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Abstract: Stream networks are the transportation channels of pollutants that can significantly in-
fluence water environment risk (WER). However, the influences of stream network structure and
connectivity (SC) on WER at the national scale and its regional variability have been rarely investi-
gated in China. In this study, the WER was assessed from the grey water footprint of nitrogen and
phosphorus in 214 catchments in China. The relationship between WER and SC and its regional vari-
ability were analyzed using correlation and grey relational analysis. Results showed that the water
environment risk index (RI) in some catchments located in the Hai and Liao River Basins was the
highest in China (RI > 0.8). On national scale, longitudinal connectivity (Cl) and cyclical connectivity
(Cc) had the strongest influences on WER with grey relational degree index (GRAI) of 0.68 and 0.67,
respectively. The average slope (Sr) was the most important in humid zones, whereas Cl and water
surface ratio (Rw) had a stronger influence in arid zones. In zones with intensive human activities, Cc,
river density (Rd), and the node connection ratio (Rnc) mostly affected WER. The main influenced
factors varied significantly among nationwide and different zones, which indicated that climate and
human activities played an important role in the spatial variation of the relationship between WER
and SC. This study highlights the important role of SC on WER and that the relationship between
WER and SC varies with climate and human activities.

Keywords: water environment risk; stream network structure and connectivity; regional variability;
climate; human activity intensity; grey relational analysis

1. Introduction

With the acceleration of urbanization and rapid industrial and agricultural develop-
ment, a large number of pollutants are discharged into river channels and water bodies [1–4],
which increases the water environment risk (WER). Similar to most developing countries,
water pollution (e.g., surface water eutrophication and water quality decline) is one of
the most critical environmental problems in China with rapid urbanization and economic
development [5,6]. Over the past few decades, sewage discharge in China has shown
an increasing trend [7], and water quality in 20.6% of surface water falls into class V or
worse according to statistics [8]. Rivers, lakes, and other water bodies form a complex and
interconnected stream network in China, which is related to the WER due to the water cycle,
pollutant transport, and biogeochemical processes [9,10]. Generally, point source pollution
directly discharged into rivers and non-point source pollution driven by rainfall-runoff
and discharged into stream networks are mainly collected and transported by rivers, and
the transfer and dilution of pollutants are affected by the stream network structure and
connectivity (SC) [11,12]. Several studies confirmed the impact of SC on WER in some
catchments [10,11,13]. However, the spatial variations in WER and its response to SC at the
national scale in China have rarely been investigated.
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Numerous studies showed that the number, morphology, and connectivity charac-
teristics of stream networks and topography significantly impact the catchment water
quality [10,11,14]. For example, Yu et al., revealed that the water surface ratio played
a key role in affecting water quality in the Yangtze River Delta plain [10]. Zhao et al.,
indicated that river density had a positive correlation with water quality in Shanghai [15].
Helton et al. found that the shape of the stream network could affect the removal of
NO3

− [16]. Lyu et al., stated that the concentration and distribution of phosphorus were
affected by river connectivity in Jiangsu Province [9], and a case in America reported that
water quality parameters of most dry seasons were related to topographic features such
as slope [17]. Janardan pointed out the influences of mean slope and water surface ratio
on total phosphorus at different scales in the Han River basin, South Korea [18], Carlson
Mazur stated the impact of hydrologic connectivity on water quality in the Wabash-White
watershed [19]. However, in earlier studies, the main driving stream network structure and
connectivity characteristics (SCCs) that affected water quality were unclear and dissimilar
in different catchments. For example, river length was the key factor affecting total organic
carbon (TOC) in the Nakdong River basin [20]; Knoll et al., found that elevated trophic
status in Ohio lakes in the US were associated with shallow lake depth and high catchment-
to-water surface area ratio [21]. In China, Dou et al., found that the node connection rate
and river density had the greatest impact on the water quality of Zhengzhou City [13];
the water surface ratio was the main factor affecting water quality in the Southern Jiangsu
Plain and Yangtze River delta plain while the influence of the node connection ratio in
these two areas was relatively weak [10,11,14]. Thus, identifying the main driving SCCs
at the national scale while elucidating regional differences in the main driving SCCs can
provide a sound understanding of the relationship between WER and SC. However, such
investigations have rarely been conducted at the national scale.

In addition to SC, climate, human activities, land-use types, and topography are also
important driving factors affecting water quality [22–26]. Jiang et al., investigated the
relationship between climate and river water quality on a global scale, using the elasticity
approach [27]. Kaushal et al., summarized the origins, evolution, and resilience of diverse
water quality responses to extreme climate events [28]. Liu et al., reported that human
activities significantly affected the water quality of the Hongze Lake [23]. Nguyen stated
the pollution source of human activities (industrial, agricultural, and residential sources)
directly affected surface water quality in southwestern Vietnam [29]. Yu et al., and You et al.,
found that land-use type and topography also strongly influenced water quality [26,30].
Meanwhile, SCCs are also affected by climate and human activity [31–34]. Kreiling found
that both water body area and number were affected by climate change and anthropogenic
water exploitation in the Fox River watershed [35]. Ranjbar et al., revealed the systematic
impacts of climate forcing on the stream network topology and geometry in basins with
drainage density in America [36]. Luo et al., quantified the relationship between the human
activity intensity and evolution of the SC in the Shaying River basin [31]. Therefore, climate
and human activities may also have confounding effects on the correlation between WER
and SC. These confounding influences may not be important at small spatial scales or
for specific cases but should be considered at large spatial scales with significant spatial
differences in climate and human activities.

Therefore, the overall objective of this study is to explore the spatial variability of
the relationship between WER and SC under the impact of climate and human activities.
This study analyzed the relationship between WER and SC at a large spatial scale and its
spatial difference was revealed by grouping level-III catchments according to climate and
human activity intensity. In this study, the WER was estimated using the water pollution
levels of nitrogen and phosphorus at the catchment scale, and the relationship between
WER and SC was investigated using the correlation analysis method and grey relational
analysis at the national and regional scales. The specific objectives of this study were
to: (1) estimate the WER and calculate SCCs in China at the level-III catchment scale;
(2) explore the relationship between WER and SC at a national scale; and (3) explore the
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regional variabilities in the relationship between WER and SC by further considering the
impact of climate and human activities.

2. Materials and Methods
2.1. Study Area

China is a vast country with wide latitude and different mountain orientations, and
has a varied topography including mountainous regions, plateaus, basins, plains, and hills.
China has a complex climate with monsoon, temperate continental, and alpine climates
in the east, northwest, and on the Qinghai-Tibet Plateau, respectively. The total volume
of water resources, including many rivers and lakes, is abundant in China, which include
more than 1500 rivers with a drainage area above 1000 km2, more than 2800 natural lakes
with an area above 1 km2, and a large number of dams and hydropower stations, forming
a complex stream network. China is divided and sub-divided into successively smaller
water resource regions which are classified into three levels: level-I (Figure 1b), level-II,
and level-III (Figure 1a) catchments. The 10 level-I catchments are divided according to
the integrity of major river basins in China, and the 80 level-II and 214 level-III catchments
are divided according to the distribution of tributary river systems and the opinions of
local management departments [37]. The area of the level-III catchments was ranging from
2.98 × 103 to 7.03 × 105 km2, and mainly concentrated at 2.00 × 104~5.00 × 104 km2. The
values of WER and SCCs were calculated at the level-III catchment scale in this study.
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Figure 1. Map of the study area. The subplot (a) shows the main rivers, lakes, level-III catchments
and the digital elevation model (DEM), and (b) shows the 10 level-I catchments in China.

Precipitation and human activity intensity have strong spatial variability in China
(Figure 2). The mean annual precipitation of each catchment was calculated by the area-
weighted average method using the China Meteorological Forcing Dataset (CMFD) with a
spatial resolution of 0.1◦ × 0.1◦ [38]. The mean annual precipitation in level-III catchments
ranged from 75 to 3340 mm and decreased from the southeast to the northwest. The human
activity intensity index data were comprehensively calculated from several aspects of
human influence, including population density, land transformation, accessibility, and
electrical power infrastructure, at a spatial resolution of 1 km × 1 km. The human activity
intensity index data were jointly produced by the Center for International Earth Science
Information Network (CIESIN) at Columbia University and the Wildlife Conservation
Society [39], and was area-weighted and averaged to the level-III catchment scale. It
ranged from 2.8 to 50.6. Human activities in North China were the most intense, while the
Qinghai-Tibet Plateau and Northwest China were less affected by human activities.
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intensity, and their clustered zones determined by the K-means clustering algorithm in (c) and
(d), respectively.

2.2. Proposed Water Environment Risk Index (RI)

In this study, WER was assessed based on the water pollution level (WPL). The WPL
is the ratio of grey water footprint (GWF) of pollutants to local river runoff and was widely
used to assess regional water pollution status [40–42]. GWF was developed to evaluate
WPL and was applied in many fields [43], such as agricultural, industrial, domestic, and
GWF flows between regions [44]. WPL of nitrogen (Nwpl) and phosphorus (Pwpl) were
selected to assess catchment water pollution degree (WP), as nitrogen and phosphorus
are the two main pollutants affecting water quality [45–47] and high-resolution pollutant
records of nitrogen and phosphorus are available nationwide. The WP was reflected by the
maximum values of Nwpl and Pwpl and was calculated as follows:

WP = max(Nwpl , Pwpl) (1)

Nwpl =
Ngw f

R
(2)

Pwpl =
Pgw f

R
(3)

where Ngwf and Pgwf are the catchment grey water footprints of nitrogen and phosphorus
with units of mm/yr, respectively, and R is the annual mean runoff with units of mm/yr.
Ngwf and Pgwf were obtained from Mekonnen and Hoekstra [41] and Mekonnen and Hoek-
stra [42], respectively, which were estimated at a spatial resolution of 0.083◦ × 0.083◦ for the
period 2002–2010 using multi-source data (e.g., crop distributions from Chad et al. [48], and
the rate of mineral fertilizer applied to major crops from IFA, et al.). R is the gridded runoff
at a spatial resolution of 0.5◦ × 0.5◦ for the period 2002–2010, and an optimal weighting ap-
proach was applied to merge runoff estimated from eight hydrological models constrained
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by observational streamflow records [49]. Datasets with different spatial resolutions were
rasterized to 0.5◦ × 0.5◦ resolution using ArcGIS 10.7 software to calculate the grid WP,
and then the area-weighted average method was used to calculate the catchment scale WP.

The extreme value standardization method was used to scale WP to 0–1.0. The
standardized WP was used as the proposed RI, and was calculated as follows:

R I =
WP−WPmin,95

WPmax,95−WPmin,95
(4)

where WPmin,95 and WPmax,95 are the minimum and maximum 95% fractals of all catchment
WP, respectively. Equation (4) considers the possible influence of outliers caused by the
data uncertainty. This method can prevent one or a few outliers from having a dramatic
impact on the scaling of all other data [50,51].

2.3. Stream Network Structure and Connectivity Characteristics (SCCs)

Based on earlier studies, six SCCs, namely river density (Rd), water surface ratio
(Rw), average slope (Sr), longitudinal connectivity (Cl), cyclical connectivity (Cc), and node
connection ratio (Rnc), were selected to explore their potential effects on WER. Details
of the calculation equations, implications for water quality, and references of these six
SCCs are shown in Table 1. Rd and Rw are important characteristics of river magnitude
that can reflect the level of pollution transfer and the capacity to carry pollutants [11].
Sr is a topographic feature that has a significant impact on water quality by affecting
water movement [25,52]. Cl, Cc, and Rnc are commonly used to describe the connectivity
of stream networks, which could affect the flow of water upstream and downstream,
flow paths, and the possibility of pollution transfer between each stream node and its
surrounding streams [11,13,31,53] and thus affecting the WER. The above six SCCs indexes
were calculated at level-III catchment scale using ArcGIS 10.7 software based on publicly
available datasets, including the digital elevation model (DEM) at 30-m resolution (http:
//www.geodata.cn (accessed on 20 August 2020)), a high-resolution (30 m × 30 m) global
surface water dataset [54], main rivers in China from the National Earth System Science
Data Center of China (http://www.geodata.cn (accessed on 9 September 2020)), and
the Global Geo-referenced Database of Dams (GOODD) from the Global Dam Watch
(http://globaldamwatch.org/data/ (accessed on 29 August 2021)).

Table 1. Stream network structure and connectivity characteristics (SCCs).

Indexes Formula Implication for Water Quality Reference

River density Rd = L
A Level of pollution transfer of the river channels [11]

Water surface ratio Rw = Aw
A ×100% Capacity of the rivers and lakes to carry pollutants [11]

Average slope Sr =
∑Nr

i=1 Si
Nr

Movement and decomposition of pollutants by affecting
water flow [25]

Longitudinal connectivity Cl = Nd
Lr

Transmission of flow and pollutants upstream
and downstream [55]

Cyclical connectivity Cc =
Nr−Np+1

2Np−5
Optional degree of the moving routes of pollutants [13]

Node connectivity ratio Rnc = Nr
Np

Possibility of pollution transfer between the two nodes [11]

Note: Rd is the river density, km/km2; L is the total length of rivers, km; A is the total area of a catchment,
km2; Rw is the water surface ratio; Aw is the total area of the rivers and lakes under the mean water level in a
catchment, km2; Sr is the average slope, degree; Si is the slope of the i-th river, degree; Nr is the total number
of the rivers; Cl is the longitudinal connectivity, km−1; Nd is the number of the dams and reservoirs; Lr is the
length of a river, km; Cc is the cyclical connectivity; Np is the number of nodes; Rnc is the node connectivity ratio.
The statistics and calculation of all variables were made at the level-III catchments as the basic spatial unit using
ArcGIS 10.7 software.

http://www.geodata.cn
http://www.geodata.cn
http://www.geodata.cn
http://globaldamwatch.org/data/


Water 2022, 14, 4007 6 of 20

2.4. Analysis Methods

Correlation analysis method is widely used to reveal the relationship between influ-
ence factors and water quality [26,56]. The Pearson correlation coefficient (r) was used to
reflect the relationship between WER and SCCs in this study, which was calculated as:

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1 (xi − x)2 ∑n

i=1(yi − y)2
(5)

where xi is the i-th evaluation variable sequence, yi is the i-th corresponding variable
sequence, x is the mean value of the evaluation variable sequence, y is the mean value
of the corresponding variable sequence, and n is the total number of variables in each
variable sequence.

Grey relational analysis (GRA) can solve the correlation problem of grey systems with
incomplete data [11]. According to grey system theory, a grey system refers to a system in
which part of the information is known and a part is unknown [57,58]. A system of water
environment risk and stream network structure and connectivity characteristics can be
regarded as a grey system. The GRA reveals the nonlinear relationship between variables
according to the similarity of multivariable geometric proximity, quantitatively estimates
the geometric proximity between data sequences, and ranks their relational degrees in
descending order [59,60]. This study used GRA to analyze the relationship between WER
and SC. The grey relational degree index (GRAI) was calculated as follows [59,61]:

(1) Determine the reference and comparison sequences.

The reference sequence was set as:

X0 = {x0 (i)| i = 1, 2, . . . , n} (6)

where x0(i) represents the RI of the i-th level-III catchment and n represents the number of
level-III catchments.

The comparison sequences were set as:

X′k(i) = {xk(i)| k = 1, 2, . . . , m; i = 1, 2, . . . , n} (7)

where xk(i) represents the value of the k-th SCCs of the i-th level-III catchment and m
represents the number of SCCs.

(2) Normalize the reference and comparison sequences.

Normalization is typically required because the range and units are often different for
each sequence. Various methods were proposed for the normalization of GRA, and in this
study the sequences were normalized as follows:

Xk(i) =
X′k(i)−minX′k(i)

maxX′k(i)−minX′k(i)
(8)

Xk(i) =
maxX′k(i)− X′k(i)

maxX′k(i)−minX′k(i)
(9)

where X′k(i) and Xk(i) represent the original and normalized sequences, respectively.
According to the positive and negative correlations between the reference and com-
parison sequences, the reference and positive comparison sequences were normalized
using Equation (8), while the negative comparison sequences were normalized using
Equation (9).

(3) Determine the deviation sequences.

∆k (i) = |x ∗0(i)− x∗k (i)| (10)
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where ∆k represents the deviation sequences between the corresponding values in the
reference and k-th comparison sequences, x∗0(i) and x∗k (i) represent the normalized values
of the reference and comparison sequences, respectively.

(4) Determine the grey relational coefficient.

ξk(i) =
min∆k(i) + ρmax∆k(i)

∆k(i) + ρmax∆k(i)
(11)

where ρ ∈ [0, 1] is the distinguishing coefficient that differentiates the degree of proximity
of the reference and comparison sequences, such that ξk(i) ∈ [0, 1]. Generally, ρ = 0.5 is
widely set based on the minimum information [59].

(5) Calculate the grey relational degree index.

GRAIk =
1
n ∑n

i=1 ξk(i) (12)

where GRAIk represents the GRAI between the reference and k-th comparison sequences.

2.5. K-Means Clustering Algorithm

The K-means clustering algorithm is a numerical, unsupervised, non-deterministic,
and iterative method for dividing a dataset into a certain number of subsets, and was first
proposed by MacQueen [62]. It is a partitioning clustering algorithm that classifies given
data objects into k different clusters through iterative convergence to a local minimum.
This method is simple and fast; therefore, it is widely used in many practical applica-
tions [63]. As shown in Figure 2, level-III catchments were grouped into four climatic zones
(i.e., humid, semi-humid, semi-arid, and arid zones) and three human activity intensity
zones (i.e., intense, moderate, and weak zones) according to the mean annual precipita-
tion [64,65] and human activity intensity index using this method, respectively. The cluster
values of the different zones are listed in Table 2.

Table 2. Cluster values of precipitation (mm) in different climatic zones and human activity intensity
index in different human activity intensity zones.

Climatic Zones Human Activity Intensity Zones

Zones Values Zones Values

Humid 1797 Intense 40
Semi-humid 1158 Moderate 29

Semi-arid 624 Weak 13
Arid 251 - -

3. Results
3.1. Spatial Distribution of WER and SCCs in China

The spatial distribution of the RI in China is shown in Figure 3. The spatial variability
of the WER in China is very obvious. Regions with high RI were mainly distributed in North
China, which was notably higher than that in other parts of China. The WER in the Hai
and Liao River Basins was the highest, with RI generally reaching more than 0.7, especially
in the eastern parts of the Hai River Basin (RI > 0.9). Simultaneously, catchments in the
Songhua River Basin, northwestern China, southern China, and Qinghai-Tibet Plateau had
a low WER (RI < 0.4). Furthermore, the two catchments in the Northwestern River Basin
had a relatively high WER compared with that of the surrounding areas. Overall, the WER
was low, except in North China.
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Figure 4 shows the spatial distributions of the six SCCs. Rd increased from 0.00–0.05 km/km2

in the northwest inland to above 0.09 km/km2 in Southeast China, among which the Rd in
the estuary of the Pearl River and Yangtze River Deltas attained greater than 0.09 km/km2

(Figure 4a). Rw was higher on the east coast, especially in the plain area of the lower
reaches of the Yangtze River, and in lake distribution areas such as the Qinghai Lake and
the hinterland of the Qinghai-Tibet Plateau (Figure 4b). Rd and Rw have similar spatial
distribution characteristics in the southeast China. The values of Sr ranged from 0.0◦ to
13.2◦ in China and were the largest at the edge of the Qinghai-Tibet Plateau, while those
were smaller in North China, Central China, the Northeast Plain, and the Middle-Lower
Yangtze River Plain (Figure 4c). The longitudinal connectivity in the south was significantly
weaker than that in the north, especially in the south of the Yangtze River Basin, with a
maximum Cl value of 1.76/100 km, which indicated the weakest longitudinal connectivity
(Figure 4d). Simultaneously, the Cl in the Yellow River Basin showed a spatial difference.
The Cc and Rnc showed no significant regional differences in China and were relatively
large in the Yellow River Basin, the Middle-Lower Yangtze River, and the estuary of the
Yangtze and Pearl Rivers (Figure 4e,f) with the range, mean value, and variance of Cc and
Rnc being 0.00–0.97, 0.30 and 0.18, 0.00–2.15, 1.11 and 0.47, respectively. Generally, Rd, Rw,
and Cl showed high values in the east and low values in the west, whereas Sr showed
a decreasing trend from the southwest to northeast. The spatial distributions of Cc and
Rnc were relatively uniform in China. Additionally, the values of all six SCCs in some
catchments in the western Northwest China were relatively high compared to that of the
surrounding regions.
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3.2. Correlation between WER and SC

The relationship between WER and SC was relatively complex, with both positive
and negative Pearson correlation coefficients (Figure 5). At the national scale, Sr and Cl
were negatively correlated with WER, especially Sr, which had the strongest correlation
(r = −0.39). Conversely, Rd, Cc, and Rnc were positively correlated with WER, with Cc
having the strongest correlation (r = 0.34). Furthermore, Rw and Cl showed a non-significant
correlation with WER, and the correlation between Rw and WER was very weak (r = 0.02).
Generally, the results of the correlation analysis showed that the six SCCs had a certain
impact on WER, but the impact was limited at the national scale.
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GRA was applied to determine the quantitative relationship between WER and SCCs
and to further reveal the relationship between WER and SC. According to the results of
the cluster analysis, the GRAI between WER and SCCs was calculated for different climate
and human activity intensity zones (Figure 6), and the average GRAI was calculated for
each SCC nationwide (Table 3). Figure 6 and Table 3 show that the GRAI between WER
and the six SCCs in each climatic and human activity intensity zone and nationwide was
generally greater than the distinguishing coefficient (ρ = 0.5), which indicated that there
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was a strong correlation between WER and SC. Additionally, at the national scale, the GRAI
between RI and each SCC had small difference (ranging from 0.58 to 0.68) and could be
sorted as Cl > Cc > Rd = Rw > Rnc > Sr according to the GRAI. The Cl and Cc had relatively
the strongest correlation with WER compared with other SCCs, and the GRAI were 0.68 and
0.67, respectively. Rd and Rw had an equivalent degree of correlation with WER nationwide
(GRAI = 0.64), while Rnc and Sr showed a relatively weak correlation. These results indicate
that the WER was evenly related to the SC, and the effect of Cl and Cc on WER was stronger
than those of the other SCCs at the national scale.
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Table 3. The GRAI between RI and each SCC nationwide.

Rd Rw Sr Cl Cc Rnc

GRAI 0.64 0.64 0.58 0.68 0.67 0.60

3.3. Regional Variability of the Relationship between WER and SC

The correlation between WER and SC increased and showed a great difference when
climatic conditions and human activity intensity were considered (Tables 4 and 5). For
example, the r of Sr increased to more than 0.66 in the humid and semi-humid zones. Rw
was significantly correlated with WER in different zones, in contrast to the national scale,
whereas the correlation of Cl was still non-significant. Simultaneously, Rd, Rw, and Cl
showed opposite correlations in climatic and human activity intensity zones. These results
indicate that climate and human activity significantly influenced the relationship between
WER and SC.

Table 4. Pearson correlation coefficient (r) between WER and SCCs in different climatic zones.

Climatic Zones
r

Rd Rw Sr Cl Cc Rnc

Humid 0.14 0.42 * −0.74 * 0.06 −0.06 −0.08
Semi-humid 0.61 * 0.34 * −0.66 * 0.01 0.59 * 0.55 *

Semi-arid 0.54 * 0.26 * −0.46 * 0.16 0.53 * 0.29 *
Arid 0.35 * 0.03 −0.42 * 0.22 0.21 0.24

Nationwide 0.25 * 0.02 −0.39 * −0.13 0.34 * 0.22 *
Note: * indicate p < 0.05.

Table 5. Pearson correlation coefficient (r) between WER and SCCs in different human activity
intensity zones.

Human Activity
Intensity Zones

r

Rd Rw Sr Cl Cc Rnc

Intense −0.15 −0.31 * −0.22 −0.30 * 0.17 0.04
Moderate −0.04 −0.10 −0.27 * −0.24 * 0.15 0.14

Weak −0.29 * 0.03 −0.45 * 0.07 −0.27 −0.20
Nationwide 0.25 * 0.02 −0.39 * −0.13 0.34 * 0.22 *

Note: * indicate p < 0.05.

The results of the GRA also confirmed the influence of climate and human activities
on the relationship between WER and SC. As shown in Table 6, the WER in different zones
differed from the average GRAI of the six SCCs. The average grey relational degrees could
be sorted as humid > semi-arid > semi-humid > arid in climatic zones; however, the value
of GRAI showed a small difference. Similarly, the average grey relational degrees could be
sorted as weak > intense > moderate in the human activity intensity zones, which indicated
that the correlation between WER and SC may first decrease and then increase with an
increase in human activity intensity.

Table 6. Average GRAI of the different climatic and human activity intensity zones.

Climatic Zones Human Activity Intensity Zones

Humid Semi-Humid Semi-Arid Arid Intense Moderate Weak

GRAI 0.69 0.67 0.68 0.65 0.60 0.53 0.62

The main SCCs that affected the WER were different in the different zones (Figure 6).
For different climatic zones (Figure 6a–d), Sr had the strongest grey relational degree in
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humid zones and the weakest in other climatic zones. Rd and Cc showed a relatively strong
correlation in humid and semi-humid zones (GRAI > 0.74), while Rw was more important
in semi-humid zones. The correlation between Rnc and WER was weak in all four climatic
zones. The order of importance of different SCCs on WER was the same in semi-arid and
arid zones; furthermore, the difference in grey relational degree between each characteristic
and the WER of arid zones was more obvious.

Similarly, the main SCCs also differed across human activity intensity zones (Figure 6e–g).
Cc, Rd, and Rnc were relatively important in the intense and moderate zones, whereas Sr, Cl, and
Rw had a low grey relational degree, especially Cl and Rw in moderate zones. Simultaneously, the
GRAI of each SCC exhibited minimal differences in the intense zones (ranging from 0.55 to 0.64).
Contrastingly, the GRAI of each SCC varied greatly in the weak human activity intensity zone.
Compared with the other SCCs, Cl showed the strongest correlation (GRAI = 0.84), followed by
Rw (GRAI = 0.76). Summarily, the relationship between WER and SC showed regional variability
under the influence of climate and human activity.

4. Discussion
4.1. Spatial Variability of WER in China

In this study, the WPL was used to reflect the WER at the catchment scale. The
results showed that the WER had an obvious spatial variability in China. This result is
reasonable because China also has significant spatial differences in terms of climate, human
activities, stream network systems, industrial and agricultural development, etc. Several
studies reported spatial differences in water pollution levels and risks. Compared with
other parts of China, North China and some parts of Northeast China have a higher water
pollution risk and greater water pollution pressure [66–68]. Cai et al., found that provinces
located on the northern and central coasts had relatively higher water pollution levels [66].
Ouyang et al. reported a high potential risk of pesticide pollution in Henan, Shandong,
Hebei, and Beijing [69]. Wang et al., stated that river pollution was spatially uneven and
clustered in China, and the most serious water pollution occurred in the Huai, Hai, Yellow,
and Liao River Basins [67].

Although only two common water pollutants (i.e., nitrogen and phosphorus) were
used to evaluate WER in this study, the spatial distribution of WER was similarly mapped
with those in earlier studies that used the annual provincial data of total wastewater
discharge with more than 10 pollutants [66]. Compared with earlier studies, this study
carried out a reasonable and reliable nationwide WER with higher resolution, which
provided an opportunity to explore the relationship between WER and SCCs.

4.2. Complex Relationship between WER and SC

The results of the correlation analysis and GRA suggest that the relationship between
WER and SC is relatively close in China. Earlier studies showed that SC had a significant
impact on water quality [10,11,19,70]. Generally, pollutants are collected by tributaries,
and transported, diluted, and deposited in streams and lakes [71], and such capability
is highly related to the structure and connectivity of regional and/or large-scale stream
network [11]. On the one hand, water bodies have the capacity of carrying and diluting
pollutants, and the concentrations of pollutants can be changed by a series of physical,
chemical, and biological processes within water bodies [14]. When the pollutant load
exceeds the self-purification capacity of the water body, the water quality deteriorates,
resulting in a high environmental risk. To a certain extent, the number and area of water
bodies reflect the ability to resist water quality deterioration in catchments. On the other
hand, rivers are important channels for pollutants transfer, and SC can reflect the ability
and possibility of pollutant transmission in water bodies [55,72]. The close relationship
between the SCCs and water quality is reflected in the role of flow paths, water delivery
patterns, and the hydrological cycle upstream and downstream of pollutant transfer [11,16].

The correlation between the WER and SC is very complex. In this study, Sr showed
a negative relationship with WER both at the national and regional scales of climate
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and human activities, indicating that the increase in hydrodynamic forces was helpful in
reducing the WER. This result is supported by those of the earlier studies. A case in South
Korea suggested that Sr was always negatively associated with total phosphorus at both
sub-watershed and buffer scales [18]. You et al., stated that better hydrodynamic conditions
were conducive to the migration of pollutants, i.e., catchments with steeper slopes usually
had better water quality [30]. The Pearson correlation coefficients of Rd, Rw, Cl, Cc, and
Rnc with WER were both positive and negative in different zones. The Cl reflected the
impact of dams on water quality. A case in Turkey showed that some nitrate and phosphate
values decreased significantly after dam operation, while other pollutants did not change
significantly [73]. Dams also had adverse effects on water quality, for example, Dębska
et al., found that water in the Utrata River below the dam reservoir showed higher values
of chemical oxygen demand (CODMn) than that above the reservoir [74]. Simultaneously,
it was generally believed that higher Rd, Cc, and Rnc created a greater possibility for the
transfer of water pollutants and was beneficial to water quality. However, our results
showed that Rd, Cc, and Rnc did not always have a beneficial impact on water quality, with
a positive Pearson correlation coefficient in some zones, which indicated that the water
quality became worse with increasing Rd, Cc, and Rnc. The response relationship is complex.
Haidary et al. reported that NO2

− concentration was significantly positively correlated
with river density [75], and Deng stated that the concentration of several pollutants showed
a negative relationship with river density, while that for others was positive [11]. For Cc
and Rnc, earlier studies reported that the relationship between connectivity and water
pollution level was both positive and negative [14,56,76]. The water surface ratio was an
important factor for water quality at the catchment scale or smaller spatial scale [11,77],
although it showed a weak correlation with the WER in this study at the national and
regional scales. Rw was the dominant explanatory variable at the 100 m buffer within a 1 km
upstream scale in the Han River basin, South Korea [18]. Deng stated that the influences
of different water body types on water quality were discrepant, which was caused by the
different purification processes of rivers and lakes [14]. The impact of water body type may
be overlooked at larger spatial scales, such as national or regional scales, and should be
further studied.

4.3. Regional Variation of the Influences of Climate and Human Activities

Earlier studies reported that climatic and anthropogenic factors have a significant
impact on the water quality [27,28,78]. Table 7 showed the r and GRAI between WER and
climate, and WER and human activities. The results confirmed the important impacts of
climate and human activities on WER. Compared with the value of r and GRAI between
WER and each SCC, the results indicated that the influences of climate and human activities
were relatively moderate. In this study, the different relationship between WER and SC
were shown in each climate and human activity intensity zone. There was a significant
difference in the importance of Sr and Rw in climate zones (i.e., Sr was the most important
in humid zones, while it was the least important in other zones, and Rw was the most
important in more arid regions). Rd and Cc were more important in the humid and semi-
humid zones. A possible explanation is that, compared with the carrying capacity of water
for pollutants, the migration level of pollutants had a greater impact on WER for regions
with abundant water. Contrastingly, for regions with relatively scarce water resources, the
increase in water resource quantity had a greater impact on water pollution control [79] and
thus, Rw was more important in these regions. Similarly, the construction of dams and other
water conservancy projects altered the fluxes of rivers, affected the self-purification capacity
of water bodies and the allocation of water resources [55,73,80,81], and played a key role in
semi-arid and arid zones. The dams and reservoirs could create serious damage to river
connectivity [82] and could reduce the water for ecological restoration, and the decrease in
water resources resulting in water quality deterioration [79]. Rnc had low importance in all
climatic zones, which was similar to that of the findings in the Southern Jiangsu Plain [11].
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Table 7. Pearson correlation coefficient (r) and gray relational degree index (GRAI) between WER
and climate, and WER and human activities nationwide.

Climate Human Activities

r −0.29 * 0.47 *
GRAI 0.48 0.60

Note: * indicate p < 0.05.

China has experienced dramatic rapid development, and high urbanization and
intense human activities have influenced the natural structure and connectivity of stream
networks and water quality [83–85], thereby affecting the relationship between WER and SC.
In the intense and moderate human activity intensity zones, the importance rank of SCCs
was significantly different from those of the weak zones, and the GRAI value was smaller.
It indicates that human activities may have weakened the effects of SC on WER, which is
the same as that in earlier studies [86]. More importantly, our results further clarified that
the correlation between WER and SC was not weakened monotonically with an increase
in human activity intensity, but first weakened and then enhanced. Simultaneously, Liu
et al. and Gao et al. found that human factors have a greater impact on water quality than
those of natural factors in the Taihu Basin with a high intensity of human activities [86,87].
Therefore, it is reasonable that Rnc, Rd, and Cc, which are highly related to human activity
intensity (Figure 7), have relatively important effects on WER in intense and moderate
zones. The spatial distribution of zones with weak human activity intensity was similar to
that of arid zones, showing a similar relationship.
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In this study, the WER was estimated using WPL, and its response to SC was analyzed
using correlation analysis and GRA at the national and regional scales. Most studies used
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the concentrations of several pollutants to analyze the effect of SC [11,14,16], while an RI
was used in this study, which was calculated using the water pollution levels of nitrogen
and phosphorus. However, these pollutant concentration data were difficult to obtain
nationally; thus, the RI provided a simple and accessible method to describe water quality
and its response to SC. Earlier studies confirmed that the correlation between WER and SC
was affected by the study scale, and that the main driving factors varied at different spatial
scales [25,72,88]. Compared with earlier studies focusing on catchment scale or even smaller
scale, this study analyzed the relationship between WER and SC on a larger scale (i.e.,
national scale, climate zone scale, and human activity intensity zone scale). Additionally,
the relationship between WER and SC may be nonlinear; therefore, our results analyzed by
the GRA may be more reasonable than those using the linear analysis method [11,25,89].
However, there was a strong correlation between the SCCs, climate, and human activity
intensity (Figure 7), which may lead to inaccurate importance order identification. Many
studies suggested that machine learning was an effective method to address the collinearity
and nonlinearity issues and was applied to quantify the contribution of driven factors in
many study fields [50,90,91]. However, as a data-driven method, machine learning lacks
consideration of physical mechanisms. Thus, combination of machine learning with other
physically-based methods could be and an effective and complementary way to better
quantitatively identify the importance of influencing factors on WER in future research.

5. Conclusions

This study indicated that the WER was closely related to the SC, and confirmed the
important effect of climate and human activities on the relationship between WER and SC.
The relationship between WER and SC showed remarkable regional variability due to the
significant impact of climate and human activities. This study systematically quantified the
relationship between WER and SC on large spatial scale and emphasized the important
role of regional analysis in understanding the complex relationship between WER and
SC, especially under different climate and human activity intensity zones. Moreover, this
study further clarified that the increase in human activity intensity would not continuously
weaken the correlation between WER and SC, but first weakened and then enhanced.
However, as the WER is affected by the co-impact of SC, climate, and human activities, a
systemic understanding of the relationship between WER and SC requires further consider-
ation of the nonlinearity and collinearity among driving factors. The results emphasize the
important role of SC in the WER and the regional variability of their correlation in China.
This study highlights that local conditions should be fully considered in WER management
and differential management policies should be proposed for various catchments.
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