aquifer, which provides
90% of the irrigation water applied [4,5]. Precise quantification and planning of crop water
demand and supplies are necessary to protect against further groundwater depletion and
sustain irrigated agricultural production in the region [6].

In the Delta region, although mean annual rainfall receipts were about 1306 mm;
only about 30% of annual rainfall coincides with the growing season, forcing growers to
irrigate with groundwater to achieve economic crop yields [7,8]. In addition, high intensity
rainfall events are common during this period resulting in mostly surface run off. Only
a small portion of the rainfall infiltrates into the soil profile and becomes available for
plant use. Based on 1915–2015 weather data, cotton irrigation requirements in the Delta
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region ranged from 62 to 293 mm year−1 (mean value of 163 mm) in normal years, from
0 to 202 mm year−1 (mean value of 118 mm) in wet years, and from 144 to 353 mm year−1

(mean value of 233 mm) in dry years [9]. Major challenges in irrigated agriculture are
to decide the time and quantity of irrigation based on the critical growth stage of the
crop to irrigate and the optimum life cycle to take advantage of available soil water and
precipitation [10].

Evapotranspiration (ET) is a multifaceted variable, comprises of interception loss,
evaporation from soil and transpiration from the crop canopy. At a global scale, land ET
significantly rise at a rate of 0.31 mm year−1 during 1982–2016 indicating a 2.2% increase
over last 35 years [11]. Quantification of ET is an essential prerequisite for precise irrigation
scheduling responding to weather [3,12]. Because direct measure of ET is challenging,
alternatively ET can be physically derived as an energy variable [13]. Among various
methods to quantify ET from cropping systems, eddy covariance (EC) has emerged as a
scientifically sound method for continuous data collection. It provides reliable ET estimates
for irrigation water scheduling [2,14]. The response of ET to crop management is dynamic,
location-specific, and controlled by prevailing weather conditions, crop type, and culti-
var characteristics [6]. However, applying EC for ET measurements involves deploying
highly technical and expensive instrumentation. In this context, agricultural system models
are inexpensive, viable, and widely recognized state of the science tools for estimating
location-specific ET data for irrigation scheduling and crop response to irrigation. The
crop simulation models available through the Decision Support System for Agrotechnol-
ogy Transfer (DSSAT) and Agricultural Production System Simulator (APSIM) software
packages allow simulations of crops across a wide range of soil-crop-water management
systems [14–17]. Evaluation of these models must include verifications against experimen-
tal datasets for crop growth and water dynamics in agricultural systems over time and
space [18]. However, most cropping system simulation model calibration and validation
studies were limited to comparisons with small plot-scale data and attempts at collecting
and using crop-ET responses to management in large-scale cotton fields are scarce [19].
The objectives of this study were to (i) compare cotton growth and yield simulations of
DSSAT-CSM-CROPGRO-cotton and APSIM-OzCot-cotton models with observed values,
and (ii) compare ET predictions from these two models with EC estimates, in a humid
climate of the Lower Mississippi River Delta during 2017 and 2018 growing seasons.

2. Materials and Methods
2.1. Field Experiment

The field experiment was conducted on grower’s field (>25 ha) located near Stoneville,
Mississippi (33.467, −90.875). The soil was a poorly drained, silty clay and classified
as Forestdale, Fine, Smectitic, thermic, Typic Endoaqualfs. The soil was tilled to break
clay pans and overturn soils for burying crop residues and killing weeds in three passes,
followed by another tillage to generate furrows and ridges for planting to facilitate furrow
irrigations. Cotton (cv. Deltapine 1522) was planted at 103,740 ha−1 on 22 April and 10 May
during 2017 and 2018 growing seasons, respectively. Cotton was planted on ridges with
97 cm row spacing and fertilizer nitrogen (N) in the form of urea at the rate of 200 kg N ha−1

was applied after emergence. Irrigations (~400 mm) were applied on 24 July 2017, and
18 July 2018. A plant growth regulator, Mepiquat chloride, was applied to control plant
stem elongation, leaf expansion, and excessive vegetative growth. Field combine was used
to harvest and weigh seed-cotton on 18 September 2017, and 15 October 2018.

2.2. Eddy Covariance Estimates of Evapotranspiration (ET)

The EC instrumentation, data collection protocols, and data analysis were described
in detail in [20]. The Eddy towers were located in the middle of cotton fields of over 250 ha,
providing enough fetch for wind from all directions (an omnidirectional 3D anemometer
was used in the EC system as well), there was no need for further ‘footprint analysis’
to justify the footprint of ET measurements. Vertical transport of eddies from the field
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was measured using a Gill New Wind Master 3D sonic anemometer at 10 Hz (Gill Instru-
ments, UK). Water vapor densities in eddies were measured using LI-7500-RS open-path
infrared gas analyzers (LI-COR Inc., Lymington, NE, USA). These sensors were placed
in the constant flux layer above the canopy by mounting on the telescopic height ad-
justable quadrupled towers. Sensors for measuring net radiation (NR-LITE2, Kipp &
Zonen B.V., Lincoln, The Netherlands), air relative humidity, temperature (Ta) (HMP 155,
Vaisala, Helsinki, Finland), and wind direction and speed (Gill 2D-Sonic, Gill Instruments),
were maintained 2 m above the canopy within the field along with EC sensor. Three
self-calibrating soil heat flux sensors (HP01SC, Huskeflux Thermal Sensors B.V., Lincoln,
The Netherlands) were installed at 8 cm depth below the soil surface. HydraProbes were
used to monitor the water and temperature of the 8 cm soil layer above the flux plates.
All measurements and data were from cotton planting to harvest. Collected data were
processed on a SmartFlux microprocessor (LI-COR Inc.) with the EddyPro software Version
7.0 (LI-COR Inc.). Leaf area index (LAI) was measured at biweekly intervals using an
AccuPAR LP 80 Ceptometer (Decagon Devices, Inc., Pullman, WA, USA). The soil heat flux
(GO) was calculated by measuring heat flux at 8 cm depth and accounting for heat storage
in the layer above it. The gaps in the flux and micrometeorological data were filled using
the REddyProc package available online from the Max Planck Institute for Biogeochem-
istry (https://www.bgcjena.mpg.de/bgi/index.php/Services/REddyProcWebRPackage,
accessed on 7 December 2022).

2.3. DSSAT-CSM-CROPGRO Cotton Module

The DSSAT is a modeling platform that ensembles the database management system
(soil, climate, and management practices), crop models, and various programming
applications including sensitivity analysis and spatial analysis [15,21]. The DSSAT
CSM-CROPGRO-Cotton model simulates different cotton growth stages such as emergence,
first leaf, first flower, first seed, first cracked boll, and 90% open boll based on the heat
unit accumulation and photoperiod responses [17,22]. The soil water balance module is
the driving component to estimate ET as it determines the amount of water uptake by
plant roots. Two major steps in ET determination with the DSSAT system are calculating
potential ET (PET) from weather data, then partitioning into potential soil evaporation
and transpiration, and modifying of these two components from the feedback from crop
growth and root water uptake modules.

The model has options for simulating PET using either Priestly-Taylor [23] or
FAO-56 [24]. Water deficit stress is simulated when the potential demand for water lost
through plant transpiration is greater than the amount of water supplied by the soil through
the simulated root system. The amount of water soil supplies is a function of its water
holding capacities, as defined by model inputs for the drained upper limit and lower limit.
When DSSAT simulates PET with Priestly-Taylor and FAO-56 methods, FAO-56 was found
to be more accurate in simulations [25]. We also obtained better simulation results with the
FAO-56, which was used in the simulations.

The FAO-56 Penman-Monteith equation used was

ETO =
0.408∆(Rn − G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)

ETO = grass reference-crop evapotranspiration to which a model built-in crop coeffi-
cient was applied to get PET (mm d−1), λ = latent heat of vaporization (kPa ◦C−1), Rn = net
radiation (MJ m−2 d−1), γ = psychometric constant (kPa ◦C−1), es = saturation vapor pres-
sure (kPa), ea = actual vapor pressure (kPa), ∆ = slope of the vapor pressure-temperature
curve (kPa ◦C−1), T = air temperature, u2 = wind speed at 2 m height (m s−1).

The daily soil evaporation rate in the default DSSAT code follows the Suleiman-Ritchie
method [26]. The SR method computes soil evaporation rate based on water loss from
the entire soil profile depth based on transfer coefficients per layer dependent on soil

https://www.bgcjena.mpg.de/bgi/index.php/Services/REddyProcWebRPackage
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texture and water contents. Actual soil evaporation is the minimum of either potential soil
evaporations or SR computed evaporation.

2.4. APSIM-OzCot

Cotton growth and ET were simulated using the APSIM Version 7.10 r4220 (APSIM
Initiative, CSIRO, Canberra, Australia) cotton module [14,27,28]. The APSIM modeling
framework comprises cropping system biophysical modules, management modules, and a
simulation engine. Plant modules simulate key processes on a daily time step in response to
daily weather data, soil characteristics, and crop management actions. Leaf area production
and senescence are simulated through relationships of leaf initiation rate, leaf appearance
rate, and plant leaf area with temperature. Potential crop water uptake is simulated
through relationships with root exploration and extraction potential, controlled by soil
and crop characteristics. Soil water balance in the model is governed by two approaches,
cascading layer, and Richard’s equation methods. Evaporation is based on PET and
modified according to the cover provided by surface residue or growing plant. For the
calculation of soil evaporation, the Ritchie model separates into two stages as followed in
DSSAT models. First, the evaporation rate equals the potential evaporation rate until a
specified amount of water has evaporated (U or CONA, the upper limit of evaporation rate).
Second, evaporation is proportional to the square root of time, and its rate is lower than the
rate of potential evaporation. Crop transpiration in the APSIM is the Penman-Monteith
water demand, derived from the energy balance equation of the crop canopy.

2.5. Cropping System Model Inputs

Daily maximum and minimum temperature, incoming solar radiation, and precipi-
tation were obtained from the Stoneville Agricultural weather station (Delta Agriculture
Weather Center, http://deltaweather.extension.msstate.edu/, accessed on 28 October 2022)
close to the experimental site. The soil parameters for the Forestdale soil series of the
experimental site were obtained from National Cooperative Soil Survey [29], presented
in Table 1. The crop management related model inputs (plant population, row spacing,
fertilizer, irrigation, tillage) were based on the actual practices followed in the field experi-
ment. Irrigation was scheduled similar to the field study. For APSIM, the initial soil water
storage was set at 50% of field capacity and filled from top. Cultivar parameters used in the
simulations were parametrized by matching days of emergence, flowering, and maturity
with the actual observations. Final calibrated values for the cultivar coefficients used in
the simulations are listed in Table 2 for DSSAT-CSM-CROPGRO-cotton and Table 3 for
APSIM-OzCot. For the calibration of the model parameters, we used 2017 growing season
and 2018 growing season data for the validation. However, the calibration and validation
did not vary substantially and only two growing season data were involved, we presented
results together.

Table 1. Soil parameters for Forestdale soil series in the simulation for both growing seasons using
CSM-CROPGRO-cotton and APSIM-OzCot-cotton models.

Soil Depth (cm) Clay % Silt % OC % Total N% pH CEC (cmol kg−1) θwp (cm3 cm−3) θfc (cm3 cm−3) θS (cm3 cm−3) BD (Mg m−3) KS (cm h−1)

0–13 32.0 59.6 2.0 0.12 7.5 22.0 0.211 0.350 0.463 1.5 0.39
14–32 40.3 52.5 1.2 0.05 7.3 23.7 0.228 0.350 0.463 1.5 0.29
33–49 42.1 51.4 1.0 0.07 6.6 24.7 0.228 0.330 0.435 1.5 0.29
50–96 41.9 54.3 1.0 0.06 5.1 26.6 0.228 0.400 0.418 1.5 0.29
97–119 34.5 60.9 0.5 0.04 5.9 26.0 0.228 0.350 0.459 1.5 0.19

120–127 45.1 50.6 0.5 0.07 6.4 29.4 0.228 0.406 0.461 1.5 0.19
128–150 44.7 48.0 0.5 0.04 6.0 30.3 0.249 0.406 0.461 1.5 0.19

Note(s): OC: Soil organic carbon; CEC: cation exchange capacity; BD: soil bulk density; θS: saturated water content;
θwp: drained lower limit, θfc: drained upper limit of water content, KS: Saturated Hydraulic conductivity.

http://deltaweather.extension.msstate.edu/
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Table 2. Cultivar parameters used for simulating cotton (cv. Deltapine Land 1522) using the CSM-
CROPGRO-cotton v4.6.

Parameters Definition Value

CSDL Critical short-day length below which reproductive development progress with no day in length
effect (for short day plants) (h) 23.0

PPSEN The slope of the relative response of development to photoperiod with time (positive for short-day
plants) (h−1) 0.01

EM-FL Time between plant emergence and flower appearance (R1) (photothermal days) 41.0
FL-SH Time between first flower and first pod (R3) (photothermal days) 11.9
FL-SD Time between first flower and first seed (R5) (photothermal days) 17.7
SD-PM Time between first seed (R5) and physiological maturity (R7) (photothermal days) 32.81
FL-LF Time between first flower (R1) and end of leaf expansion (photothermal days) 68.28

LFMAX Maximum lead photosynthesis rate at 30 ◦C, 350 ppm CO2, and high light (mg CO2/m2s) 1.00
SLVAR Specific leaf area of cultivar under standard growth condition (cm2/g) 180
SIZLF Maximum size of full lead (three leaflets) (cm2) 300
XFRT Maximum fraction of daily growth that is partitioned to seed + shell 0.80

WTPSD Maximum weight per seed (g) 0.180
SFDUR Seed filling duration for pod cohort at standard growth conditions (photothermal days) 31.2
SDPDV Average seed per pod under standard growing conditions (#/pod) 25.00
PODUR Time required for cultivar to reach final pod load under optimal conditions (photothermal days) 14.2

THRSH Threshing percentage. The maximum ratio of (seed/(seed + shell)) at maturity. Causes seed to stop
growing as their dry weight increases until the shells are filled in a cohort. 70.0

SDPRO Fraction protein in seeds (g(protein)/g(seed)) 0.153
SDLIP Fraction oil in seeds (g(oil)/g(seed)) 0.120

Table 3. The main parameters of the APSIM-OzCot-cotton module used in the experiment.

Parameters Definition Value

PERCENT_I The percent lint per boll 42.0
SCBOLL The seed cotton per boll 4.0

RESPCON Respiration constant 0.023
SQCON Squaring constant for generating sites per day 0.021

FCUTOUT Constant used to determine when site production stops due to boll load 0.45
FLAI Varietal adjustment for the rate of LAI gain per fruiting site 0.87

DDISQ Daydegrees accumulation to first square (◦C d) 390
RLAI Base rate of leaf growth pre-first square 0.015

BckGndRetn Rate of underlying retention of fruit 0.9
FRUDD1 Cumulative day-degrees for each growth phase of fruit development 45
FRUDD2 Cumulative day-degrees for each growth phase of fruit development 169
FRUDD3 Cumulative day-degrees for each growth phase of fruit development 270
FRUDD4 Cumulative day-degrees for each growth phase of fruit development 290
FRUDD5 Cumulative day-degrees for each growth phase of fruit development 500
FRUDD6 Cumulative day-degrees for each growth phase of fruit development 630
FRUDD7 Cumulative day-degrees for each growth phase of fruit development 876
FRUDD8 Cumulative day-degrees for each growth phase of fruit development 1020

2.6. Statistics

The simulation accuracies of DSSAT and APSIM models were evaluated based on four
variables (i) days after planting of three key developmental stages (emergence, flowering,
and maturity), (ii) yield, (iii) LAI, and (iv) ET. The simulation results were evaluated using
the root mean squared error (RMSE), relative RMSE (RRMSE), and percentage deviation
(PD) using the following equations:
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RMSE =

√
1
n

n
∑

i=1
(Pi − Oi)

2

RRMSE = RMSE
Oavg

× 100

PD =
{

(Pi−Oi)
Oi

}
× 100

where Pi is the ith simulated value, Oi is the ith observed values, Oavg is the average of the
observed values, and n is the number of data pairs.

3. Results and Discussion
3.1. Climate

Lower Mississippi River Basin has a humid subtropical climate with mild winters and
warm summers [30]. According to the Köppen-Geiger climate classification, this region is
classified as humid temperate, with precipitation evenly distributed throughout the year.
In April 2017 the average maximum and minimum air temperatures were 3.1 ◦C and 2.6 ◦C
higher than normal. In 2018 April was cooler, but air temperature in May was significantly
above normal (Table 4).

Table 4. Maximum and minimum air temperature (◦C) and precipitation (mm) of the weather station
(Stoneville, MS, USA) close to experimental field during 2017 and 2018 growing seasons, values in
bracket indicate deviation from 30 yr. average.

Month Max. Temp. (◦C) Min. Temp. (◦C) Precipitation (mm)

2017
April 26.5 (3.1) 14.3 (2.6) 161 (25)
May 27.9 (0.2) 16.2 (−0.3) 97.5 (−28)
June 30.4 (−1.5) 20.0 (−0.6) 136 (38)
July 33.8 (0.7) 22.2 (0) 94.7 (6.9)

August 31.7 (−0.7) 21.6 (0.6) 260 (198)
September 31.1 (1.4) 17.3 (0.2) 21.6 (−62)

2018
April 21.5 (−1.9) 8.9 (−2.8) 135 (−1.4)
May 31.9 (4.2) 19.6 (3.1) 55.9 (−70)
June 32.8 (0.9) 21.3 (0.7) 78.7 (−18.6)
July 33.2 (0.1) 22.2 (0) 68.3 (−19.5)

August 33.3 (0.9) 21.1 (0.1) 231 (170)
September 31.5 (1.8) 20.6 (3.1) 166 (82.5)

This difference facilitated earlier planting in 2017 than in 2018. For 2017 and 2018, the
cumulative growing degree day (GDD) was 1386 ◦C-day (2526◦F-day) and 1796 ◦C-day
(3176 ◦F-day) based 15.6 ◦C-day (60 ◦F-day). Based on the average of the last three decades,
the annual total rainfall is 1325 mm. The experimental site received 684 mm and 607 mm
of rainfall from planting to harvest, during the 2017 and 2018 growing seasons. For both
years, rainfall in May was lower than normal. For both years, August was extremely wet,
as indicated by the above-normal monthly rainfall (Table 4).

3.2. Growth Parameters

Seedling emergence, flowering, and the number of days to physiological maturity
dates showed a close association between observed and simulated, with error variations
ranging from 8 d to 7 d (Table 5). Both models predicted similar seedling emergence
for both growing seasons. For 2017, DSSAT and APSIM flowering day predictions were
6 d and 7 d late, respectively, whereas, in 2018, both models predicted 8 and 3 d earlier
flowering. The DSSAT model predicted an early maturity by 2 d and 6 d and APSIM
predicted a 4 d late and 4 d earlier maturity in 2017 and 2018, respectively. Using the Root
zone Water Quality (RZWQM) model, Anapalli et al. (2019) also found days to seedling
emergence, flowering, and physiological maturity varied between −5 and +1 days for this
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experiment [6]. Hussain et al. (2018) concluded that incorporated functions of photoperiod,
cardinal temperature, and low temperature sensitivity within APSIM simulation might
delay the maturity of wheat with late planting [31]. Response functions for rates and
development and sensitivity to various stress factors at various stages are not parallel;
the influence of various stress factors on phenology is needed to accurately predict cotton
growth [32]. Results obtained in this study show that both the models need improvement
in simulating phenology better for crop management applications.

Table 5. Measured and simulated seedling emergence, flowering, number of days to physiological
maturity, and yield of cotton in the evapotranspiration-eddy covariance-experiments in 2017–2018.

Growth Stage Measured (M) DSSAT APSIM

Simulated (S) Error (S-M) Simulated (S) Error (S_M)

2017 (Calibration)
Emergence, DAP 9 7 −2 7 −2
Flowering, DAP 60 66 6 67 7
Maturity, DAP 132 130 −2 136 4
Yield, kg ha−1 3937 3973 36 3929 −8

2018 (Validation)
Emergence, DAP 10 5 −5 5 −5
Flowering, DAP 60 52 −8 57 −3
Maturity, DAP 124 118 −6 120 −4
Yield, kg ha−1 4699 4811 112 4610 −89

Note(s): DAP = days after planting.

3.3. Yield

Comparing two models for yield, DSSAT overestimated yield by 0.91% and 2.38%, and
APSIM underestimated yield by 0.20% and 1.89%, respectively, in the 2017 and 2018 grow-
ing seasons. Comparing the two models, APSIM simulation was better than DSSAT.
Similarly, Li et al., 2022 also found that APSIM accurately predicted rainfed cotton biomass
and lint yield in East-Central Texas [19]. They found the average difference between APSIM
simulated values and field observations was 13.9% for cotton biomass production. In this
experiment in grower’s field, destructive-biomass samples were not collected for compar-
isons with simulations. Both simulated and observed yields were higher in 2018 than in
2017. Moreover, the GDD was higher in 2018 than in 2017, which might lead to a shorter
growing season in 2018. Temperature is the most critical factor governing cotton phenologi-
cal development; GDD could be used with other factors to predict cotton growth. Previous
studies also reported that warming accelerated cotton growth, advanced cotton phenology,
and shortened the growing period of cotton [33,34].

3.4. LAI

In 2017, the maximum observed LAI value was 3.85 at 107 days after planting or
219 day of year (DOY); DSSAT and APSIM simulated maximum LAI values of 3.38 and
4.52, respectively (Figure 1a). In 2018, the maximum observed LAI value was 4.17; DSSAT
and APSIM predicted maximum LAI of 4.72 and 3.80, respectively. Simulation of LAI with
DSSAT and APSIM resulted in RMSE values of 0.65 and 0.52, respectively, in 2017 and
1.02 and 0.85, respectively, in 2018.

Cotton is a perennial crop with indeterminate growth characteristics; for that reason,
cotton leaf area development typically follows a sigmoid curve; it increases slowly during
the first 6–7 weeks and rapidly during early fruiting and canopy closure, approximately
75 days after planting [35]. LAI closely follows crop biomass, and the larger the LAI
greater the radiation use efficiency. In corn, Saadi et al., 2022 observed that maximum light
interception (90%) reached an LAI value of about 4; beyond this threshold, the increase
in light interception was minimal (less than 5%) and the impact on biomass and grain
formation are very small [18]. As discussed above, the differences between simulated
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and observed LAI were not large enough to influence cotton yield prediction in this
study. Thorp et al., 2020 found that leaf growth or development simulation by the CSM-
CROPGRO-cotton model was sensitive to three cultivar-specific parameters that were used
for simulating the crop, (i) maximum photosynthesis rate (mg CO2 m−2 s−1, LFMAX),
(ii) specific leaf area for standard conditions (cm2 g−1, SLVAR), and (iii) leaf appearance
rate (# ◦C−1 d−1, TRIFL) [22]. However, in APSIM, leaf expansion, photosynthesis and
fruiting cotton module are controlled by plant water supply and uptake [14].
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3.5. ET

The cumulative ET (DOY:126-247) quantified using the EC method was 368 mm,
whereas the simulated values were 484 mm and 485 mm (+32% for both) for DSSAT and
APSIM, respectively, during the 2017 growing seasons (Figure 2a,b). Average observed
ET values were 3.01 mm, and DSSAT and APSIM had average values of 3.97 mm and
3.98 mm, respectively. The highest observed ET was 5.67 mm; DSSAT and APSIM had
the highest values of 6.79 mm and 7.23 mm, respectively. In 2018, cumulative measured
ET was 429 mm, DSSAT and APSIM simulated cumulative ET values of 464 and 469 mm,
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respectively. Simulations of 1915–2015 weather data using RZWQM, Tang et al., 2018 found
that average cotton evapotranspiration in the Delta region was 552 mm during growing
season; the mean water requirement for cotton during the growing season totaled 649 mm,
average deficit of 395 mm year−1 [9].
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Over two years, the RMSE of daily simulated values of ET ranged between 1.90 to
2.17 mm (Figure 2a,c). For this experiment, Anapalli et al., 2019 reported that RMSEs
of daily ET simulations were 1.1 and 1.0 mm and RRMSE values of 37% and 30% for
2017 and 2018, respectively, using the RZWQM model [20]. The value of RRMSEs for
DSSAT and APSIM were 63% and 65% in 2017, and 55 and 59% in 2018, respectively.
It seems that both models did not perform well when ET decreased in certain periods
(DOY 185–200 and 226–235 in 2017). This might be due to simulation of soil moisture by
these models because low ET values without any reduction in LAI might indicate low
soil evaporation due to moisture stress. Percentage deviation differed between 2017 (32%)
and 2018 (9%). Saadi et al., 2022 reported that overall ET predictions were slightly higher
than observed variations by 3%, while the FAO-56 method overestimated ET by 18% [18].
Menefee et al., 2020 also observed an average overestimation of ET and concluded that
possible errors might be associated with DSSAT’s PET estimations, crop coefficient esti-
mation, and the simulation of soil water balance in vertisols with high swell-shrink clay
minerals [36]. Menefee et al., 2020 concluded that the inaccuracies with ET simulation in the
DSSAT based models were contributed by issues with PET calculation, crop coefficient (kC),
in addition to soil characteristics, especially clay contents, altering soil water movement in
their experiment [36]. Thorp et al., 2020 noted that leaf growth and expansion parameters
(LFMAX and TRIFL) influenced soil evaporation (EVPH) [37]. Estimation errors when evap-
oration is dominant mainly caused by the heterogeneity of water vapor transport within
plant and soil media [18]. Deviations of LAI simulations from the observed prediction also
affected the observed deviations in ET predictions. Finally, the imbalance in energy flux
accounted in the EC system varied between 2% to 12%. Considering all uncertainties in
measured and simulated ET, the accuracies in ET simulations, especially daily values of
ET, both the cropping system models-need further improvement for precision irrigation
management applications for enhanced WUE [20].

4. Conclusions

Irrigation water management based on location-specific crop water demands (ET)
vs. supply situations can significantly help enhance WUE for sustainable irrigated crop
production systems. Cropping system models are easy to implement tools for estimating
location-specific ET and crop production responses from soil and weather information. In
this study comparing models for predicting location-specific simulation of cotton, overall,
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the DSSAT-CROPGRO and APSIM-OzCot models demonstrated the potential to reasonably
estimate cotton yields under irrigated conditions in the Mississippi Delta region. Both
models showed similar performance predicting LAI and ET, but the prediction varied
between observed and simulated over two growing seasons. The simulation error statistics
show that the models need improvement in simulating daily ET demands for applications
in enhancing WUE in irrigated cotton systems in the Delta region.

Author Contributions: Conceptualization, A.C. and S.S.A.; methodology, A.C. and S.S.A.; software,
A.C. and S.S.A.; formal analysis, A.C. and S.S.A.; investigation, S.S.A.; resources, S.S.A.; data curation,
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