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Abstract: Groundwater nitrate contamination is a significant concern in agricultural watersheds
worldwide with it becoming a more pervasive problem in the last three decades. Models are great
tools that are used to identify the sources and spatial patterns of nitrate contamination of groundwater
due to agricultural activities. This Systematic Review (SR) seeks to provide a comprehensive overview
of different models used to estimate nitrate contamination of groundwater due to agricultural activi-
ties. We described different types of models available in the field of modeling groundwater nitrate
contamination, the models used, the input requirements of different models, and the evaluation met-
rics used. Out of all the models reviewed, stand-alone process-based models are predominantly used
for modeling nitrate contamination, followed by integrated models, with HYDRUS and LEACHM
models being the two most commonly used process-based models worldwide. Most models are
evaluated using the statistical metric Root Mean Square Error (RMSE) followed by the correlation
coefficient (r). This study provides the current basis for model selection in modeling nitrate contami-
nation of groundwater due to agricultural activities. In addition, it also provides a clear and concise
picture of the state of the art and implications to the scientific community doing groundwater quality
modeling studies.

Keywords: agriculture; groundwater; HYDRUS; model evaluation metrics; nitrate; process-based
models; systematic review

1. Introduction

Due to the increasing global population, food demand is expected to increase between
59% to 98% by 2050 [1]. There is a need to boost food production for the growing population
and in addition to irrigation, modern agriculture depends majorly on fertilizer as a low-cost
and low-effort input to achieve this [2–4]. Nitrogen is an essential nutrient for crop growth
and development. Therefore, adequate supply of nitrogen fertilizers in the form of urea
and NPK (Nitrogen Phosphorus Potassium) plays a crucial role in crop production [5,6].

In recent years, the overconsumption of nitrogen fertilizers has resulted in groundwa-
ter contamination which has become a major environmental concern [7,8]. Groundwater
is a source of drinking and irrigation for 50% and 43% of the world’s population, respec-
tively [9]. Past studies have found that agriculture contributes to 60% of groundwater
contamination globally [10], and that the amount of nitrogen fertilizer applied is strongly
correlated to high nitrate concentrations in groundwater [11]. The consumption of nitrate-
contaminated groundwater leads to several health issues [12–14], and studies have found
an increase in the risk of diseases like methemoglobinemia or blue baby syndrome in
newborn babies due to consumption of nitrate-contaminated water [15,16].

Concerns about nitrate-contaminated groundwater from agricultural activities have
been the topic of several research studies that have included onsite field monitoring, inten-
sive lab testing, and computer simulations [17–20]. Some existing studies have reported
generalized approaches of nitrate contamination estimation and its impact on groundwater.
For example, a study [21] showed that different management strategies impacted nitrate
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leaching in orchard fields. Another study [22] showed the impact of climate change on fu-
ture nitrate concentrations of groundwater of the UK. Similarly, [23] discussed the problems
of nitrogen input into groundwater. Field experiments and lab tests are labor-intensive,
tedious, and expensive, but provide the data required for model parameterization for the
models to simulate the field environment. These studies have covered water quantity
control, socioeconomic issues, management strategies, and climate change impacts, but
have not discussed about model usage for groundwater nitrate contamination due to
agricultural activities.

The use of computer models as a way to quantify nitrate contamination of groundwa-
ter due to agricultural activities has also been reported in some studies around the world.
Out of these, few studies focus on how to reduce nitrate contamination from agricultural ac-
tivities whereas others include scenario analyses or different management practices [24–26].
As the adoption of new crop management practices gains popularity, computer models
prove to be useful tools to simulate field conditions and test the impacts of management
practices on curbing nitrate contamination of groundwater. A study reported the [27]
use of the computer simulation model, HYDRUS-2D, to estimate the amount of nitrate
leaching from an agricultural field and found that a well-calibrated and validated model
can prove to be a useful tool to provide a precise estimation of contamination. In another
study, De Nitrification-De Composition (DNDC) model was calibrated for an agriculturally
intense region in Northern China and it was found that the model is capable to capture
the explicit spatial patterns of nitrate leaching and nitrogen fluxes in the study area due to
spatially variable fertilizer application rates [28]. Likewise, according to [29], in the Hubei
Province of China, nitrate concentration in the subsurface region increased with increasing
nitrogen application which has been measured using calibrated and validated HYDRUS-2D
model for lateral saturated flow and vertical leaching of nitrate. SWAT model was used
to simulate crop yield and nitrate contamination for corn-peanut crop rotation under a
variety of irrigation and nutrient management practices and found that sensor-based irriga-
tion results in 40% less nitrate contamination under a 45% irrigation application without
significant change in yield [30]. The GLEAMS model was used to quantify the impact of
irrigation on nitrate contamination under potato farming [31]. The study concluded that
additional irrigation water for frost prevention enhanced groundwater nitrate contamina-
tion. Similarly, [32] studied transport and fate of nitrate within the soil profile and nitrate
leaching to subsurface drains in intensive agriculture farmland by comparing field data
with simulation results obtained from LEACHMN model. They found that LEACHMN
model performed satisfactorily in simulating nitrate in soil and subsurface drainange at
the field scale. In addition, they concluded that LEACHMN model after calibration is a
useful tool to demonstrate the distribution and transport of nitrate in groundwater due
to agricultural activities. All these studies showed that the use of computer models were
useful and efficient in estimating groundwater contamination due to agricultural activities.

Though computer models are an effective way to assess nitrate contamination of
groundwater, there are several options available when it comes to choosing the model that
best suits the needs of a specific research area. Given the existence of a range of models that
can be used to simulate groundwater nitrate contamination, there is a need to determine
which models are commonly used in the domain of groundwater nitrate contamination
due to agricultural activities and what input variables are required by different models to
simulate the nitrate contamination levels.

To address this issue, we conducted a Systematic Review (SR) to provide succinct
updates on the state of groundwater nitrate contamination modeling due to agricultural
activities. Therefore, this SR study aims to provide detailed information on different kinds of
models used in modeling groundwater nitrate contamination due to agricultural activities.
This SR aims to gain a detailed insight into the topic based on publications available
worldwide. For this purpose, the following objectives/research questions were defined:

i. What models have been used in literature to estimate nitrate contamination of
groundwater?
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ii. Which input variables are needed by the models to simulate groundwater nitrate
contamination?

iii. What models have been commonly used worldwide in this area?
iv. What statistical/evaluation metrics have been used to evaluate the performance

of models?
v. What are the challenges faced in using models for estimating nitrate contamination

of groundwater due to agricultural activities?

2. Methods

This SR was designed to provide a clear insight on the models used around the
world for simulating groundwater nitrate contamination due to agricultural activities.
For this purpose, Preferred Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) guidelines [33] were followed and a SR methodology was defined which includes
identification, screening, eligibility criteria, and full-text assessment. The details of each
step of the SR methodology are as follows:

2.1. Identification

Groundwater nitrate contamination is a broad term and there could be several different
types of contaminants (fertilizers, pesticides, heavy metals, etc.) that contribute towards it
along with different sources of contamination (agricultural as well as industrial). For this
study, we focus specifically on nitrate contamination of groundwater due to agricultural
activities. To provide knowledge and background of different types of models used for
the estimation of groundwater nitrate contamination, keywords were identified to get the
relevant publications. Accurate keyword selection is key to any good SR study, and to
achieve this selected keywords were converted into a string. The string was defined by
narrowing it down to the basic concepts that are relevant to the scope of this study. The
following string was used with AND and OR connection:

“Groundwater” AND “Nitrate” AND “Agriculture” AND “Modeling” AND (“Con-
tamination” OR “Pollution” OR “Leaching” OR “Blue Baby Syndrome”)

The literature search was performed for relevant studies published between 1 January
2000, and 31 December 2022. Only studies that were written in English languages were
included because English is the most used language worldwide. After identifying the
string, publication period, and specified language, the most used electronic databases were
selected. The electronic databases used for this SR study are as follows: Google Scholar,
World Cat, Science Direct, Scopus, Web of Science, JSTOR, EBSCO, ProQuest, and Taylor &
Francis. The string defined above was then searched in the selected electronic databases
along with language and publication period constraints. Figure 1 represents the number of
publications obtained from the selected electronic databases in ascending order.

As shown in Figure 1, most of the publications were obtained from Science Direct
and Google Scholar. This was expected since these are the largest literature sources and
full-text electronic databases that provide scientific works from all over the world in diverse
scientific fields.

2.2. Screening

After identifying all relevant publications in the previous step, the publications were
screened using two criteria as defined below:

Criterion I—Duplicates removal: All selected titles were added to an MS Excel [34]
sheet and duplicate titles were removed.
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Figure 1. Number of publications “identified” from selected electronic databases.

Criterion II—Peer-reviewed publications: After removing the duplicates, peer-reviewed
publications were selected. Given the broad nature of the domain of this search, finding all
relevant publications by manually searching through conferences and journals would be
very time-consuming. We, therefore, opted to start the search process with an automated
search. We limited the search to electronic databases only and solely considered peer-
reviewed journals. This created a structured search process that required rigorous methods
to ensure that the results are both reliable and meaningful.

After the screening step, the selected publications were checked against the eligibility
criteria developed in the next step.

2.3. Eligibility Criteria

In this step, the publications were analyzed based on inclusion and exclusion criteria
to set the boundaries for the SR. The publications were filtered for the title, abstract, and
then full text. For this purpose, two exclusion criteria were defined which are as follows:

Exclusion Criterion I (EC I):—For titles and abstracts filtering, we read the titles and
abstracts to get the relevant publications that covered groundwater nitrate contamination
and the use of modeling techniques to estimate contamination, anywhere in the world.
This lead to a subset of publications for the full text reading. When we started reading
the full text, we encountered few publications that reported research on the modeling of
nitrate contamination of groundwater but specifically did not mention agricultural activities
as the main source of contamination. We also found few publications that conducted a
comparison of their approach to modeling groundwater contamination with other studies.
This could be possibly caused due to the usage of large string in the databases. We found
that the publications we obtained had either OR or AND terms but rarely both and that the
search string lacked OR and AND keywords explicitly. To solve this problem, we restricted
the search keywords after reading few full-text publications. To get the publications that
satisfy these criteria, and to make our methodology more robust, the string was modified
to include all the AND keywords and described as exclusion criteria II.
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Exclusion Criterion II (EC II): The following string was finalized using four defined
keywords and connected with the AND term:

“Agriculture” AND “Nitrate” AND “Modeling” AND “Groundwater”
The string was then searched in all the publications obtained after EC I. Publications

that had all four keywords of the string were kept for further analysis, and the remaining
publications were discarded.

2.4. Full-Text Assessment

The publications that satisfied EC II were selected for full-text assessment. These
publications were used to show broader trends of model types, input variables required by
models, evaluation metrics used by models, and the most commonly used model. Based
on this SR methodology (see Figure 2), 28,550 publications were identified in the first step
out of which, 21,700 publications were shortlisted for the title and abstract filtering after
removing duplicates and non-peer-reviewed articles. Title and abstract filtering were done
by using EC I in the third step, bringing down the number of publications to 233. After
applying EC II, we obtained 75 publications for full-text assessment but found that out of
these, 19 publications were not accessible. So, we were left with 56 publications in the end.
These 56 publications were further analyzed to answer the research questions of this study.
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Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) with number of
publications in parenthesis.

3. Results
3.1. Literature Selection and Distribution

Figure 3 shows the distribution of studies collected from all over the world following
the criteria defined above. The vast majority of publications reporting modeling of nitrate
contamination of groundwater due to agricultural activities have been conducted in China
followed by the United States. We observe that 23.7% of the publications are based in
China, 16.9% in the United States, 6.7% in Iran, and Spain, 5% in Canada, and, Korea,
Japan, Italy, Greece, Germany, France, and Egypt, together accounted for 25.4%, with the
rest of the publications (16.9%) distributed among other countries of the world. These
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numbers point towards the higher use of modeling as a way to understand the issues of
nitrate contamination of groundwater in various parts of the world. According to [35],
studies on yield optimization and environmental conservation are more common in the
US, China, European Union, and Canada, which could explain why modeling of nitrate
contamination of groundwater is concentrated in these regions. They also argued that
these countries of the world may have stood out due to better allocation of resources
towards research and development of agricultural productivity. Several studies around
the world focused on nitrate contamination of groundwater, ranging from piezometric
groundwater sampling, isotope tracing of nitrate leaching potentials, chemical analyses,
and water quality assessments [36–40]. However, they were not included in this SR since
we focused on the use of modeling to study nitrate contamination of groundwater due to
agricultural activities.
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nation due to agricultural activities across the world.

Table 1 shows the publication year, title and the model used. Figure 4 shows yearly
publication distributions from 2000 through 2022, with 2013 being the year with the highest
number of publications, followed by 2011 and 2021, respectively, and no publications on
the selected topic in 2018. Although the temporal distribution of publications selected for
this study (Figure 4) did not follow a specific trend or distribution, it is important to note
that the total number of publications on the topic of this SR was higher in the recent decade
(2011–2022) as compared to the decade before it (Figure 4). This is an indication that the
use of computer models to simulate groundwater nitrate contamination due to agricultural
activities is gaining research attention.

Table 1. Publications selected for this SR with the year of publication, title, type of model used, and
the reference.

Year Title Model Used References

2000
Modeling and testing of the effect of tillage, cropping and

water management practices on nitrate leaching in clay
loam soil

LEACHM and statistical [41]

2001 Regional nitrate leaching variability: what makes a
difference in northeastern Colorado NLEAP [42]
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Table 1. Cont.

Year Title Model Used References

2001 Modeling the effect of chemical fertilizers on ground water
quality in the Nile Valley aquifer, Egypt GWS-3D [43]

2002 Linkage of a geographical information system with the
gleams model to assess nitrate leaching in agricultural areas GLEAMS + PC-Arc/Cad GIS [44]

2003
Modeling nitrogen dynamics in unsaturated soils for

evaluating nitrate contamination of the
Mnasra groundwater

Mathematical model [45]

2003
Simulation of nitrate leaching for different nitrogen

fertilization rates in a region of Valencia (Spain) using a
GIS-GLEAMS system

GIS-GLEAMS [24]

2004
Assessment of groundwater contamination by nitrate
leaching from intensive vegetable cultivation using

geographical information system
GIS [46]

2005 A technique to estimate nitrate nitrogen loss by runoff and
leaching for agricultural land, Lancaster County, Nebraska NRCS-CN model [47]

2005
Simulation of nitrogen leaching in sandy soils in The

Netherlands with the ANIMO model and the integrated
modelling system STONE

ANIMO, and STONE [48]

2005
Modeling nitrogen uptake and potential nitrate leaching
under different irrigation programs in nitrogen-fertilized

tomato using the computer program NLEAP
NLEAP [18]

2005 Nitrate leaching in cottonwood and loblolly pine biomass
plantations along a nitrogen fertilization gradient LEACHMN [49]

2006 Evaluation of urea-ammonium-nitrate fertigation with drip
irrigation using numerical modeling HYDRUS-2D [50]

2006 Nitrogen fertilization and nitrate leaching into groundwater
on arable sandy soils Numerical model [51]

2007 Modeling nitrate contamination of groundwater in
agricultural watersheds MODFLOW and MT3DMS [19]

2007 Agriculture and groundwater nitrate contamination in the
Seine basin. The STICS-MODCOU modelling chain STICS-MODCOU-NEWSAM [52]

2007 Factors Affecting the Spatial Pattern of Nitrate
Contamination in Shallow Groundwater Multivariate Tobit model [53]

2008
Non-point pollution of groundwater from agricultural
activities in Mediterranean Spain: the Balearic Islands

case study
GIS-simulation model [54]

2008
Modeling effects of nitrate from non-point sources on

groundwater quality in an agricultural watershed in Prince
Edward Island, Canada

3-D two layer Numerical
model (MT3DMS) [55]

2009
Long-term nutrient leaching from a Swedish arable field
with intensified crop production against a background of

climate change
SOILN-DB [56]

2009
Hydrochemical and stable isotopic assessment of nitrate

contamination in an alluvial aquifer underneath a riverside
agricultural field

Geochemical mass balance
modeling [57]

2009 Assessment of nitrate contamination of groundwater using
lumped-parameter models LPM [58]
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Table 1. Cont.

Year Title Model Used References

2009
Impact of fertilizer application and urban wastes on the

quality of groundwater in the Cambrai Chalk aquifer,
Northern France

Agri Flux,
VS2DT-WHIUNSAT,

MODFLOW
[59]

2010 Application of SWAT model to investigate nitrate leaching
in Hamadan-Bahar Watershed, Iran SWAT [60]

2010 Nitrogen leaching in a typical agricultural extensively
cropped catchment, China: experiments and modelling LEACHMN [61]

2010
Modeling Nitrate Leaching and Optimizing Water and
Nitrogen Management under Irrigated Maize in Desert

Oases in Northwestern China
WNMM [62]

2010 Assessment of nitrogen contamination of groundwater in
paddy and upland fields PHREEQC and FEMWATER [63]

2011
Spatial distribution pattern analysis of groundwater nitrate
nitrogen pollution in Shandong intensive farming regions of

China using neural network method
BPNN [64]

2011 GIS-model based estimation of nitrogen leaching from
croplands of China DNDC Model–GIS [65]

2011
Modelling the effect of forest cover in mitigating nitrate

contamination of groundwater: A case study of the
Sherwood Sandstone aquifer in the East Midlands, UK

MODFLOW–MT3DMS [66]

2011 Long-term simulations of nitrate leaching from potato
production systems in Prince Edward Island, Canada LEACHM-MODFLOW [67]

2011
Simulation of nitrate leaching under potato crops in a

Mediterranean area. Influence of frost prevention irrigation
on nitrogen transport

GLEAMS [31]

2011
The effects of land use change and irrigation water resource

on nitrate contamination in shallow groundwater at
county scale

Semi variance models [68]

2012
Assessment of the Intrinsic Vulnerability of Agricultural

Land to Water and Nitrogen Losses via Deterministic
Approach and Regression Analysis

GLEAMS and Multiple
Regression [25]

2013 Minimizing nitrate leaching while maintaining crop yields:
insights by simulating net N mineralization BOWAB [69]

2013 Soil type, crop and irrigation technique affect nitrogen
leaching to groundwater ENVIRO-GRO (E-G) [70]

2013 Nitrate leaching from a potato field using adaptive
network-based fuzzy inference system HYDRUS-2D and ANFIS [27]

2013 Modeling of Nitrate Leaching from a Potato Field
using HYDRUS-2D HYDRUS-2D [71]

2013 Modifying the LEACHM model for process-based
prediction of nitrate leaching from cropped Andosols

LEACHM v/s
LEACHM–RothC model [72]

2013
Nitrate fluxes to groundwater under citrus orchards in a
Mediterranean climate: Observations, calibrated models,

simulations and agro-hydrological conclusions
Transient model [73]

2013 Nitrate-Nitrogen Leaching and Modeling in Intensive
Agriculture Farmland in China LEACHM [32]

2014 Calibration of DNDC model for nitrate leaching from an
intensively cultivated region of Northern China DNDC model [28]
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Table 1. Cont.

Year Title Model Used References

2015
Modelling nitrate pollution pressure using a multivariate

statistical approach: the case of Kinshasa groundwater body,
Democratic Republic of Congo

Multiple Linear Regression
model [74]

2016 Investigating nitrate dynamics in a fine-textured soil
affected by feedlot effluents HYDRUS-1D [75]

2017
Simulating water and nitrogen loss from an irrigated paddy

field under continuously flooded condition with
Hydrus-1D model

HYDRUS 1D [26]

2019 Modeling of Fertilizer Transport for Various Fertigation
Scenarios under Drip Irrigation HYDRUS-2D/3D [76]

2019
Nitrate subsurface transport and losses in response to its
initial distributions in sloped soils: An experimental and

modelling study
HYDRUS-2D [29]

2019
Groundwater Nitrate Contamination Integrated Modeling

for Climate and Water Resources Scenarios: The Case of
Lake Karla Over-Exploited Aquifer

MODFLOW [77]

2019
Groundwater nitrate contamination in an area using urban
wastewaters for agricultural irrigation under arid climate

condition, southeast of Tehran, Iran
Simple Regression model [78]

2020 Tracing nitrate sources in the groundwater of an intensive
agricultural region SIAR [79]

2021

Quantifying nitrate leaching to groundwater from a
corn-peanut rotation under a variety of irrigation and
nutrient management practices in the Suwannee River

Basin, Florida

SWAT [30]

2021
A Spatially Distributed, Physically Based Modeling

Approach for Estimating Agricultural Nitrate Leaching
to Groundwater

FREEWAT [80]

2021 Rotating maize reduces the risk and rate of nitrate leaching APSIM [81]

2021
Modelling effect of different irrigation methods on spring

maize yield, water and nitrogen use efficiencies in the North
China Plain.

WHCNS [82]

2021
Modelling water consumption, N fates and maize yield
under different water-saving management practices in

China and Pakistan
WHCNS [83]

2022
Spatiotemporal Modelling of Groundwater Flow and

Nitrate Contamination in An
Agriculture-Dominated Watershed.

MODFLOW-MT3DMS [84]

2022 Modeling the water and nitrogen management practices in
paddy fields with HYDRUS-1D HYDRUS-1D [85]
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3.2. Model Complexities and Inputs

We addressed model complexities in this study by assessing the input requirements
for different models found in the selected publications. Based on model complexity and
input variable requirements, we defined 15 input variables (Table 2).

“Soil properties” consist of information related to engineering, chemical, and physical
properties of soil including pH, cation exchange capacity, particle size distribution, bulk
density, and soil type. “Climate variables” consist of environmental factors like tempera-
ture and rainfall observations, relative humidity, solar radiation, evapotranspiration, and
wind speed. “Management information and crop type” refers to planting date, fertilizer
and irrigation applications, herbicides and organics amendments, and cultivar/variety,
respectively. Input levels related to “land use”, “soil hydraulic properties and geology”,
and “soil dispersivity” consist of what is growing on the land, the ease of water movement
in the subsurface (hydraulic conductivity, porosity, hydraulic head, groundwater level,
permeability, etc.), and the tendency of cohesive soils exposed to saturation by groundwater
to separate into individual particles instead of forming small clumps or aggregates (i.e.,
soil diffusivity, dispersivity, fecal decomposition rate, litter decomposition rate, humus
mineralization, etc.), respectively.

Some models reported in this study assimilate “groundwater data” referring to chemi-
cal constituents (Ca, Mg, Cl, NO3

−, N, pH, EC, etc.) for model parametrization. “GIS layer”
and “curve number” inputs were used by some models dealing with the parametrization of
landscapes and slopes, soil water storage and surface runoff. “Percentage of vegetable, or-
chard, and barns fields” were used by some models to define the extent of land cover types.
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Table 2. Input variables by different models studied as part of this SR and their definition.

Variables Descriptions

S Soil Properties

CV Climate Variables

MI Management Information (i.e., planting date, fertilizer, irrigation,
herbicides, organic amendment, etc.)

C Crop Type

L Land use

SH Soil Hydraulic Properties (hydraulic conductivity, porosity, hydraulic head,
groundwater level, permeability, etc.)

GD Groundwater Data (Ca, Mg, Cl, NO3
−, N, pH, EC, etc.)

GL GIS Layer (Geological map, topographical map, shapefiles, soil map, other
maps, etc.)

CN Curve Number

VE Percentage of vegetable fields

OR Percentage of orchards

BA Percentage of barns

SD
Soil dispersive and decomposition parameters (i.e., soil diffusivity,

dispersivity, fecal decomposition rate, litter decomposition rate, humus
mineralization, etc.)

F Fertilizer

G Geology

Table 3 shows the summaries of models used in the selected publications, countries
where the study was conducted, model type, and input variables. Model types were
classified as integrated, process-based, numerical, GIS, geostatistical, mathematical, hy-
drogeochemical, and statistical. Results showed that integrated models are more complex
due to model linkages and require more inputs than other models reported. Process-based
models, though less complex than integrated models, showed similar attributes to numeri-
cal models reported in this study. GIS, geostatistical, mathematical, and statistical models
reported in this study showed low input assimilation which does not always entail model
accuracy. According to [86], model accuracy should allow us to choose the model that best
approximates the physical observation and the confidence in the predictions of a given
model. Specifying models based on complexities and input levels help researchers identify
model suitability based on data availability and model application [87].

Table 3. Different input variables required by the models included in this study.

Location Model Used Model Type Input Variable (s) References

Canada LEACHM and statistical Integrated S + CV + MI + C + SD + SH [41]

USA NLEAP Process S + CV + MI + C [42]

Egypt GWS-3D Process SH + SD + G + F + CV [43]

Spain GLEAMS + PC-Arc/Cad GIS Integrated S + CV + MI + C + L [44]

Morocco Mathematical model Numerical S + SH + CV [45]

Spain GIS-GLEAMS Integrated S + CV + MI + C + L [24]
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Table 3. Cont.

Location Model Used Model Type Input Variable (s) References

Japan GIS GIS GD + GL [46]

USA NRCS CN model Mathematical S + CN [47]

Netherland ANIMO, and STONE Integrated L + MI + S+CV [48]

Turkey NLEAP Process S + CV + MI + C [18]

USA LEACHMN Process S + CV + MI + C [49]

USA HYDRUS-2D Process SH + S+CV [50]

Germany Numerical model Numerical S + SH + CV [51]

USA MODFLOW and MT3DMS Integrated L + GL + S + CV + SH [19]

France STICS-MODCOU-NEWSAM
modelling chain Integrated S + CV + MI + C+GD +

L+GL [52]

Korea Multivariate Tobit model Statistical VE + OR + BA + GD [53]

Spain GIS-simulation model GIS GD + GL [54]

Canada 3-D two layer Numerical
model (MT3DMS) Numerical L + GL + S + CV + SH [55]

Sweden SOILN-DB Process CV + MI + SD [56]

Korea Geochemical mass balance
modeling Hydro-geochemical GD + GL [57]

Palestine LPM Process GL + SH [58]

France Agri Flux, VS2DT-WHIUNSAT,
MODFLOW Integrated L + GL + S + CV + SH [59]

Iran SWAT Process S + C + CV + MI + GL + SH [60]

China LEACHMN Process S + CV + MI + C + SD + SH [61]

China WNMM Process SH + S + CV + MI + SD [62]

Taiwan PHREEQC and FEMWATER Numerical S + SH + SD [63]

China BPNN Statistical S + GD + F [64]

China DNDC-GIS Integrated GL + S + C + MI + CV [65]

UK MODFLOW-MT3DMS Integrated L + GL + S + CV + SH [66]

Canada LEACHM-MODFLOW Integrated S + CV + MI + C + SD + SH
+ GL + L [67]

Spain GLEAMS Process S + CV + MI + C [31]

China Semi-variance models Statistical GD + GL [68]

USA, Italy,
Greece

GLEAMS and Multiple
regression Integrated S + CV + MI + C + GD + L

+ GL + CN + SH [25]

Germany BOWAB Process S + C + CV + MI [69]

USA ENVIRO-GRO (E-G) Process S + C + CV + MI [70]

Iran HYDRUS-2D and ANFIS Integrated SH + S + CV [27]

Iran HYDRUS-2D Process SH + S + CV [71]

Japan LEACHM v/s
LEACHM-RothC model Integrated S + CV + MI + C + SD + SH [72]

Israel Transient model Numerical CV + S + SH + GD [73]

China LEACHM Process S + CV + MI + C [32]

China DNDC model Process GL + S + C + MI + CV [28]
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Table 3. Cont.

Location Model Used Model Type Input Variable (s) References

Congo Multiple Linear Regression
model Statistical SH + G + GL + L + GD [74]

Argentina HYDRUS-1D Process SH + S + CV [75]

China HYDRUS-1D Process SH + S + CV [26]

Egypt HYDRUS-2D/3D Process SH + S + CV [76]

Greece MODFLOW Numerical L + GL + S + CV + SH [29]

Iran Simple regression model Geostatistical GD + GL [77]

China HYDRUS 2D Process SH + S + CV [78]

China SIAR Statistical GD [79]

USA SWAT Process CV + MI + C + GL + G +
SH + L [30]

Italy FREEWAT Integrated L + MI + S + CV [80]

USA APSIM Process S + C + CV + MI [81]

China WHCNS Process S + C + CV + MI [82]

China and
Pakistan WHCNS Process S + C + CV + MI [83]

USA MODFLOW and MT3DMS Integrated L + GL + S + CV + SH [84]

China HYDRUS-1D Process SH + S + CV [85]

3.3. Spatio-Temporal Model Distribution

The temporal and spatial distribution of different models considered in this study is
presented in Figures 5 and 6, respectively. It was observed that computer-based models
have gained popularity among the research community to simulate physical conditions in
the area of groundwater nitrate contamination. For example, from 2001 to 2010 process-
based models were found to dominate (Figure 5), implying that most researchers in the
early 21st century used process-based models. However, results for the recent decade
showed that model selection and relevance are variable with marginal differences in the
order process-based > integrated > statistical = numerical. It is also important to note that
the year 2013 had the highest number of model use, with 2 integrated, 4 process-based, and
1 numerical model reported in the selected publications. However, based on yearly model
distribution, integrated models were used 3 times in 2011, twice in 2007 and 2013, and once
in 2000, 2003, 2005, 2012, 2021, and 2022. Process-based models were used 4 times in 2013
and 2021, 3 times in 2010, twice in 2001, 2005, 2009, and 2019, and once in 2002, 2006, 2011,
2014, 2016, 2017, and 2022.

GIS, mathematical, and hydrogeological models have only been used once in 2004
and 2008, 2003 and 2005, and 2009, respectively. We observed that statistical model usage
was more consistent in the recent decade than in the previous decade, with these types of
models used twice in 2011, and once each in 2007, 2015, 2019, and 2020. Similar trend was
also observed for the numerical models in this study. In general, process-based models
were the most used, followed by integrated models, then statistical and numerical models.
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Results of spatial distribution of models around the world showed that China domi-
nantes in the use of process-based models (Figure 6) more than any other country reported
in this study, followed by North America (the US and Canada). Process-based models
and integrated models combined were mostly used in North America, (Figure 6). The
dominance of process-based and integrated models in China, United States, and Canada
may suggest the progression of modeling nitrate contamination of groundwater in these
regions. In addition, this could also indicate the availability of resources for field data
collection needed for calibrating and validating these complex models. Similar pattern
of process-based and integrated model usage, although lower in number as compared to
North America and China was observed in the European Union (including France, Spain,
UK, Greece, Italy, Germany, Turkey, Netherlands, and Sweden). Distribution of statistical
model use showed dominance in China, followed by South Korea, Iran, and Central Africa.
This may suggest a preference or relative confidence in the use of these model types in
the region. It is also interesting to note that relatively simple statistical models dominated
Central Africa while process-based and numerical models dominated North Africa (Egypt
and Morocco) and the Middle East (Iran). The regional trend of selection of different
model types could be due to several reasons including but not limited to: (i) availability of
research funding to collect large and intense input datasets, (ii) experience and previous
knowledge of a specific model, (iii) research focus on advancing nitrate contamination
research, (iv) the physical origin of the development of a particular model/models. For
instance, a study [88] observed that researchers have an implicit advantage to use models
developed in their regions. This is true for DSSAT model, whichwas originally developed
in the United States [89] and has been serving crop modelers in the United States for
decades, even though other crop models like STICS [90], WOFOST [91], CropSyst [92], and
CROPWAT [93] exist.
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For countries and regions reported previously, half of the studies used process-based
models. In the following section, we focus on which process-based models are predomi-
nantly used in the selected publications.

3.4. Model Selection and Evaluation Metrics

Evaluation metrics include parameters used to assess a model’s predictive accuracy.
All the evaluation metrics used in the selected publications and the number of times they
were used are listed in Table 4. We observed that Root Mean Square Error (RMSE) is the
most commonly used evaluation metric in the selected publications, followed by correlation
coefficient (r) and coefficient of determination (R2). This observation is consistent with
a study [94] that found RMSE to be a widely used evaluation metric. It is important
to note that not all selected studies reported different kinds of evaluation metrics used,
which posed a problem in generalizing or creating a subset of statistical evaluation metrics.
Nonetheless, many selected studies confirmed the widespread use of RMSE as compared
to other reported metrics to identify the accuracy of model predictions.
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Table 4. Evaluation metrics used in the models.

Key Evaluation Metrics Number of Times Used

RMSE Root mean square error 19
r Correlation coefficient 14

R2 Coefficient of Determination 9
MAE Mean absolute error 5
NSE Nash-Sutcliffe modeling efficiency 4

E Coefficient of efficiency 3
d Index of agreement 3

RMS Root mean squared 1
MAPE Mean absolute percentage error 1
MED Mean error difference 1
CRM Coefficient of residual mass 1
ME Mean error 1
RE Relative error 1

PBIAS Percent bias 1

Process-based model HYDRUS was the most used model for simulating nitrate con-
tamination of groundwater due to agricultural activities followed by LEACHM, NLEAP,
SWAT, and WHCNS (Figure 7). This could indicate that HYDRUS is easy to use and
parametrize and is accurate in reproducing observed information. Availability of documen-
tation and help could be other factors contributing to the popularity of HYDRUS along with
its capability to model several different processes as reported by several studies [95,96].
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3.5. Challenges of Modeling Groundwater Nitrate Contamination

We observed that the main challenges in modeling groundwater nitrate contamination
due to agricultural activities are the decision on which model to use, in-season observation
for calibration and validation of different models, availability of input data at field scale
including climate information and soil data, and model evaluation metrics. This list of
challenges is not exhaustive as model needs vary. Different models have different levels of
input needs, with integrated and process-based models requiring large number of inputs
in comparison to a simple statistical model. Although, statistical models in the form of
machine learning algorithms have proven to be more data-intensive than process-based and
integrated models combined [97], using these kinds of models may pose a huge challenge
in countries where data are not readily available.

In addition, choosing model evaluation metrics revealed another challenge in the
literature studied. We observed a lack of consensus in the choice of evaluation metrics
though most studies preferred to use RMSE. We believe that depending on the scope of
the study this SR can help guide and reduce the burden of model selection modeling
groundwater nitrate contamination due to agricultural activities.

4. Discussion and Conclusions

By conducting a systematic review on the modeling of groundwater nitrate contamina-
tion due to agricultural activities, we provided a comprehensive overview of various kinds
of models used in this domain worldwide, as well as input requirements and evaluation
metrics used by different models. This study showed that model usage differs in scale,
model type, and preference of the researcher. Moreover, it indicates that some models are
used more than others worldwide, though we cannot conclude which is the best model in
this domain.

We found that China, North America and the European Union focused more on
process-based and integrated models. We also found that advanced statistical and machine
learning models are thriving more in China than any other country reported in this study.
Model complexity and input requirements were used to stratify different kinds of models,
with integrated model being most complex and input-intensive, while simple statistical
models being less input-intensive. The use of process-based and integrated models found
more applications in the developed countries of China, North America, and Europe, while
simple statistical model found applications in developing countries. Spatio-temporal
model distribution results revealed that studies on groundwater nitrate contamination
due to agricultural activities have increased in the recent decade (2011–2022) than the
decade before it. We observed that researchers have implicit advantage in using models
developed in their regions. In addition, our study found that process-based models have
been most widely used in the last two decades, followed by integrated models. The results
indicate that HYDRUS models are the most used for simulating nitrate contamination of
groundwater due to agricultural activities, followed by the LEACHM model. Evaluation
and assessment metrics results concluded that root mean square error (RMSE) is the most
preferred metric followed by correlation coefficient (r) and coefficient of determination
(R2), in that order.

We recognize the shortcomings of this SR based on several key decisions that we had
to make. First, we chose to include only those peer-reviewed articles that were written
in English and had full texts available online. Therefore, this SR does not include any
modeling of nitrate groundwater contamination due to agricultural activities that was
presented in conference proceedings or textbooks. We believe that only including articles
written in English also creates a bias towards English speaking/reporting regions while
underrepresenting others. Due to the wide variety of model types, input data available
and used, data sources, methodologies, and evaluation metrics used, we faced several
challenges in identifying an appropriate classification system to represent and summarize
the main findings. The steps used and criteria developed were revised several times though
we recognize that it’s likely that this SR might not be fully representative.
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Despite these limitations, we believe that this SR summarized the state of the art in use
of models for studying nitrate contamination of groundwater due to agricultural activities.
The authors conclude that this topic is complex and multi-dimensional, and this study
provides direction and a toolset for making better informed decisions regarding choosing
models in this domain.
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