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Abstract: The leakage detection of a water distribution system (WDS) needs the support of a large
number of field data. This paper collected over 6800 leak detection signals from cast iron pipelines
used in a WDS. We found that 3280 signals indicated leakage, and the remaining indicated no leakage.
The characteristics of the signals were extracted and analyzed from three perspectives: the central
frequency of the power spectrum, the spectral roll-off rate, and the spectral flatness. Significant
statistical distributions were found. The central frequencies of the leakage signals followed the normal
distribution, and their spectral roll-off rates demonstrated the Burr distribution; the Birnbaum–Sa-
unders distribution could describe the spectral flatness of the signals. Based on these characteristics,
the recognition rate of the ML model for leak detection was improved. The Random Forest model
was used to classify the leakage detection signals. The recall rate was 100%, and the false positive
rate was 8.27%.

Keywords: water distribution system (WDS); frequency characteristic; power spectrum; spectral
roll-off rate; spectral flatness; random forest model

1. Introduction

In water distribution systems (WDSs), buried pipes are constructed to fulfill the water
demand of whole towns. The pipeline has a wide crisscross pattern. Thus, the application
to WDSs of various leakage detection and positioning methods suitable for long-distance
oil and gas transmission pipelines is often limited due to diverse and complex factors [1].

The internal and external pressures in the pipes differ. High-pressure water inside a pipe
escapes from leaks, and the impact and friction cause the pipe to vibrate, which generates
leakage acoustic emission signals in WDSs, that can be examined for leak detection. In fact,
their identification has become the mainstream of leak detection operations. After analyzing
the flow field characteristics inside a leak through the fluid dynamic theory, the signals
characterizing a leak are associated with the sound of air bubbles breaking, the turbulence at
the leak, and the pulse pressure of the turbulent boundary layer [2]. The signals of a WDS
leakage depend on the leak size, the water transmission pressure, and the pipe material.
Researchers have studied the time- and frequency-domain characteristics of water distribution
systems with different materials, pipe sizes, leakage forms, and burial conditions.

Meng et al. proposed that some statistical parameters of the time and frequency
domains were meaningful for leak detection [3]. Mahmutoglu and Turk also studied the
characteristics of acoustic emission signals generated by the leakage of underwater natural
gas pipelines and reported that there were continuous signal characteristics with narrow
bandwidths [4]. The test data had a bandwidth of 5 Hz at the peak energy attenuation of
15 dB. Dhar et al. reported that the frequency range of on-site WDS leakage was between
500 and 1400 Hz [1]. In another work, Lu and Wen pointed out that the leakage signals
of WDSs followed a Gaussian distribution [5], and the signals were mainly propagated
in the pipe and caused the pipe wall to vibrate. These findings regard the evaluation of
leakage in actual operation that is easy to characterize. However, the complex environment
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in actual operation may cause great difficulties to leak detection. Zhang and Guo pointed
out that leakage was the most critical factor affecting the energy of the leakage signal, and
the autocorrelation peak of the signal was significantly more noticeable than that of the
ambient noise [6]. Ni et al. also found a method to extract feature vectors based on the
entropy [7]. In high noise, this method could extract the features of signals better than
methods based on general physical parameters.

Due to the low SNR of the leak detection signal, some feature extraction methods have
been proposed. Miodrag et al. used bispectral analysis to analyze ship vibration signals
so as to identify the signal features of ships more accurately [8]. Luong and Kim also
proposed that a feature selection based on the Kullback–Leibler divergence was one of the
most straightforward, fast, and effective strategies for feature selection in the leak detection
operation of water pipelines [8,9]. In another study, Mounce et al. comprehensively
analyzed the data collected from tests in terms of time domain, frequency domain, and
signal autocorrelation [10]. The frequency of the leakage acoustic emission signals was
concentrated and showed a loose periodicity. Further, Wen et al. proposed a method of
spectral width parameters and approximate entropy to identify leak signals in a water
distribution system. According to the difference between the energy distribution of the leak
signals and the noise signals in the spectrum, the spectral width was used to detect the leak
signal, broadband noise, and narrowband noise [11]. Tu and Kim also used the peakedness
and the sample entropy as features to identify a leakage. Both features recognized leakage,
tapping, and standard signals excellently [12].

There are also other factors that affect the signal characteristics and extraction. The
material of the pipes influences the signals significantly. Hunaidi et al. indicated that the
frequency of signals in plastic pipes primarily ranged from 15 to 100 Hz and had a high
attenuation rate [13]. Muggleton also found that at a frequency of 100 Hz, the decay rate
was 1 dB/m for plastic pipes [14]. Brennan et al. stated that the pipe material significantly
affected the signals at low frequencies [15]. In another work, Miller et al. successfully
identified the leakage signals in sand-buried metal pipes with a 16.2 mL/s leakage rate
at an axial distance of 65.5 m of the pipeline, indicating a high theoretical upper limit of
sound-based leak detection in metal pipelines [16].

Because of the various factors affecting WDS leak signals, it is challenging to include
all the influencing factors when evaluating them. Therefore, the traditional method to
examine leak signals may be limited and unable to effectively cover the characteristic range
of WDS leak signals. With machine learning (ML) development, analysis methods based
on ML models have gradually emerged.

The research basis of ML models is a large amount of data, and one of the serious
difficulties in determining the characteristics of leak signals is the lack of on-site signals.
Hence, obtaining many on-site WDS leakage signals is essential to achieve a stable and
accurate intelligent identification of a leakage. In this context, this paper collected and
marked over 3800 on-site leak detection signals and identified 518 of them as leakage signals.
The signals were collected by DNR-18 (Fuji Tecom, Tokyo, Japan), LXP1500(sebaKMT,
Germany), online leakage instruments, and a sound pickup equipment between 2019 and
2021; the pipes were made of cast iron, steel, and concrete and located in Jiangsu, Zhejiang,
and Shanghai, China. The analysis of the obtained data led us to some conclusions from the
perspective of statistics: the central frequency of the power spectrum, the spectral roll-off
rate, and the spectral flatness. Based on a large number of data, we could summarize the
statistical distribution of the above characteristics. This method is helpful to provide input
factors for ML learning.

2. Analyzing the Mechanism of Acoustic Emission Signals Associated with
Pipeline Leakage

When there is leakage in a WDS, the high-pressure jet flow inside the pipe escapes
through the leak and interacts with the pipe wall, producing vibration of different frequen-
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cies. According to the location of the vibration, sound origin can usually be divided into
the following three types:

Acoustic emission signals at the leak: because the leakage is generally an elastic fluid,
the leakage inside the pipe not only disorders the normal flow but also interacts with the
pipe wall and spreads along the pipeline axis. The transmission distance and decay degree
are generally related to the pressure, the pipe material, the pipe diameter, and the number
of interfaces. The vibration can be detected at a distance from the leak at a valve, a hydrant,
and a pipe.

The jet-flow impact sound refers to the sound of the high-pressure jet flow impacting
the leaking wall and the covering medium of the pipe. The sound signal funnels to the
ground and can be detected on the ground.

Friction sound of the physical medium: the water jet escaping from the pipe drives
the surrounding medium particles to collide and rub against the pipe wall.

In the leak detection operation, an integrated electronics piezo-electric (IEPE) sensor
with a magnetic base is usually employed to absorb the vibrations of the outer wall of
the pipe, the fire hydrant, and the valves in the overhaul well, so as to collect the signals.
Figure 1 illustrates the generation and collection of the acoustic emission signals of a
pipeline leakage schematically.

Figure 1. Schematic of the generation of acoustic emission signals from a pipeline leakage.

The signals at the leak primarily comprise the air bubble sounds, turbulent sounds,
and the pulse impacts of the turbulent adhesion layer.

3. Basic Characteristics of Acoustic Emission Signals
3.1. Power Spectrum

To accurately describe the statistical characteristics of a stationary random signal in
the frequency domain, we set a power spectral density function defined as the Fourier
transform of the autocorrelation function for the signal [6]

S(ω) =
1

2π

∫ ∞

−∞
R(τ)e−jωτdτ (1)

where S(ω) is the power spectral density (PSD), R(τ) denotes the autocorrelation, τ is the
time step, andω stands for the frequency.

The Wiener–Khinchin theorem describes the relationship between the power spectrum
of a stationary random signal and its autocorrelation function [17].

The modern spectral estimation method requires a rank to establish a parametric
model according to the estimation of the sample data and to solve the output of the
parametric model so as to transform the power spectrum estimation into the problem of
solving for the parametric model [18]. The autoregressive (AR) model is most commonly
used for power spectrum estimation in modern methods since it is simply computed, and
its parameters can be directly obtained through a set of linear equations. The AR model
considers the random signal sequence a linear combination of its several past values and
its present motivated values.
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The power spectral density function of x(n) is defined as [6]:

ŜX(ω) =
σ2

|1 + ∑
p
k=1 ake−jωk|2

(2)

where x(n) is the signal, ŜX(ω) denotes the power spectral density, p is the number of
sampling points, σ2 is the variance of Gaussian white noise, and ak is the parameter of the
k-order AR model.

In general, the order selection of the AR model primarily depends on three criteria: the
final prediction error criterion, the Akaike information criterion (AIC), and the discriminant
autoregressive transmission function criterion [19]. In practice, selecting the order p of the
autoregressive model determines the performance of the power spectrum estimation, so
the reasonable choice of the order p is critical.

3.2. Spectral Roll-Off Rate

The spectral roll-off (SR) describes the descent rate of the spectrum. It is usually
believed that the radiation noise of ships drops at 6 dB/time in high-frequency bands, but
it differs for various noise origins. The main reason is the various degrees of cavitation,
such as surface sailing merchant ships, underwater submarines, and torpedoes, the spectral
roll-off rates of which are different.

The spectral roll-off rate is usually expressed as the average of the descent rate after the
power maximum point, with an index in the dB/fold range, using the below equation [20]:

SR = PF − PnF (3)

where PF represents the maximum power spectrum when the frequency equals F, and PnF
indicates the power spectrum value at n times beyond the frequency F.

The distribution of the spectral roll-off rates is determined by analyzing a large amount
of data, as shown in Figure 2. Generally, the larger the roll-off rate of the signal, the higher
the energy of the signal components, such as strong pulse signals and ideal sinusoidal
signals. A lower spectral roll-off rate leads to a higher average energy of that component.
According to the previous analysis, the spectral roll-off rate of the acoustic emission signals
of the pipeline with a leakage is distributed in the range of 0–20 dB, while that of the
acoustic emission signals of the pipeline without a leakage is closer to 0 dB.

Figure 2. Classification standard for the roll-off rate of leakage detection.
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3.3. Spectral Flatness

Spectral flatness measurement (SFM), defined as the ratio of the geometric mean
(GM) of a spectrum to its arithmetic mean (AM), is utilized to quantify the flatness of the
spectrum. An SFM closer to zero indicates that the signal is highly similar to the sinusoidal
curve or that there is a meaningful signal. An SFM closer to 1 implies that the higher the
SFM is, the lower the correlation of the signal becomes. An SFM equal to 1 denotes a white
noise, no meaningful signal, or a meaningful signal submerged by the higher intensity of
the white noise. The below formula calculates the spectral flatness [21]:

SFM = 10lg
(

GM
AM

)
= 10lg


(

∏N
n=1 |X(n))|

) 1
N

1
N ∑N

n=1|X(n)|

 (4)

where GM represents the geometric mean of the spectrum, AM stands for the arithmetic
mean of the spectrum, N indicates the length of the signal, and X(n) denotes the signal.

Figure 3 illustrates the definition and classification of spectral flatness.

Figure 3. Classification standard for the spectral flatness of leakage detection.

Figure 4 briefly presents the application of the central frequency peak, the spectral
roll-off rate, and the spectral flatness in a specific example.

Figure 4. Application of the frequency characteristic parameters in a specific example.
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4. Analyzing the Frequency Characteristics of Acoustic Emission Signals Associated
with Pipeline Leakage
4.1. Distribution of the Central Frequencies of the Power Spectrum

After processing and analyzing over 6800 signals collected in this paper, the power
spectrum characteristics of the leak detection signals were as follows.

The acoustic emission signals of the WDS had an approximate “periodic” characteristic,
so a “wide peak” characteristic is indicated in the power spectrogram.

The frequency of the leak detection signals of the WDS mostly ranged from 200 to
800 Hz, and signals in the other frequency ranges were relatively rare. More than 3000 groups
were marked as leakage among the signals collected in this paper. Figure 5 illustrates the
distribution of the central frequencies of the acoustic signals of the water supply pipeline
with a leakage. The dominant frequency distribution of the acoustic signals of the water
distribution system with a leakage was evidently a normal distribution. After the analysis,
the following distribution formula was obtained [22]:

y = f (x|µ, σ) =
1

σ
√

2π
e
−(x−µ)2

2σ2 = f (x|552.38, 181.47) (5)

where y represents the probability distribution function (PDF), x denotes the central fre-
quency of the signal, σ indicates the standard deviation, and µ is the expectation.

Figure 5. Distribution of the central frequencies of the acoustic signals of the water supply pipeline
with a leakage.

In contrast, the central frequencies of the acoustic signals of the WDS without a leakage
follow a generalized extreme value distribution [23], different from that of pipelines with a
leakage, as depicted in Figure 6,

y = f (x|k, µ, σ) =

(
1
σ

)
exp

(
−
(

1 + k
(x− µ)

σ

)− 1
k
)(

1 + k
(x− µ)

σ

)−1− 1
k

= f (x|0.2935, 243.58, 134.36), f or 1 + k
(x− µ)

σ
> 0 (6)

where y represents the PDF, and x denotes the central frequencies of the acoustic signals of
the WDS without a leakage.

Comparing the standard distributions fitting the central frequencies of the acoustic
emission signals of the pipeline without a leakage we obtained the generalized extreme
value distribution, as depicted in Figure 7.

The power spectrum characteristics of some interference noise were similar to those
of the signals of the WDS with a leakage, and it was challenging to distinguish them only
by the central frequency characteristics. The power spectrum characteristics of the leak
detection signals of the water distribution system play a vital role in determining whether
a leakage occurs, but the power spectrum characteristics alone are not enough.
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Figure 6. Distribution of the central frequencies of the acoustic signals of the water supply pipeline
without a leakage.

Figure 7. Comparison of the distributions fitting the central frequencies of the acoustic emission
signals of the pipeline without a leakage.

4.2. Distribution of Spectral Roll-Off Rates

Similarly, the spectral roll-off rates of the signals collected in this work were analyzed
from a statistical viewpoint, as illustrated in Figure 8. According to the spectral roll-off rate
distribution, the peak of the leakage acoustic signals appeared mostly around 10 dB, while
the ratio of the signals between 5 and 15 dB reached 57%. Further, the distribution of the
nonleakage signals was closer to 0 dB. The spectral roll-off rates in the range of 0 to 5 dB
accounted for 51% of the total rates, while those between 0 and 10 dB accounted for 75%.
The distribution of the spectral roll-off rates of the signals showed a remarkable statistical
feature, and the spectral roll-off rates of the leakage signals followed a three-parameter
Burr distribution as follows [24]:

y = f (x|α, c, k) =
kc
α

( x
α

)c−1(
1 +

( x
α

)c
)k+1 = f (x|20.8702, 2.0499, 3.0423), k > 0 (7)

where y represents the PDF, x denotes the spectral roll-off rate, α indicates the shape
parameter, c is the inequality parameter, and k stands for the scale parameter.

Figure 8 delineates the probability density function (PDF) of the spectral roll-off rates
of the acoustic emission signals of pipelines with a leakage.

Comparing the standard distributions fitting the spectral roll-off rates of the acoustic
emission signals of the pipelines with a leakage we obtained the Burr distribution, as shown
in Figure 9.
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Figure 8. Distribution of the roll-off rates of the acoustic emission signals of pipelines with a leakage.

Figure 9. Comparison of the distributions fitting the spectral roll-off rates of the acoustic emission
signals of the pipelines with leakage.

The data of the signals of the pipelines without a leakage also conformed to the
three-parameter Burr distribution as follows [24], but the distribution was closer to 0 dB.

y = f (x|α, c, k) =
kc
α

( x
α

)c−1(
1 +

( c
α

)c
)k+1 = f (x|9.947, 1.2943, 1.9904), k > 0 (8)

where y represents the PDF, α indicates the shape parameter, c denotes the inequality
parameter, and k stands for the scale parameter.

Figure 10 plots the PDF of the spectral roll-off rates of the acoustic emission signals of
the pipelines without a leakage, and Figure 11 compares the various distributions fitting
this probability density function.

Figure 10. Distribution of the spectral roll-off rates of the acoustic emission signals of pipelines
without a leakage.
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Figure 11. Comparison of the distributions fitting the spectral roll-off rates of the acoustic emission
signals of pipelines without a leakage.

4.3. Distribution of the Spectral Flatness

Likewise, the spectral flatness indicators of the leak detection signals were extracted
and counted. Figure 12 show the distributions of the spectral flatness of the acoustic
emission signals of water distribution systems with and without a leakage respectively.
According to the histograms, the spectral flatness characteristics of the acoustic signals of
the water distribution systems with and without a leakage were distributed in two distinct
intervals. Overall, the spectral flatness of a leakage acoustic signal was less than that of a
nonleakage acoustic signal, and 94% of the spectral flatness indicators of the leakage signals
ranged from 0 to 0.04. In other words, only 6% of the indicators of the leakage signals were
higher than 0.04, while 54% of the spectral flatness indicators of the nonleakage signals
were beyond 0.04. Since the number of the leakage signals was 20% of the whole data set, a
spectral flatness higher than 0.04 was about 98% likely to belong to a nonleakage signal.
Even if the leakage and nonleakage signals were equal in number, a spectral flatness over
0.04 was about 93% likely to belong to a nonleakage signal. In practical leak detection,
leakage signals are far fewer than nonleakage signals. Hence, spectral flatness can be used
to effectively exclude nonleakage signals, and this indicator is of practical significance in
leak detection operations.

Figure 12. Distribution of the spectral flatness of the acoustic emission signals of WDSs with a leakage.

Analyzing the data demonstrated that the spectral flatness distribution of the leakage
signals conformed to the Birnbaum–Saunders distribution [25], as shown in Figure 12. The
distribution equation is expressed as:

y = f (x|β, γ) =
1√
2π

exp

−
(√

x
β −

√
β
x

)2

2γ2



(√

x
β −

√
β
x

)
2γx

 = f (x|0.0125, 0.8573), f or x > 0 (9)

where y represents the PDF, and β and γ are the parameters of the B–S distribution.
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Comparing the standard distributions fitting the spectral flatness of the acoustic emis-
sion signals of the pipelines with leakage, we obtained the Birnbaum–Saunders distribution,
as depicted in Figure 13.

Figure 13. Comparison of the distributions fitting the spectral flatness of the acoustic emission signals
of WDSs with a leakage.

The formula for the spectral flatness distribution of the acoustic emission signals
of the water distribution system without a leakage did not pass the goodness-of-fit test,
and the standard statistical distributions did not reach a level of significance of 80%.
Figures 14 and 15 delineate the PDF obtained by fitting and the fitting process. The best
fitting model obtained was as follows [26]:

y = f (x|a, b) =
1

B(a, b)
xa−1(1− x)b−1 I[0, 1](x) = f (x|1.9592, 38.5789) (10)

where y represents the PDF, a and b are the parameters of the Beta distribution, and B
stands for the Beta distribution.

Figure 14. Distribution of the spectral flatness of the acoustic emission signals of WDSs without a leakage.

Figure 15. Comparison of the distributions fitting the spectral flatness of the acoustic emission signals
of WDSs without a leakage.
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5. Performance of the Random Forest Classification Model

Random forest is used to distinguish signals in the presence or absence of a leakage
from the detection signals. It is composed of many decision trees not related to each other.
During the model running, each part will obtains classification results separately. The final
result of the model is determined by the voting method. In this research, the depth of
Random Forest was set to 50, and the number of trees of that was set to 280. The feature of
{the central frequency peak, spectral roll-off rate, the spectral flatness} was set as the input
data of the Random Forest model. In this task, the numbers of training and validation data
were set to 80 and 20. There were 6380 input data, of which 3113 were leakage data, and
3272 were non-leakage data. The confusion matrix of the Random Forest model’s validation
is shown in Figure 16.

Figure 16. Confusion matrix of the validation of the Random Forest Model.

The indicators in Table 1 can be used to evaluate the Random Forest model’s performance.

Table 1. Indicators to evaluate the Random Forest model.

Name Meaning Value

TN Non-leakage in reality and in prediction 599
FP Non-leakage in reality but leakage in prediction 54
FN Leakage in reality but non-leakage in prediction 0
TP Leakage in reality and in prediction 622

Precision
TP

TP+FP 92.01%

Training accuracy
TP+TN

TP+TN+FP+FN in training 99.82%

Validation accuracy
TP+TN

TP+TN+FP+FN in validation 95.27%

Recall rate
TP

TP+FN 100%

F1_score
2TP

2TP+FP+FN 0.9584

False Positive Rate
FP

FP+TN 8.27%

In general, a precision of 90% means a good performance model, and the random
forest model showed a good overall classification accuracy of 92.01% for the leak detection
task. The closer the F value is to 1, the better the robustness of the model. This model
had an F1_score of 0.9584, higher than the general standard of 0.9. The recall rate of
100% and the false positive rate of 8.27% mean that the model found leakage signals well
and the possibility of misjudgment of non-leakage signals was low. While improving the
efficiency of leak detection, this model also reduces the ground loss of excavation caused
by false positives.
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6. Conclusions

This paper extracted the characteristics of leak detection signals and statistically summa-
rized them in terms of central frequency, spectrum roll-off rate, and spectrum flatness.

The “wide peak” characteristic appeared on the power spectrum, and the central
frequencies of the signals ranged from 200 to 800 Hz, approximately conforming to the
normal distribution.

In a unilateral frequency range of 6%, the distribution of the spectral roll-off rates of
the acoustic emission signals of the pipelines with a leakage had a significant statistical
characteristic and conformed to the Burr distribution.

The distribution of the spectral flatness of the acoustic signals complied with the
Birnbaum–Saunders distribution and could be used to exclude the nonleakage signals in
leak detection.

The distribution of the acoustic emission signals of leak detection in water distribution
systems has a significant statistical characteristic, which is of practical importance for leak
detection operations. The probability distribution function of the individual probability
can be used to judge the probability of leakage signals. In this research, the Random Forest
model was used to classify the leakage detection signals, with a recall rate of 100% and
a false positive rate of 8.27%. The automation of the leak detection of WDSs based on
intelligent methods has changed the long-term status of leak detection operations relying
on manual work.
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