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Abstract: In the watershed hydrological model, the parameters represent the characteristics of the
watershed. Usually, the parameters are assumed to be constant in the stable environment. However,
in the changing environment, the parameters may change and the constant parameters would not
represent the change of the characteristics of the runoff generation and routing in the watershed. The
identification of the time-varying characteristics of the watershed hydrological model parameters
will help to improve the performance of the simulation and prediction of hydrological models
in changing environments. Based on the measured data at the ground stations in the Wei River
Basin on the Loess Plateau in China, the temporal and spatial evolution of the ecohydrological and
meteorological factors was analyzed, and the SWAT model was used to identify the relationship
between the model parameters and the factors, such as precipitation, potential evapotranspiration,
NDVI and the other environmental characterization factors of the river basin. The results showed
that the annual precipitation in the basin showed a decreasing trend, and the annual potential
evapotranspiration, the annual average temperature, the annual runoff and the annual average
NDVI all showed an increasing trend. The model parameters fluctuated with time during the study
period. The change of the soil evaporation compensation coefficient (ESCO) was similar with the
annual potential evapotranspiration, and the model parameters all showed a certain correlation with
the potential evaporation of the basin, which indicates that the changes of the hydrological model
parameters in the upper reach of the Wei River are closely related to the changes of the basin potential
evapotranspiration. Potential evapotranspiration is a characterization factor for dynamic changes of
the hydrological model parameters in the upper reach of the Wei River.

Keywords: hydrological simulation; time-varying parameters; potential evapotranspiration; Loess Plateau

1. Introduction

In the context of global climate change, the applicability of traditional runoff simu-
lation and forecasting methods has gradually deteriorated, which brings challenges to
hydrometeorological simulation and forecasting. The hydrological simulation of the river
basin under the changing environment is mainly affected by the climatic conditions and the
underlying surface conditions [1]. Climatic conditions are the driving factors of the water
cycle in the basin and the prerequisite for the generation of runoff [2], which directly or
indirectly affect the runoff process in the basin through changes in factors such as precipita-
tion, evapotranspiration and temperature [3]. Global warming has become an indisputable
fact [4]. The rise in temperature will cause changes in other meteorological elements. Signif-
icant changes have taken place in the type, intensity and amount of precipitation in many
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regions of the world, generally showing that humid regions are becoming more humid,
arid regions tend to become more arid and the interannual variability is significantly en-
hanced [5]. In addition, climatic conditions indirectly affect the hydrological process of the
watershed by affecting the growth state of vegetation and its structure [6]. The increase
and decrease in watershed runoff is inseparable from the change of the underlying sur-
face conditions. With the promotion of large-scale afforestation and urbanization, surface
vegetation coverage conditions and local water and heat flux transfer have undergone
dramatic changes [7–10], as well as large-scale water intake [11], water diversion projects
and reservoir construction, dispatch operation [12], and so on all leading to sudden changes
in natural river runoff. It indicates that the “steady-state” basin assumption in traditional
hydrological simulation is facing challenges, so the theory and method of hydrological
probability distribution based on the consistency assumption obviously cannot help people
accurately reveal the long-term law of water resources and flood evolution in changing
environments [13,14]. In the hydrological model, it is generally assumed that the parame-
ters representing the hydrological physical characteristics of the watershed are constant
over time, which not only cannot reflect the watershed characteristics correctly, but also
seriously weakens the simulation ability of the model. The identification and study of the
time-varying characteristics of hydrological model parameters in “unsteady” watersheds,
and the establishment of a model parameter estimation method that can reflect the climatic
conditions of the watershed and the changing laws of the underlying surface, will improve
the simulation and performance of hydrological models in changing environments.

The parameters of the hydrological model are usually closely related to the underlying
surface conditions of the watershed, and reflect the hydrological characteristics of the
watershed [15]. Since there are significant differences in climatic conditions, geographic
locations, vegetation coverage, soil conditions, topography and geological conditions in
different watersheds [16,17], the parameter values of the same model will also be very
different in different watersheds [18]. In the beginning, the traditional watershed hydrolog-
ical simulation only considers the spatial variability of the parameters of the hydrological
model, but does not consider the dynamic changes of the parameters. Usually, the model
parameters are considered to be static and remain unchanged over time in a given period
of time. However, under the changing environment, the changes in the characteristics
of watershed hydrology are not adequately reflected in the model and such assumptions
may no longer be applicable. Many scholars began to question such static assumptions
and carried out related researches. Kingumbi et al. [19] simulated the hydrological effect
of land-use changes by the MODCOU model in the Merguellil basin in central Tunisia
and evaluated the improvement in model representativeness by assigning specific param-
eters to the production functions in the zones of works of water and soil conservation.
Vaze et al. [20] used four different conceptual hydrological models in 61 watersheds in
southeastern Australia, and applied the method of segmental calibration to determine the
parameter values of the model in each time period, and it was found that climate change
during the study period would cause significant dynamic changes of parameters. In 273
watersheds in Austria, Merz et al. [21] identified the dynamic changes of parameters based
on the HBV model and found that the changes of model parameters had a strong correlation
with environmental meteorological factors such as rainfall, runoff coefficient and potential
evapotranspiration. Sun [22] used the THREW model in the upper reach of the Han River,
identified that all model parameters had a good correlation with the vegetation index,
and proposed a dynamic parameter estimation method based on vegetation coverage,
which improved the simulation effect of the model. Under the conditions of increasingly
significant changes in the basin environment, the constant model parameters over time
will be an important source of simulation errors [23]. Considering the dynamic changes of
parameters can significantly improve the simulation effect of the hydrological model for
the middle and low water sections of the runoff process [24].

The former studies qualitatively pointed out that the change of river basin environ-
mental factors will cause dynamic changes in model parameters, but did not establish the
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quantitative relationship between the factors and the parameters. They mostly focused
on the influence of climate variability on the parameters, and ignored the changes in the
underlying surface condition. In theory, the underlying surface conditions should have a
stronger correlation with the model parameters. Therefore, it is necessary to comprehen-
sively analyze the influence of meteorological factors in the watershed and the changes
of the underlying surface conditions on the model parameters, establish a time-varying
parameter estimation method based on the watershed characteristics, and further enhance
the ability of the hydrological model to reflect the changes of watershed characteristics, in
order to significantly improve the watershed characteristics. The study will improve the
simulation and prediction effects of hydrological models in changing environments. This
study takes the upper reach of the Wei River as the study area, analyzes the temporal and
spatial evolution of the ecological hydrometeorological elements in the study area, reveals
the temporal and spatial variation of these historical sequences and provides a basis for
hydrological simulation. The SWAT model is set up in the study area and the time-varying
parameter sequence of the hydrological model is obtained by segmental calibration, and
the relationship between the model parameters and environmental characterization factors
such as precipitation, potential evapotranspiration and the normalized difference vegeta-
tion index (NDVI) is analyzed, which provides a preliminary solution for the improvement
of the distributed hydrological model. In Section 2, the study area and data are introduced.
In Section 3, the methods and hydrological model are described. In Section 4, the simulation
results are displayed. Finally, a conclusion is drawn in Section 5.

2. Study Area and Data
2.1. Study Area

The study area is the upper reach of the Beidao Hydrological Station in the Wei River
(Figure 1). The study area is located at 103◦97′−106◦42′ E and 34◦17′−36◦19′ N, with a
catchment area of about 25,000 km2, accounting for about 19% of the total area of the Wei
River Basin. The study area is a Loess hilly and gully area with an altitude of 1079–3934 m.
The climate is a continental monsoon climate, with a cold and dry winter and a hot and
rainy summer. The average annual precipitation from 1965 to 2017 was 491 mm, and
the precipitation was unevenly distributed throughout the year, mostly concentrated in
July-September. The annual average temperature is 7.8–13.5 ◦C, the extreme maximum
temperature is 42.8 ◦C, the extreme minimum temperature is −28.1 ◦C and the annual
potential evapotranspiration is 700–1200 mm.

2.2. Data

In this study, the ground-measured meteorological data include the daily data of
6 meteorological stations and 16 rainfall stations in the study area. The data of the meteoro-
logical stations include daily rainfall, temperature, sunshine duration, relative humidity, air
pressure and average wind speed. The measured daily runoff data from 2001 to 2017 come
from the Beidao Hydrological Station. The location of the stations is shown in Figure 1. The
measured flow data and meteorological data come from the Yellow River Basin Hydrological
Yearbook and the China Meteorological Data Network, respectively. The vegetation data
from 2001 to 2017 were derived from the NDVI dataset provided by the MODIS/Terra
website. The dataset was the MOD13Q1 product with a spatial resolution of 250 m and a
temporal resolution of 16 days.

The DEM data used to build the hydrological model came from the ASTER GDEM data
provided by Geospatial Data Cloud (http://www.gscloud.cn, accessed on: 1 October 2022),
with a spatial resolution of 30 m. The land use data in 2010 came from the Resource and
Environment Data Center of the Chinese Academy of Sciences (http://www.resdc.cn,
accessed on: 1 October 2022), and the soil attribute data came from the Harmonized World
Soil Database (HWSD), with a spatial resolution of 1000 m. The detailed model construction
steps refer to Wu et al. [25].

http://www.gscloud.cn
http://www.resdc.cn
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3. Methods

Since there is a lack of recorded solar radiation data at all meteorological stations
in the study area, the solar radiation in the watershed was approximated by the number
of sunshine hours. The measured meteorological data collected in this study are rela-
tively comprehensive, and the Penman–Monteith method was chosen for the calculation of
potential evapotranspiration. For the whole basin average precipitation, potential evapo-
transpiration, temperature, runoff, vegetation index and other variables in the study area,
the linear regression method and the cumulative anomaly method were used to analyze the
trend and abrupt change, respectively. The linear regression method is adopted to construct
a univariate linear regression equation between the hydrometeorological variable sequence
and the time series. The regression coefficient b can intuitively reflect the changing rate
of the hydrometeorological sequence, and its positive and negative values indicate the
increasing or decreasing trend of the hydrometeorological sequence, respectively. The t-test
method (a = 0.05) is used to test the significance of the regression coefficient of the equation;
the significance of the change trend of the hydrometeorological sequence is evaluated [26].
The formula of linear regression is as follows:

x(t) = a + bt (1)

where, x is the variable, t is time series, a and b are parameters.
The cumulative anomaly method is a method for evaluating the trend of change

according to the increase and decrease in the cumulative anomaly curve. The long-term
evolution trend of the hydrometeorological sequence and the approximate time of the
sudden change can be evaluated [27]. The formula to calculate the cumulative anomaly
value cd at time t is:

cd =
n

∑
t=1

(x(t)− xmean) (2)
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where, x(t) is the variable at t and xmean is the mean of x.
The SWAT model is a physically based distributed hydrological model and is widely

used to simulate the hydrological process of the watershed all over the world. It has
great advantages in simulating long-term continuous hydrological processes in large-scale
complex watersheds. Therefore, since the model was launched, it has been used in Europe,
North America, Canada, Asia and other regions with good results [28,29]. The basin SWAT
model was constructed, and the DEM data of the basin were used for catchment analysis
and river network extraction. The minimum catchment area threshold was set to 400 km2,
and the study area was divided into 39 sub-basins. Sensitivity analysis was performed
using the SUFI-2 algorithm, in which six sensitive parameters were closely related to runoff,
such as the number of runoff curves (CN2), the effective hydraulic conductivity of the main
channel bed (CH_K2), the soil evaporation compensation coefficient (ESCO), the baseflow
α factor of riparian regulation and storage (ALPHA_BNK), the Manning coefficient of the
main channel (CH_N2) and the saturated hydraulic conductivity of the soil (SOL_K). Since
CH_K2 and SOL_K are parameters that characterize the soil characteristics of the basin,
they are not suitable to establish a relationship with the meteorological characteristics, and
only CN2, ESCO, ALPHA_BNK and CH_N2 are analyzed.

The Nash–Sutcliffe efficiency coefficient (NSE), the coefficient of determination (R2)
and the Kling–Gupta coefficient (KGE) [30–33] are selected to evaluate the simulated daily
flow. The formulas are as follows:

NSE = 1− ∑n
i=1(Qo,i −Qs,i)

2

∑n
i=1
(
Qo,i −Qo

)2 (3)

R2 =
∑n

i=1
[(

Qs,i −Qs
)(

Qo,i −Qo
)]2

∑n
i=1
(
Qo,i −Qo

)2
∑n

i=1
(
Qs,i −Qs

)2 (4)

KGE = 1−
√
(r− 1)2 + (β− 1)2 + (γ− 1)2 (5)

β =
µs

µo
, γ =

σs/µs

σo/µo
(6)

where, n represents the length of the runoff sequence; Qs and Qo represent the simulated
flow and measured flow; µ and σ are the mean and variance, respectively; r is the linear
correlation coefficient between the simulated and measured values. The closer NSE and R2

are to 1, the better the simulation effect is. The KGE coefficient is a comprehensive index
including Cv, correlation coefficient and mean value. The closer the value is to 1, the higher
the simulation accuracy.

4. Results
4.1. Spatial Distribution of Meteorological Factors

According to the precipitation, air temperature and potential evapotranspiration data
calculated by the Penman–Monteith formula from 1965 to 2017 at the six meteorological
stations in the upper reach of the Wei River, the spatial distribution of the annual average
precipitation, temperature and potential evapotranspiration was plotted by inverse distance
weighting interpolation (IDW), as shown in Figure 2. It shows that the annual average pre-
cipitation in the basin has obvious differences in spatial distribution, and generally shows a
decreasing trend from the southwest of the basin to the northeast. The spatial distribution
of the average temperature in the basin shows an increasing trend from the northwest to
the southeast. The temperature in about two-thirds of the area is between 6 and 11 ◦C.
From the perspective of the river flow, the high temperature area is located at the outlet of
the downstream watershed, and the temperature in the middle and upper reaches of the
watershed is lower. It is closely related to the changes of elevation in the basin. The spatial
distribution of the annual average potential evapotranspiration in the basin is extremely
uneven, and the overall distribution pattern is that the potential evapotranspiration in the
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northern part of the basin is slightly larger than that in the southern part of the basin. The
spatial distributions of potential evapotranspiration and precipitation are basically oppo-
site; the area with the largest potential evapotranspiration has less precipitation and, on the
contrary, the area with the smallest potential evapotranspiration has more precipitation.
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4.2. Interannual Changes of the Environmental Factors

The linear regression method was used to analyze the trend of the annual precipitation,
temperature, potential evapotranspiration and runoff depth series at the whole basin scale
in the study area from 1965 to 2017, and the significance of the trend results was further
tested. The results are shown in Figure 3. It shows that the annual precipitation in the
basin shows an insignificant decreasing trend, with a decreasing rate of 0.59 mm/a. The
mean annual precipitation in the basin was 491.37 mm, the annual precipitation reached
the maximum in 1967, about 704.04 mm, and the minimum in 1982. The annual average
temperature in the basin shows a significant growth trend, with an increasing rate of
0.03 ◦C/a. The mean annual temperature in the basin is 6.62 ◦C. The annual average
temperature reached the maximum in 2016, about 7.98 ◦C, and was the minimum in 1967.
The annual potential evapotranspiration in the basin showed a significant increasing trend,
with an increasing rate of 1.87 mm/a. The mean annual potential evapotranspiration in the
basin was 1150.72 mm, and the annual potential evapotranspiration reached the maximum
in 2016, about 1280.31 mm, and was the minimum in 1967. The annual runoff depth of
the Beidao Hydrological Station showed an insignificant trend with an increasing rate
of 0.42 mm/a. The mean annual runoff depth of the Beidao Hydrological Station was
26.20 mm, and the annual runoff depth reached the maximum in 2013, about 49.01 mm,
and was the minimum in 2002.
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Figure 3. Analysis of trends and abrupt changes of hydrological and meteorological elements in
the basin. Note: x = year−1964. (a) Annual precipitation trend, (b) Analysis of abrupt change
in annual precipitation, (c) Annual temperature trend, (d) Analysis of abrupt change in annual
temperature, (e) Annual potential evapotranspiration trend, (f) Analysis of abrupt change in annual
potential evapotranspiration, (g) Annual runoff depth trend, (h) Analysis of abrupt change in annual
runoff depth.

The cumulative anomaly method was used to analyze the mutation of the annual
precipitation, temperature, potential evapotranspiration and runoff depth series in the
study area from 1965 to 2017. The results are shown in Figure 3. It was identified that
the annual precipitation and runoff depth series did not have abrupt changes, the annual
mean temperature series had a significant jump around 1997, and the annual potential
evapotranspiration series had a significant jump around 1994. The simulation period is
2001–2017 and after the abrupt changes.

Figure 4 shows the changing process of the annual average NDVI series in the study
area from 2001 to 2017. It shows that although the average annual NDVI value of the
watershed fluctuated during the 17 years, the overall trend is significant increase, which
indicates that the vegetation coverage in the study area during the 17 years was increasing
continuously. Especially after 2011, the vegetation condition significantly improved. The
annual NDVI value of the watershed was between 0.30 and 0.38 from 2001 to 2017. The av-
erage annual NDVI value of the watershed increased by 19.7%, and reached the maximum
value of about 0.38 in 2013. Figure 5 shows the seasonality of NDVI on the monthly scale in
the study area from 2001 to 2017. It shows that the vegetation change in the study area has
a significant seasonality across the year. The maximum monthly NDVI in the study area
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generally occurs from June to August, while the minimum monthly NDVI generally occurs
from January to March.
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Figure 4. Annual average NDVI in the basin. Note: x = year−2000.
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Figure 5. Seasonality of Monthly NDVI.

4.3. Simulation of the Hydrological Process

According to the mutation analysis results of the hydrometeorological data, 2001–2017
was selected as the simulation period of the model, 2001 was set as the warm-up period
of the model, 2002–2013 was the calibration period, and 2014–2017 was the verification
period. Sensitivity analysis was carried out on the model parameters, among which there
are six parameters closely related to runoff, namely the number of runoff curves (CN2), the
effective hydraulic conductivity of the main channel bed (CH_K2), the soil evaporation
compensation coefficient (ESCO), and the baseflow α factor of riparian regulation and
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storage (ALPHA_BNK), the Manning coefficient of the main channel (CH_N2) and the
saturated hydraulic conductivity of the soil (SOL_K).

The daily runoff at the Beidao Hydrological Station is simulated, and the measured and
simulated flow processes in the calibration and verification periods are shown in Figure 6,
and the evaluation results of the daily flow simulation are shown in Table 1. It shows that
the simulated daily flow process in the calibration period of the Beidao hydrological station
is quite good, and the three evaluation indicators are all above 0.54, of which the KGE index
reaches 0.70, and the simulation effect is poor in the verification period except for 2014. In
general, the SWAT model has been successfully constructed in the study area, and has good
applicability in the watershed. Further research is carried out based on this model.
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Figure 6. Results of simulated and observed streamflow in calibration period and validation period.
(a) calibration period. (b) verification period.

Table 1. Evaluation result of daily flow simulation value.

Period R2 NSE KGE

Calibration period (2002–2013) 0.58 0.54 0.70
Verification period (2014–2017) 0.31 0.19 0.54

4.4. Time-Varying Parameters of the Hydrological Model

In order to obtain the time-varying parameters of the SWAT model, the SUFI-2 algo-
rithm was used to calibrate the model parameters in each year from 2001 to 2017, and the
previous year of each calibration period was used as the model warm-up period. Then, the
daily runoff process of the study area in each year was simulated by the SWAT model with
one parameter set of this year. The Nash–Sutcliffe efficiency coefficient, R2 and KGE were
used to evaluate the simulation accuracy of the runoff in each period. The results are shown
in Table 2. It shows that the daily runoff simulation accuracy in the other 10 years met the
requirements, except for the poor simulation in 2002, 2004, 2008, 2009, 2016 and 2017.
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Table 2. Evaluation result of simulated daily flow of each year.

Year R2 NSE KGE

2002 0.33 0.26 0.53
2003 0.74 0.73 0.77
2004 0.34 0.34 0.44
2005 0.56 0.53 0.71
2006 0.56 0.55 0.67
2007 0.42 0.42 0.52
2008 0.37 0.33 0.55
2009 0.30 0.15 0.55
2010 0.61 0.59 0.67
2011 0.53 0.52 0.58
2012 0.68 0.66 0.82
2013 0.64 0.62 0.79
2014 0.50 0.42 0.70
2015 0.45 0.44 0.62
2016 0.36 0.35 0.47
2017 0.29 0.12 0.53

The hydrological model was calibrated year by year in 1-year increments. Four time-
dependent model parameter series, CN2, ESCO, ALPHA_BNK and CH_N2, were obtained
for the study area. The relationship between model parameters and environmental charac-
terization factors, i.e., precipitation, potential evapotranspiration and NDVI in the basin
is plotted, as shown in Figures 7–10. It shows that the four parameters are fluctuating in
different degrees during the study period. There was no obvious trend in CN2 and CH_N2.
The soil evaporation compensation coefficient (ESCO) and ALPHA_BNK showed a down-
ward trend, but the magnitude of change in ALPHA_BNK was small and negligible. The
smaller the value, the more evapotranspiration water can be obtained from the lower soil
layer, which is consistent with the conclusion that the watershed evaporation is increasing
year by year, as shown in Figure 8.
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Figure 7. Time-varying process of CN2 to precipitation, potential evapotranspiration and NDVI.
(a) Precipitation, (b) potential evapotranspiration, (c) NDVI.
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Figure 8. Time-varying process of ESCO to basin precipitation, potential evapotranspiration and
NDVI. (a) Precipitation, (b) potential evapotranspiration, (c) NDVI.
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Figure 9. Time-varying process of CH_N2 to basin precipitation, potential evapotranspiration and
NDVI. (a) Precipitation, (b) potential evapotranspiration, (c) NDVI.
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Figure 10. Time-varying process of ALPHA_BNK to basin precipitation, potential evapotranspiration
and NDVI. (a) Precipitation, (b) potential evapotranspiration, (c) NDVI.

4.5. Analysis of the Relationship between Model Parameters and Environmental Factors

The scatter plots of the hydrological model parameters and environmental repre-
sentation factors of precipitation, potential evapotranspiration and NDVI were shown to
identify the relationship between them, and the results are shown in Table 3, Figures 11–14.
Figure 11 shows that there is a weak negative correlation between CN2 and potential evap-
otranspiration. The number of runoff curves (CN2) changes inversely with the change of
potential evapotranspiration, and has no obvious correlation with precipitation and NDVI.
In Figure 12, ESCO showed a certain negative correlation with potential evapotranspiration
and NDVI, and the correlation coefficient passed the 0.05 significance level test. The soil
evaporation compensation coefficient (ESCO) decreased with the increase in potential
evapotranspiration and NDVI, and had no significant correlation with precipitation. The
smaller the value of ESCO, the more evaporative water the model can obtain from the
lower soil layer, resulting in the reduction of surface runoff, interflow and subsurface
runoff, especially the most obvious reduction in surface runoff. In Figure 13, CH_N2 has a
certain correlation with precipitation and potential evapotranspiration. It increases with
the increase in precipitation and decreases with the increase in potential evapotranspi-
ration. There is no obvious correlation with NDVI. The correlation coefficient between
CH_N2 and precipitation passes the 0.05 significance level test. In Figure 14, ALPHA_BNK
showed a certain negative correlation with potential evapotranspiration and NDVI, and
the correlation coefficient passed the 0.05 significance level test. The baseflow α factor of
riparian regulation and storage (ALPHA_BNK) decreased with the increase in potential
evapotranspiration and NDVI, and had a weak positive correlation with precipitation.
The baseflow α factor of riparian regulation and storage is a response index reflecting the
discharge rate of subsurface runoff to the river discharge at the river bank, and the river
discharge is positively correlated with it.
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Table 3. The R2 of each parameter with precipitation, potential evapotranspiration and NDVI.

R2 Precipitation Potential Evapotranspiration NDVI

the number of runoff curves
(CN2) 0.0032 0.0634 0.0003

the soil evaporation
compensation coefficient

(ESCO)
0.0008 0.4463 * 0.4402 *

the Manning coefficient of the
main channel

(CH_N2)
0.3364 * 0.2062 0.0009

the baseflow α factor of
riparian regulation and storage

(ALPHA_BNK)
0.1036 0.5453 * 0.2563 *

Note: * Indicates passing the 0.05 significance level test.
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Figure 11. Correlation of CN2 to watershed precipitation, potential evapotranspiration, NDVI.
(a) Precipitation, (b) potential evapotranspiration, (c) NDVI.
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Figure 12. Correlation of ESCO to watershed precipitation, potential evapotranspiration, NDVI.
(a) Precipitation, (b) potential evapotranspiration, (c) NDVI.
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Figure 13. Correlation of CH_N2 to watershed precipitation, potential evapotranspiration, NDVI.
(a) Precipitation, (b) potential evapotranspiration, (c) NDVI.
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Figure 14. Correlation of ALPHA_BNK to watershed precipitation, potential evapotranspiration,
NDVI. (a) Precipitation, (b) potential evapotranspiration, (c) NDVI.

In summary, all four parameters of the SWAT model in the upper reach of the Wei
River Basin show a certain correlation with potential evapotranspiration, and some param-
eters have a correlation with precipitation or NDVI, which indicates that the changes of the
hydrological model parameters in the upper reach of the Wei River Basin are closely related
to the dynamic changes of potential evapotranspiration. Therefore, potential evapotranspi-
ration can be used as a representative factor of the dynamic change of model parameters.

5. Conclusions

In this study, the upper reach of the Wei River is selected as the study area, and the
temporal and spatial evolution of the ecological hydrometeorological elements in the study
area is revealed using the linear regression method and the cumulative anomaly method.
The time-varying parameter series of the hydrological model is obtained based on the
SWAT model in each year. The time-varying characteristics of the model parameters and
environmental indicators such as precipitation, potential evapotranspiration and NDVI
were analyzed, and the response relationship between them was identified.

In addition to the decreasing trend of annual precipitation in the basin, the hydrome-
teorological elements such as annual potential evapotranspiration, annual average temper-
ature, annual runoff depth and annual average NDVI all showed an increasing trend. The
annual precipitation and annual runoff depth series in the basin did not change abruptly,
but the annual mean temperature series and the annual potential evapotranspiration series
jumped significantly around 1997 and 1994, respectively.

Except for the six years of 2002, 2004, 2008, 2009, 2016 and 2017 in 2002–2017, the
daily runoff simulation accuracy in the other 10 years met the requirements. The four
model parameters of CN2, ESCO, CH_N2 and ALPHA_BNK all fluctuated with time
during the study period. The number of runoff curves (CN2) and CH_N2 had no obvious
trend changes, while ESCO and ALPHA_BNK showed a downward trend. Because the
magnitude of change in ALPHA_BNK was small, it can be neglected, and the change of
ESCO is consistent with the conclusion that the evaporation in the basin increases year
by year.

All model parameters show a certain correlation with potential evapotranspiration
in the basin, which indicates that the changes of the hydrological model parameters in
the upper reach of the Wei River Basin are closely related to the dynamic changes of
potential evapotranspiration. Therefore, potential evapotranspiration can be used as an
environmental factor to characterize the dynamic changes of the model parameters.
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