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Abstract: Because of population growth, rapid urbanization, and climate change, many water supply
utilities globally struggle to provide water that is safe to drink. A particular problem is the aging
of the water supply facilities, which is exacerbated by their inefficient operation and maintenance
(O&M). For this reason, many water utilities have recently been actively adopting intelligent and
integrated water supply O&M solutions that utilize information and communication technology, the
Internet of Things, big data, and artificial intelligence to solve water supply system problems. In this
study, smart water solutions (GSWaterS) were implemented to enhance the efficiency of the water
supply system in the city of Aracatuba, Brazil. They were used to monitor and analyze the operating
conditions of the water supply system in real time, thus allowing for the effective management
of water supply assets. GSWaterS also supports the design and optimization of district metered
areas, the reduction and management of water losses, real-time water network analysis, and big data
analysis using artificial intelligence. Economic analysis revealed that GSWaterS produces various
direct and indirect benefits for the water supply system.

Keywords: smart water solutions; non-revenue water; DMA evaluation; deep learning; economic analysis

1. Introduction

Despite the consistent technological development and significant investment in water
supply infrastructure, many people worldwide still do not have access to a sufficient
and safe water supply. In the 21st century, population growth, rapid urbanization, water
pollution, and climate change have put more significant pressure on water utilities. As
such, there has been a growing need for smart water solutions and water digitalization to
efficiently and economically solve water supply challenges. The concept of smart water
solutions (or smart water systems) is the more intelligent use of probes, sensors, real-time
communication, and automation and control technologies. They can generate, transmit,
and store various water data to give operators a much more in-depth understanding of
their water systems [1,2]. Smart water solutions employ a variety of technologies, including
information and communications technology (ICT), Internet of Things (IoT), big data, and
artificial intelligence (AI) across the water supply system, from the input of raw water to
the delivery of clean and safe water [3–7]. These technologies allow the water quantity and
quality, energy consumption, and assets to be scientifically managed while also providing
large volumes of water data that can be used by water utilities and consumers. Many
experts foresee significant changes in water treatment processes and facility operations due
to the adoption of 4th Industrial Revolution technologies, and many water utilities have
already invested in the construction of smart water management systems incorporating
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smart and digital technologies such as a geographic information system (GIS), online sensor-
based real-time network monitoring, system operation optimization, anomaly detection
and early warning, and asset management [8–12]. According to a Global Water Intelligence
report, the global market for smart solutions in the water sector was expected to reach USD
31 billion in 2021, up from USD 21.3 billion in 2016, with a compound annual growth rate
(CAGR) of 7.2% [1].

There are three forces driving the adoption of smart water solutions. The first is
the desire to improve efficiency. Water utilities are constantly seeking to optimize their
facilities in terms of operations and management (O&M), including improving water intake,
water treatment, and water supply networks, and providing better services to customers.
Smart water solutions can reduce the energy and chemicals required for water treatment
and supply, minimize water losses and burst pipes, and provide consumers with more
information on their water usage. The second goal in employing smart water solutions is
cost reduction through improved monitoring, automated control, and asset management.
Non-revenue water (NRW) can significantly contribute to the lowering of water treatment
and supply costs by reducing the energy, chemicals, and labor required to operate and
manage water facilities. These solutions were difficult to employ in the past due to high
implementation and operating costs, but subsequent technological developments and
evidence of their economic effects have increased their attractiveness. The third important
factor has been regulatory compliance. New regulations typically require more spending
from water utilities and industrial end-users to remain in compliance, and smart water
solutions can help to minimize this additional investment. Therefore, these regulations
have promoted the widespread adoption of smart solutions by water utilities [1].

Accordingly, many companies have developed smart water solutions for the water
utility market. For example, IBM provides an advanced water solution that integrates smart
sensors into asset management, while Siemens offers an enhanced monitoring approach
that analyzes data obtained using wideband online and natural real-time sensors [13].
Global water utility companies such as Suez, Veolia, and Thames Water have also collab-
orated with ICT providers such as IBM and CISCO to monitor and manage their water
supply systems [14,15]. TaKaDu, a water O&M solution company from Israel, employs
central event management with big data analytics based on cloud services to monitor
and reduce water leakage. Public Utilities Board (PUB), a Singapore government agency,
and Visenti developed the WaterWiSe platform to effectively control water leaks based on
real-time monitoring and decision-support technologies using hydraulic and water quality
parameters [16]. In addition, various studies have been conducted on the use of AI for
water supply systems. Rhee et al. investigated the prediction of water demand using fuzzy
neurons, leading to a maximum error of 18.46% and an average of 2.36% [17]. Lee et al. [18]
and Choi et al. [19] also examined water leakage detection by sensors such as smart meters
and pressure meters, while Lee et al. [20] and Kim [21] developed a pipe deterioration
analysis model using a probabilistic neural network. Other studies have reported the use
of machine learning techniques for water pipe failure prediction, water leakage detection,
and pipeline rehabilitation prioritization [22–25].

In line with this trend, this paper reports on the implementation of GSWaterS, an
advanced intelligent O&M solution that is employed in Brazil’s water supply system. Brazil
has experienced rapid growth in the demand for smart water technologies to improve
the O&M efficiency of its water supply systems. In the project described in this paper,
GSWaterS was customized for use in the water supply system for Aracatuba, Sao Paulo,
Brazil, and integrated with existing supervisory control and data acquisition (SCADA) and
GIS systems. In addition to the implementation of GSWaterS, new district metered areas
(DMAs) were designed and constructed with a flow and pressure monitoring system. It
was thus possible to enhance the efficiency of the water system and generate significant
economic benefits. The potential use of big data and AI algorithms to predict the operating
parameters for the water supply system was also evaluated.
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2. Material and Methods
2.1. Aracatuba Water Supply System

The city of Aracatuba is located in the northwest of Sao Paulo state, Brazil, with
a population of 198,129 in 2020 and an area of 1167.4 km2. SAMAR, a GS Inima Brasil
subsidiary, provides water and sanitation services for Aracatuba residents. The company
has a treatment capacity of 81,600 cubic meters per day, and it manages a water network
system of 874 km with 74,200 water connections. Figure 1 presents an overview of the water
supply system in Aracatuba. Unlike other mid- and large-sized cities in Brazil, SAMAR
has recently made significant efforts to improve the water supply system by adopting
O&M technologies and solutions such as SCADA, GIS, and water network design software.
However, the city’s water supply has faced various challenges, including relatively high
levels of water loss at around 38%. Because there were no flow and pressure monitoring
instruments in the water network system before the introduction of the DMAs, it was
difficult to effectively manage the water supply system and to significantly reduce water
loss by relying on manual water leakage detection only. Therefore, there was a strong need
for the city to develop an advanced water supply monitoring and management system to
resolve these issues and provide a high-quality water supply that can be fully integrated
with existing water solutions.

Figure 1. Water supply system in Aracatuba, Brazil.
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2.2. GSWaterS Development and Structure

As shown in Figure 2, GSWaterS is a web- and GIS-based water supply O&M platform
developed with the support of the Ministry of Environment (Korea) and the Korea Environ-
mental Industry and Technology Institute. It was tested on water supply systems in Korea
and Vietnam from 2012 to 2016. GSWaterS comprises six functional modules: (1) water
supply monitoring, (2) water network analysis, (3) asset management, (4) GIS management,
(5) water network design, and (6) customer management. This solution was customized for
the water supply system in Aracatuba, thus the GIS management, water network design,
and customer management modules were excluded because the city already had similar
systems. The water supply monitoring module was customized to ensure it was fully
integrated with the existing SCADA system, which employed real-time monitoring data
as input into a water network analysis model and as calibration parameters. This module
monitored in detail operating conditions such as the DMA flow rate and pressure, reservoir
water level, and pump status. The water network analysis module was customized to
incorporate GIS data and included various O&M functions for the water supply system,
such as automated event alerts, dynamic modeling that minimized false alarms, historical
data analysis, network-based spatial analysis, geolocation of specific events, reports, and
managerial dashboards. The asset management module is essential for water utilities to
efficiently operate and manage their water supply systems, guiding the acquisition, use,
and disposal of assets to optimize their service delivery potential and to manage related
risks and costs over their entire lifetime. It employs procedures, tools, principles, and
methods that manage life expectancy and the business impact of the costs, performance,
and risk associated with infrastructure assets.

Figure 2. Functional diagram of the network system in GSWaterS.

Figure 3 presents a conceptual diagram of the Aracatuba water network system based
on the initial database used to customize GSWaterS providing detailed information on its
components, including the water tanks and pumping stations. The program was developed
based on a field survey and data for the pipe networks and water supply facilities to
reflect the existing water supply system. The water supply facilities, maintenance, and
asset modules were connected to the SCADA monitoring system, and the GIS data were
integrated through an application programming interface (API).
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Figure 3. System configuration of the water network system in Aracatuba, Brazil.

2.3. GSWaterS Customization and Integration

In the first stage of GSWaterS customization, identification numbers for the water
supply facilities, including the meters and sensors, were employed based on engineers’
opinions to allow the operators to distinguish between them. The GIS files were used to
map the water supply monitoring system so that the operators could use the information
on the pipe networks and facilities (e.g., location, length, diameter, equipment specification,
etc.). Based on previous studies, a hydraulic model was constructed and compared with
actual data in real time through simulations to test the dashboard and alarms for outliers
considering various analysis algorithms based on expert opinions and evaluation criteria.
Lastly, because it is inefficient to employ too much data for asset management, data were
selected based on the functions that the operators required. SCADA provides continuous
real-time information and allows the control of thousands of parameters within the water
network. However, this massive amount of data does not automatically translate into
operational, planning, or service improvements for the water utilities. Rather, the informa-
tion needs to be interpreted and transformed into actual knowledge that is useful when
operating the water supply facilities and making asset management and planning decisions.

The implementation of GSWaterS involved three major components: a GIS system
synchronizing the required data through an API, locally customized water network analysis
using SCADA, and an asset management system with various alert functions and an alarm
message window (Figure 4). Asset management and associated evaluation tools were
developed based on DMA assessment and DMA O&M prioritization to ensure that the
assets were effectively used and maintained. Frequent asset health assessments that ac-
counted for expected lifecycles and historical maintenance costs, reduced unnecessary asset
acquisitions, and reduced overall ownership and use of assets could increase the overall
value of the water supply system and enhance the efficient use of the operating assets.
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Figure 4. Customized graphical user interface for GSWaterS.

2.4. AI Algorithm Development

An AI prototype was developed for GSwaterS as a maintenance evaluation tool. For
this, flow and pressure data were collected from five DMAs in the Jussara area (a pilot study
site), and a machine learning model was trained using six months of data and validated
using the data for the following month. The IDs of the flow meters used were 108791
(DMA No. 1), 108783 (DMA No. 2), 108788 (DMA No. 3), 108773 (DMA No. 4), and
108784 (DMA No. 5), and the IDs of the pressure meters were 108774 (DMA No. 1), 108764
(DMA No. 2), 108765 (DMA No. 3), 108777 (DMA No. 4), and 108759 (DMA No. 5). In
order to improve the accuracy of the machine learning model, reduce the simulation time,
and prevent overfitting, outliers and erroneous data were removed from the dataset.

Prediction algorithms were employed based on the collected pressure and flow data
using an RNN and Tensorflow 1.13 (Figure 3). A pilot study was carried out for raw data
with no data processing, leading to low prediction. As a result, in the second study, the
Orange3 program, which is widely used for data visualization, machine learning, and data
mining analysis, was employed to improve the prediction accuracy of machine learning
through data processing. The dataset was divided into training and test sets. The training
set used the data obtained for six months in Aracatuba, Brazil, and the test set used data
for the following month.

The machine learning model was implemented with Python and Tensorflow 1.13. The
training dataset consisted of 212 daily, 5088 hourly, and 20,352 minute-based data points,
while the validation dataset contained 15 daily, 360 hourly, and 1440 minute-based data
points. An RNN (recurrent neural network) is used as a machine learning model because
it is a suitable artificial neural network for processing time-series data. RNN can make
a connection between nodes to create a cycle allowing output from some nodes to affect
subsequent input to the same nodes, as shown in Figure 5. Therefore, it is generally used
when successive observations are related, such as for analyzing speech, sentence structure,
and time series.
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Figure 5. Deep learning algorithm and RNN model.

2.5. Economic Evaluation

To evaluate the economic outcomes of a project, a cost–benefit analysis (CBA) is
generally applied, which has three types: the net present value (NPV), benefit–cost (B/C)
ratio, and internal rate of return (IRR). The NPV is the difference between the present value
of the cash outflows and inflows during the project period, which is typically larger than 0.
The B/C ratio is the overall relationship between the relative costs and benefits, which is
generally larger than 1. The IRR refers to a discount rate that makes the NPV of all cash
flows equal to zero in a discounted cash flow analysis. In the present study, the B/C ratio
was employed for the economic analysis of the NRW reduction project in Aracatuba by
considering technical, economic, and social factors related to the facility investment costs
and operating benefits.

3. Results and Discussion
3.1. DMA Design and Operation Optimization

Various technologies are needed to effectively reduce water loss, including pressure
management, the establishment of DMAs, and the implementation of an integrated op-
eration and management system. Pressure management can be achieved by installing
pressure-reducing valves and regular leakage detection sensors. In addition, to monitor
and manage water leakage, DMAs should be established with monitoring instruments such
as flow meters and pressure sensors and an integrated water network and management
system [11]. Before this project, the water network system did not employ DMAs or moni-
toring instruments. In the first step, the optimal size of the DMAs was determined based
on the water supply, population growth, and future development plans. In the second
step, the locations of the inlet point for the water supply and the three pressure sensors
(at the inlet, mid-point, and end-point) for each DMA were determined. The location of
the flow meter was determined by examining the water pressure distribution from the
inlet point. The pressure sensors were selected and installed at large water consumers,
which exhibited the highest change in the water pressure during the day. Finally, DMA
development priorities were evaluated based on a comprehensive analysis of the items in
Table 1. This integrated management system also considered the water leakage monitoring
system. Table 1 and Figure 6 present the DMA implementation and evaluation results based
on the analysis of DMA operation and maintenance priority, the year the pipe was installed,
elevation, optimization of the sensor location, inlet point, and valves. In the Jussara area,
DMAs 1–3 (from 78 to 79 points) were in moderate condition, while DMAs 4 (83 points) and
5 (80 points) were in good condition. These results were calculated according to Table 1, and
90 points or more were classified as excellent, 80 points or more as good, 70 points or more
as moderate, 60 points or more as bad, and less than 60 points as serious. The evaluation
criteria can be effectively used to make an optimal DMA design. Moreover, it can be used
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for DMA operation and maintenance. Because of limited human resources within many
water utilities, each DMA can be diagnosed once or twice yearly. Furthermore, there is
no guideline for prioritizing the DMA diagnosis and maintenance order. Accordingly, the
evaluation system can be a useful tool to determine which DMA needs to be diagnosed
and repaired first.

Table 1. DMA evaluation criteria.

Item Score Criteria Points

DMA Size
(Customer

Meters)
5

- Criteria (1000–1500 customer meters) 5
- +/−20% of the criteria 4
- +/−50% of the criteria 3
- Over +/−50% of the criteria 2

Network Type 10
- Looped pipe network 10
- Tree pipe network 8

Pressure
Distribution

(Equality)
10

- Less than the pressure difference (20 m) 10
- Less than the pressure difference (30 m) 9
- Over the pressure difference (30 m) 8

No. of
Dead-end

Pipes
5

- No pipe 5
- 1 pipe 4
- Fewer than 3 pipes 3
- Fewer than 5 pipes 2
- Over 5 pipes 1

Leakage
Detection

Facility
10

- Installation of a branch pipe for MNF (40–65 mm) 10
- To detect the leakage from a hydrant 9
- To detect the leakage using a DMA flow meter 8
- No detection 6

Leakage
Detection

Management
10

- Regular leakage detection 10
- Planned leakage detection for frequent accident areas 9
- Leakage detection by reports or claims 8
- Using a flow meter in the DMA 7
- No leakage detection 5

Leakage
Occurrence

10

- Fewer than 8 times/10 km a year 10
- Fewer than 10 times/10 km a year 9
- Fewer than 12 times/10 km a year 8
- Fewer than 15 times/10 km a year 7
- Over 15 times/10 km a year 5

Rust
Occurrence

10

- No occurrence 10
- Very little occurrence 9
- Slight occurrence 8
- Frequent occurrence 6
- Very frequent occurrence 4
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Table 1. Cont.

Item Score Criteria Points

Pipeline Scale 10

- No scale attachment
- Little scale attachment
- 30% reduction of the cross-section
- 50% reduction of the cross-section

10
9
8
6
5

Revenue
Water Rate

20

- Over 90% 20
- Over 85% 17
- Over 80% 15
- Over 70% 12
- Less than 70% 10

Total 100

Figure 6. DMA design and information for the Jussara area, Aracatuba.
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3.2. Water Loss Reduction

The real-time flow and pressure monitoring system effectively detected warnings and
unexpected events, and problems such as sensor location and tag errors were improved
through trial and error in the commissioning stage to manage the water leakage. As a result,
the accuracy of the real-time monitoring was enhanced. The water pressure was monitored
using the flow meters and pressure sensors installed in each DMA. Pump operation and
water levels in the reservoir were adjusted based on data analysis to ensure the target
leakage level was maintained.

When an abnormal situation occurred in real-time monitoring, an alarm sounded to
alert the operator, allowing them to effectively manage water leakage using the appropriate
measures. If there was a pump malfunction or abnormal water levels in the reservoir,
the operator could immediately contact the site manager to fix the water leakage, the
approximate location of which was quickly determined using the sensors installed in the
DMA. As a result, in the Jussara region, water leakage was reduced from 38% to 17%
(Figure 7 and Table 2).

Figure 7. Water loss rates (Aracatuba vs. Jussara).

Table 2. Non-revenue water ratios (Aracatuba vs. Jussara).

Year 2018 2019

Month 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4

Non-revenue water ratio (%) Avg.

Aracatuba 38 40 40 39 40 37 40 37 37 41.1 35.6 40.6 39.4 31.8 39.7 36.4 37.8

Jussara - - - - - - - - - 25.0 12.0 17.6 16.7 9.4 14.9 19.9 16.5

3.3. AI Analysis

A pilot study was conducted to examine whether big data and AI algorithms could
predict the flow rate and pressure in the water supply system of Aracatuba using GSWaterS.
Raw data were collected for data analysis. The overall error rate was around 10%, and some
DMAs exhibited a relatively large error of between 20% and 50% because the water pressure
was calculated by estimating the flow rate in areas where DMAs had not been established.
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Table 3 presents the results after 1 week, 24 h, and 120 min, which were simulated using
data points every 15 min (101,760), 1 h (25,440), and 1 d (1060). The prediction results for
the pressure (Tag ID: 108774) and flow (Tag ID: 108791) in DMA 1 had an average error
rate of 12.2% and 35.2% each day, 19.0% and 13.9% each hour, and 14.2% and 11.1% each
minute, respectively. The prediction results for the pressure (Tag ID: 108764) and flow
(Tag ID: 108783) in DMA 2 had an average error rate of 5.3% and 15.4% per day, 7.9% and
19.2% per hour, and 6.5% and 17.0% per minute, respectively. The prediction results for
the pressure (Tag ID: 108765) and flow (Tag ID: 108788) in DMA 3 had an average error
rate of 11.3% and 12.9% per day, 6.5% and 8.1% per hour, and 7.2% and 6.6% per minute,
respectively. The prediction results for the pressure (Tag ID: 108777) in DMA 4 and pressure
(Tag ID: 108759) in DMA 5 had an average error rate of 3.3% and 9.0% per day, 52.2% and
8.8% per hour, and 25.1% and 4.1% per minute, respectively. The flow meters in DMA 4
(Tag ID: 108773) and DMA 5 (Tag ID: 108784) were excluded from this simulation because
no signal was received due to sensor failure.

Table 3. AI prediction results with and without data preprocessing and validation.

DMA Type Tag ID
Result

Period Error Rate (%) Number of
Data Points

DMA 1
Pressure

Meter
108774

Day 12.242 1,595,392

Hour 19.008 1,367,040

Minute 14.166 1,085,440

DMA 1 Flow Meter 108791
Day 35.220 1,141,760

Hour 13.897 1,583,104

Minute 11.063 1,441,792

DMA 2
Pressure

Meter
108764

Day 5.300 1,665,024

Hour 7.854 1,448,960

Minute 6.500 1,072,128

DMA 2 Flow Meter 108783
Day 15.410 1,425,408

Hour 19.242 1,201,152

Minute 16.954 1,402,880

DMA 3 Pressure
Meter

108765
Day 11.258 1,238,016

Hour 6.539 1,181,696

Minute 7.150 1,605,632

DMA 3 Flow Meter 108788
Day 12.861 1,049,600

Hour 8.072 1,382,400

Minute 6.635 1,355,776

DMA 4
Pressure

Meter
108777

Day 3.305 1,358,848

Hour 52.201 1,358,848

Minute 25.097 1,070,080

DMA 4 Flow Meter 108773
Day N/A 1,048,576

Hour N/A 1,207,296

Minute N/A 1,754,112

DMA 5 Pressure
Meter

108759
Day 9.024 1,186,816

Hour 8.776 1,128,448

Minute 4.091 1,072,128
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Table 3. Cont.

DMA Type Tag ID
Result

Period Error Rate (%) Number of
Data Points

DMA 5 Flow Meter 108784
Day N/A 1,048,576

Hour N/A 1,054,720

Minute N/A 1,263,616

Prediction algorithms were employed based on the collected pressure and flow data
using an RNN and Tensorflow 1.13 (Figure 3). A pilot study was carried out for raw data
with no data processing, leading to low prediction. As a result, in the second study, the
Orange3 program, which is widely used for data visualization, machine learning, and data
mining analysis, was employed to improve the prediction accuracy of machine learning
through data processing. The dataset was divided into training and test sets. The training
set used the data obtained for six months in Aracatuba, Brazil, and the test set used data
for the following month.

Data pre-processing was conducted by removing noise, missing data, and duplicate
data using statistical methods. Machine learning training was performed after excluding
data that exceeded ±3 sigma (99.7%) from the minimum/average/maximum and the
standard normal distribution. Missing values and outliers were also excluded, and by
checking the skewness (<3) and kurtosis (<8), it was confirmed that the data might be biased
because the dataset was small. It was found that no data deviated from the distribution
except for the missing values.

The root-mean-square error (RMSE) and R2 were calculated to evaluate how well
the predicted values reflected the actual data when using the machine learning algorithm.
Using the raw data in the prediction model, the minimum, average, and maximum R2 were
0.661, 0.775, and 0.872, respectively, which increased to 0.837, 0.864, and 0.889, respectively,
when the processed data were used, yielding an improvement of 26.6%, 11.5%, and 1.9%,
respectively (Table 4). The machine learning algorithm thus increased the prediction
accuracy of calculated pressure, which can improve further with the optimization of the
parameters. In the future, if the machine learning parameters such as the learning rate and
weight are tuned, the learning time can also be reduced.

Table 4. AI prediction results for raw and processed data.

Classification
R2 of the Prediction Values

Min. Ave. Max.

Raw data 0.661 0.775 0.872

Processed data 0.837 0.864 0.889

Difference 0.176 (+26.6%) 0.086 (+11.5%) 0.017 (+1.9%)

3.4. Economic Analysis

The facility investment costs included the development of the DMAs, GSWaterS,
and the other water network activity necessary to reduce the physical loss of water. The
operating benefits were the cost savings arising from the reduction of water production and
supply (i.e., pumping energy) and less construction of water treatment plants. To improve
the reliability of the analysis, the indirect operating benefits were excluded. It was assumed
that the project duration was 25 years, and the interest rate was 4%. Details of the analysis
parameters and conditions are presented in Table 5.
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Table 5. Economic analysis.

Classification Description

Cost

(1) Software costs
- Software installation: One lot (customization and software
upgrade every 5 years)
O&M: 5% of the software installation costs every year
(2) DMA construction costs
- Flow meter: 41 DMAs x1 EA
O&M: battery replacement every 3 years, flow meter
replacement every 15 years
- Sensor: 41 DMAs x3 EA
O&M: battery replacement every 3 years, sensor replacement
every 6 years
- Flow meter chamber: 41 DMAs x1 EA
O&M: 5% of the flow meter chamber construction costs every year
- New pipeline installation: D100–D250, L = 67.27 kmO&M: Repair of the
pipelines (1.5%) of total pipe networks
every year

Benefit

Because of water loss reduction (from 35% to 15%), the following benefits
are obtained
(1) Reduction in water production costs: USD 0.4/m3

(2) Pumping energy reduction = 0.5 kWh/m3, electric costs = 0.2
USD/kWh
(3) Reduction of construction cost for water treatment plants:
construction cost = USD 1000/m3

Interest rate 4%

Operation period 25 years

B/C ratio NPV of total benefits/NPV of total costs = 4.02 (>1.0)

It was found that the B/C ratio was 4.02. If the indirect benefits, such as increased sys-
tem availability, prevention of collateral damage, improved visibility, personnel efficiency,
improved customer experience, pipe rehabilitation planning, and knowledge preservation,
are included, it can be assumed that the B/C ratio could be increased further. Considering
the relatively high B/C ratio, the project will be beneficial for the water utility company
and ultimately the local government and consumers.

4. Conclusions

The present study analyzed the customization and application of GSWaterS in Ara-
catuba, Brazil. The design and functions of GSWaterS were customized in consideration of
the local conditions for the O&M system and the requirements of the engineers, managers,
and operators working for the water utility company. It was found to have significant
benefits, but it required continuous upgrades to reflect the change in the water supply
system conditions over time. The DMA design was evaluated in terms of various O&M
factors, and this evaluation method was very useful for determining the DMAs’ O&M
status. However, the DMA evaluation method and applied conditions need to be adjusted
for more effective analysis. Big data and AI technology were also implemented to predict
the operating parameters, flow rate, and pressure. It was proven that this technology can
be beneficial for the O&M of water supply systems and can be used in conjunction with
real-time monitoring and hydraulic modeling. Finally, the economic analysis indicated
that it is worthwhile to establish DMAs using GSWaterS and apply its various functions to
effectively operate and manage the water supply system, including reducing water loss
and saving energy. If the indirect benefits of the DMA system and GSWaterS are considered,
the B/C ratio will be higher than 4.02. An Al algorithm will be developed further in future
research to predict other O&M parameters.



Water 2022, 14, 3965 14 of 14

Author Contributions: Investigation, E.B.; Writing—original draft, K.S.; Writing—review & edit-
ing, Y.-G.P. Author Contributions: All authors have read and agreed to the published version of
the manuscript.

Funding: This work was financially supported by GS Inima, the Korea Ministry of Environment
(Project for Development of Disaster Response Technology for Environmental Facilities, Project No.:
2022002860001), and Chonnam National University (Grant number: 202233850001).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. GWI. Water’s Digital Future; GWI: London, UK, 2016.
2. Li, J.; Yang, X.; Sitzenfrei, R. Rethinking the framework of smart water system: A review. Water 2020, 12, 412. [CrossRef]
3. Koo, D.; Piratla, K.; Matthews, C.J. Towards sustainable water supply: Schematic development of big data collection using

internet of things (IoT). Procedia Eng. 2015, 118, 489–497. [CrossRef]
4. Lee, S.W.; Sarp, S.; Jeon, D.J.; Kim, J.H. Smart water grid: The future water management platform. Desalination Water Treat. 2015,

55, 339–346. [CrossRef]
5. PUB. Managing the water distribution network with a Smart Water Grid. Smart Water 2016, 1, 4. [CrossRef]
6. Lalle, Y.; Fourati, M.; Fourati, L.C.; Barraca, J.P. Communication technologies for smart water grid applications: Overview,

opportunities, and research directions. Comput. Netw. 2021, 190, 107940. [CrossRef]
7. Singh, M.; Ahmed, S. IoT based smart water management systems: A systematic review. Mater. Today Proc. 2021, 46,

5211–5218. [CrossRef]
8. Boulos, P.F.; Jacobsen, L.B.; Heath, J.E.; Kamojjala, S. Real-time modeling of water distribution systems: A case study. J. Am. Water

Work. Assoc. 2014, 106, E391–E401. [CrossRef]
9. Cembrano Gennari, G.; Puig Cayuela, V.; Ocampo-Martínez, C.; Quevedo Casín, J.J.; Mirats Tur, J.M.; Meseguer Amela, J.; Ariño Tarrago,

R.; López Martínez, S. Real-time monitoring and control for efficient management of drinking water networks: Barcelona case study. In
Proceedings of the 11th International Conference on Hydroinformatics, New York, NY, USA, 17–21 August 2014; pp. 1–8.

10. Geetha, S.; Gouthami, S. Internet of things enabled real time water quality monitoring system. Smart Water 2016, 2, 1–19. [CrossRef]
11. Machell, J.; Mounce, S.R.; Boxall, J.B. Online modelling of water distribution systems: A UK case study. Drink. Water Eng. Sci.

2010, 3, 21–27. [CrossRef]
12. Pule, M.; Yahya, A.; Chuma, J. Wireless sensor networks: A survey on monitoring water quality. J. Appl. Res. Technol. 2017, 15,

562–570. [CrossRef]
13. Hauser, A.; Rosen, R. Simens Perspectives on Smart Water Grid Technologies. In Proceedings of the 1st International Smart Water

Grid Workshop, Seoul, Republic of Korea, March 2011.
14. Sempere-Payá, V.; Todolí-Ferrandis, D.; Santonja-Climent, S. ICT as an enabler to smart water management. In Smart Sensors for

Real-Time Water Quality Monitoring; Springer: Berlin/Heidelberg, Germany, 2013; pp. 239–258.
15. Armon, A.; Gutner, S.; Rosenberg, A.; Scolnicov, H. Algorithmic network monitoring for a modern water utility: A case study in

Jerusalem. Water Sci. Technol. 2011, 63, 233–239. [CrossRef]
16. Allen, M.; Preis, A.; Iqbal, M.; Whittle, A.J. Case study: A smart water grid in Singapore. Water Pract. Technol. 2012, 7,

wpt2012089. [CrossRef]
17. Rhee, K.-H.; Moon, B.-S.; Kang, I.-H. A Study of Prediction of Daily Water Supply Usion ANFIS. J. Korea Water Resour. Assoc. 1998,

31, 821–832.
18. Lee, J.-S.; Choi, I.-H.; Hong, K.-E.; Choi, H.-Y.; Roh, H.-J.; Ahn, J.-K. An Efficient Water Pressure Measurement System of the

Water Pipes using IoT. J. Korea Inst. Intell. Transp. Syst. 2018, 17, 114–122. [CrossRef]
19. Choi, J.; Kim, J. Analysis of water consumption data from smart water meter using machine learning and deep learning algorithms.

J. Inst. Electron. Inf. Eng. 2018, 55, 31–39.
20. Lee, C.; Kim, E.; Shin, H.; Kim, J. A Study of Deterioration estimation Model for Drinking Water Pipe Using Probabilist Neural

Network (PPN). KSCE J. Civ. Eng. 2000, 20, 197–210.
21. Kim, E.-S. Development of Optimal Rehabilitation Model for Water Distribution System Based on Prediction of Pipe Deterioration

(I)-Theory and Development of Model. J. Korea Water Resour. Assoc. 2003, 36, 45–59. [CrossRef]
22. Fan, X.; Zhang, X.; Yu, X.B. Machine learning model and strategy for fast and accurate detection of leaks in water supply network.

J. Infrastruct. Preserv. Resil. 2021, 2, 10. [CrossRef]
23. Fan, X.; Wang, X.; Zhang, X.; Yu, P.A.X.B. Machine learning based water pipe failure prediction: The effects of engineering,

geology, climate and socio-economic factors. Reliab. Eng. Syst. Saf. 2022, 219, 108185. [CrossRef]
24. Elshaboury, N.; Marzouk, M. Prioritizing water distribution pipelines rehabilitation using machine learning algorithms. Soft

Comput. 2022, 26, 5179–5193. [CrossRef]
25. Ravichandran, T.; Gavahi, K.; Ponnambalam, K.; Burtea, V.; Mousavi, S.J. Ensemble-based machine learning approach for

improved leak detection in water mains. J. Hydroinformatics 2021, 23, 307–323. [CrossRef]

http://doi.org/10.3390/w12020412
http://doi.org/10.1016/j.proeng.2015.08.465
http://doi.org/10.1080/19443994.2014.917887
http://doi.org/10.1186/s40713-016-0004-4
http://doi.org/10.1016/j.comnet.2021.107940
http://doi.org/10.1016/j.matpr.2020.08.588
http://doi.org/10.5942/jawwa.2014.106.0076
http://doi.org/10.1186/s40713-017-0005-y
http://doi.org/10.5194/dwes-3-21-2010
http://doi.org/10.1016/j.jart.2017.07.004
http://doi.org/10.2166/wst.2011.041
http://doi.org/10.2166/wpt.2012.089
http://doi.org/10.12815/kits.2018.17.1.114
http://doi.org/10.3741/JKWRA.2003.36.1.045
http://doi.org/10.1186/s43065-021-00021-6
http://doi.org/10.1016/j.ress.2021.108185
http://doi.org/10.1007/s00500-022-06970-8
http://doi.org/10.2166/hydro.2021.093

	Introduction 
	Material and Methods 
	Aracatuba Water Supply System 
	GSWaterS Development and Structure 
	GSWaterS Customization and Integration 
	AI Algorithm Development 
	Economic Evaluation 

	Results and Discussion 
	DMA Design and Operation Optimization 
	Water Loss Reduction 
	AI Analysis 
	Economic Analysis 

	Conclusions 
	References

