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Abstract: The availability of water for agricultural production is under threat from climate change and
rising demands from various sectors. In this paper, a simulation-optimization model for optimizing
the irrigation schedule in the Bilate watershed was developed, to save irrigation water and maximize
the yield of deficit irrigation. The model integrated the Soil and Water Assessment Tool (SWAT) and
an irrigation-scheduling optimization model. The SWAT model was used to simulate crop yield and
evapotranspiration. The Jensen crop-water-production function was applied to solve potato and
wheat irrigation-scheduling-optimization problems. Results showed that the model can be applied
to manage the complicated simulation-optimization irrigation-scheduling problems for potato and
wheat. The optimization result indicated that optimizing irrigation-scheduling based on moisture-
stress-sensitivity levels can save up to 25.6% of irrigation water in the study area, with insignificant
yield-reduction. Furthermore, optimizing deficit-irrigation-scheduling based on moisture-stress-
sensitivity levels can maximize the yield of potato and wheat by up to 25% and 34%, respectively.
The model developed in this study can provide technical support for effective irrigation-scheduling
to save irrigation water and maximize yield production.

Keywords: SWAT model; optimization; simulation; irrigation-scheduling; potato; wheat

1. Introduction

Agriculture, which uses approximately 70% of the world’s freshwater withdrawals for
irrigation, is the largest consumer of water resources globally [1].The influence of climate
change and an increasing demand for water from different sectors affect water availability
for agricultural production [2–4]. Moreover, the projected increase in the rate of world-
population growth highlights the impending rise in food demand, which will immediately
affect farming water-use [3].

Ethiopia is dominantly reliant on agriculture for sources of food and employment.
The sector plays an important role, especially for smallholder farmers, who produce 95%
of the total agricultural production in the country [5]. Agriculture is a cornerstone of
the community in the Ethiopian Rift Valley Lakes Basin (RVLB), as a source of food and
income generation. However, the production in the basin has been impacted by climate
change and frequent droughts [6,7]. The Bilate watershed, which is situated in RVLB, is
vulnerable to climate change, and the availability of water resources in the watershed is
deteriorating [7]. Due to climate change, the watershed has experienced a significant drop
in rainfall amount and a rise in temperature over the last three decades. Consequently, the
stream flow of the Bilate River, which is a source of water for several large, medium, and
small-scale irrigation schemes, has been declining [8]. Therefore, in order to cope with the
scarcity of irrigation-water sources in those areas, it will be important to practice efficient
irrigation-water management techniques such as irrigation-scheduling optimization [9–12].

Agro-hydrological simulation models are capable of illuminating the dynamics of
crop growth under different irrigation schedules and climatic conditions. These simulation

Water 2022, 14, 3960. https://doi.org/10.3390/w14233960 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14233960
https://doi.org/10.3390/w14233960
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-4996-9408
https://orcid.org/0000-0001-9920-0771
https://orcid.org/0000-0002-7934-8506
https://orcid.org/0000-0002-8078-3855
https://doi.org/10.3390/w14233960
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14233960?type=check_update&version=2


Water 2022, 14, 3960 2 of 19

models can be used to conduct scenario analysis in order to look for the most effective
management approaches [12]. For example, Geerts et al. [13] applied the Aquacrop sim-
ulation model to identify the optimal time interval for irrigation-water application, to
evade drought stress and attain maximum water-productivity. Li et al. [12] used a soil-
water-balance simulation model to study optimal irrigation-scheduling for maize in an
arid region of northern China. The Soil and Water Assessment Tool (SWAT) model is a
semi-distributed and physically-based simulation model, and it is popular in the simula-
tion of basin-level hydrological processes [14]. It is used to model basin-level hydrology,
crop growth, the scheduling of agricultural operations, and climate-change scenarios [15].
SWAT can simulate the effects of various irrigation-water management approaches on
crop growth, yield, and hydrological processes. Fu et al. [16] applied the SWAT model to
determine optimal irrigation-scheduling for corn and soybean in dryland regions. Sun
and Ren [17] used the SWAT model to assess crop yield, and crop-water productivity, and
to look at an irrigation-scheduling approach that is optimal for the production of winter
wheat and summer maize.

The simulation models can describe the impacts of irrigation-scheduling on yield and
crop growth, but they can only answer the question “What if?” [18]. This indicates that
more effective irrigation-scheduling depends on scenario analysis of a number of user-
decision-based alternatives. In this situation, determining the most effective scheduling
approach is dependent on assessments of simulated yield or water productivity. The chosen
irrigation schedule, although possibly the best among the options, is probably not the exact
optimal global irrigation-schedule [19]. The optimum global irrigation-schedule can be
attained by combining the simulation- and optimization-models [20,21].

Optimization of irrigation-scheduling is an important approach for saving irrigation
water, improving the productivity of water, and enhancing the benefits to farmers [10,17,22].
Irrigation-scheduling optimization is very helpful to achieve a fair distribution of irrigation
water among users at basin level, and it can also improve water-use efficiency. During
the application of optimization methods, the irrigation system is defined by creating a
sequence of mathematical equations, and the optimal solutions can be determined using
optimization-solution technologies [4]. Information on the yield response of crops to water
conditions has been required in order to apply scheduling optimization [10]. The crop-
water production function describes the association between the crop water used and the
yield produced. These associations are complex, since they must involve the impacts of
crop moisture-stress at different growth stages [23].

The genetic algorithm (GA), which has been introduced since 1970s [24], is an ex-
tensively used algorithm to optimize irrigation-scheduling. It is a search algorism which
follows the procedure of natural genetics and selection, which combines the idea of survival
of the fittest with genetic operators, to form a strong searching-mechanism. GA solutions
are based on parameter coding, searching from a population of points (strings) rather
than a single point, and relying on objective-function information rather than auxiliary
knowledge [25]. Selection, crossover, and mutation are the three important processes in
GA that operate strings and advance to the next generation. GA is found to be useful in
the application of irrigation-scheduling optimization, and it has been widely applied to
solving simulation-optimization problems [26–28]. Taking into account the thoughts above,
the objective of this study is to develop a simulation-optimization model for potato-and
wheat-crop irrigation-scheduling for saving irrigation water and maximizing yield. The
model will integrate a SWAT crop-growth simulation model and the irrigation-scheduling
optimization model outlined to maximize crop yield.

2. Materials and Methods
2.1. Description of the Study Area

The Bilate watershed is known for its high population density in Ethiopia. Approx-
imately 500 people live in a 1 km2 area [29]. Geographically, the watershed is located
between the latitudes of 6◦38′18” and 8◦6′57” N, and in the longitudes of 37◦47′6” and
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38◦20′14” E (Figure 1). The watershed has a total area of 5518 km2, with a stream length
of 197 km and an elevation range of 1176 m to 3328 m.a.s.l [29]. However, for this study,
the watershed area was delineated as 5233 km2. The initial drainage of the Bilate River
starts from the Gurage highlands, passes through Siltie, Hadiya, and Kambata, and ends
at Abaya Lake, which is one of the largest lakes in the RVLB. The climate in the Bilate
watershed is humid and semi-arid, with bimodal rainfall-patterns [30]. The main rainy
season is usually the summer monsoon, from June to August [31]. The meteorological
data indicated that the mean annual-rainfall ranges from 560 mm in the rifts to 1300 mm
in areas of the highlands. The average minimum and maximum temperatures are 16 and
30 degrees Celsius, respectively. The watershed is part of the western rift-margin, which
is characterized by deep and wide valleys with several streams. [32]. More than 82% of
the land-use type is occupied by agricultural activities (Figure 2a). Nitosols, Cambisols,
Vertisols and Leptosils are the major soil-groups in the watershed (Figure 2b).
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2.2. Available Data

Temporal- and spatial-data were collected, to establish a SWAT model in the watershed
(Table 1). In addition, a field survey was conducted to compile information on the study
area’s more significant irrigation-crops and current irrigation-production scenarios. The
irrigation departments in the districts were contacted for additional crop-production data,
seasonal-crop yield, and other necessary details.
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Table 1. Collected data.

Data Type Data Source
Resolution

Temporal Spatial

Streamflow data MoWE Daily (1991–2008) -
Climatic data NMSA Daily (1991–2014) -
Crop data Zones and districts Annual (2001–2014) -
Soil data MoWE - 30 m × 30 m
Land use and land cover MoWE - 30 m × 30 m
Digital Elevation Model (DEM) USGS 30 m × 30 m

Note(s): MoWE: Ministry of Water and Energy; NMSA: National Meteorological Service Agency; USGS: United
States Geological Survey.

2.3. SWAT Model

SWAT is a time-continuous simulation model that can be applied to estimate how land
management affects water, agricultural chemicals, and sediment, at the basin level. SWAT
divides the basin into sub-basins, which are then further subdivided into pieces of units
called hydrologic response units (HRU) [14]. An HRU describes a collection of similar land
use and soil types, and it is the smallest unit in a basin. Water resources and agricultural
management, and climate, are the main components of the SWAT model.

In this study, the SWAT model was built using a digital elevation model (DEM), cli-
matic data, land-use/land-cover data, and soil data of the study area. The SCS curve
number approach (USDA Soil Conservation Service) was applied, to simulate the surface
runoff. The Penman–Monteith technique [33] was used to calculate the potential evapo-
transpiration (PET) and reference evapotranspiration (ETo). SWAT applies the simplified
environmental policy integration calculator (EPIC) crop model [34], to calculate plant
growth. It uses the above-ground biomass and harvest-index information to determine
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the crop yield on the day of harvest. The governing equation for the SWAT model is the
water-balance equation, given by

SWt = SW0 +
t

∑
i=1

(
Rday −Qsurf − Ea −Wseep −Qgw

)
(1)

where SWt is the amount of soil water-content in mm at time t (day), SW0 is the initial soil
water-content on day 1, in mm, Rday is the daily rainfall on the i-th day, in mm, Qsurf is
surface discharge on the i-th day, in mm, Ea is the actual evapotranspiration on the i-th day,
in mm, Wseep is the amount of water that enters the unsaturated zone on the i-th day, in
mm, and Qgw is the amount of return flow on the i-th day, in mm.

Eighteen years of monthly stream flow and fourteen years of annual crop-yield data
were used to calibrate stream flow and crop parameters, respectively. Stream-flow parame-
ters were selected from various sources, and their ranges of parameters were fixed. The
calibration process becomes more complex if the number of parameters for calibration is
extensive, due to the huge number of processes being taken in account [35]. To reduce the
complexity, the sensitive stream-flow parameters were identified, based on one-at-a-time
(OAT) and global sensitivity-analysis methods [36]. Sensitivity analysis is the process of
evaluating the impact of an input change on the output of a model [14]. The t-stat and
p-values were used to select parameters for each simulation in the sensitivity analysis [37].
For stream-flow parameter-calibration, the program called Sequential Uncertainty Fitting-II
(SUFI-2) was applied in the SWAT-CUP. SWAT-CUP provides numerous objective functions
with their specified properties used for calibration. The validation process was carried
out with independent observed stream-flow data on the same parameters and parame-
ter ranges, in order to be confident in the calibration. Crop parameters were calibrated
manually, using annual crop-yield data. Changes in crop-growth parameters and growth
constraints such as nutrient stress and water stress were used to simulate actual crop-
growth [38]. The crop parameters that have an influence on yield and ETc were identified
by changing each parameter’s value, one at a time. The calibration process was carried out
for several iterations until the change in output value reached an insignificant level.

The model performance was evaluated based on statistical values, including the
coefficient of determination (R2), the ratio of mean-squared-error to the standard deviation
of the observed data (RSR), and the Nash–Sutcliffe coefficient (ENS). The R2 value describes
the association between measure- and simulated-data, and its value is between 0 and 1.
A value closer to 1 postulates the good model-performance, while a value of less than
0.6 reveals that the model has poorly performed. The value of the ENS ranges from −∞ to
1, and it enumerates how to fit the simulated output to the observed data. It shows how the
magnitude of the measured data varies, compared with simulated data. The performance
was evaluated based on recommendations given by [39]:

R2 =
[∑n

i=1(Qo −Qoavr)(Qs −Qsavr)]
2

∑n
i=1 (Qo −Qoavr)

2 ∑n
i=1 (Qs −Qsavr)

2 (2)

ENS = 1−
[

∑n
i=1 (QO −Qs)

2

∑n
i=1(Qo −Qsavr)2

]
(3)

RSR =

√
∑n

i=1(Qo −Qs)
2√

∑n
i=1(Qo −Qoavr)

2
(4)

where n denotes the number of observed values, Qo represents observed discharge-data
(m3/s), Qs represents simulated discharge-data (m3/s) and Qoavr and Qsavr represent the
average observed- and simulated-values (m3/s), respectively.
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2.4. Coupling Degree among ETc and Effectivie Rainfall in Irrigation Season

The coupling degree among crop water-requirement (ETc) and effective rainfall (Pe)
describes how much the effective rainfall satisfied the crop water-demand in the specific
growth stages. Information on the extent of Pe to fulfill ETc in the specific growth stage is
beneficial to setting efficient irrigation-scheduling [40]. ETc depends on the crop coefficient
(Kc) and reference evapotranspiration (ETo) [41,42]. In this study, ETc was calculated
as follows:

ETc = Kc∗ ETo (5)

The value of Kc depends basically on the characteristics of each crop and its stage of
growth and canopy dynamics. In this study area, Kc values for potato and wheat have
not been determined yet. Therefore, to compute ETc, the Kc values from FAO Irrigation
and Drainage Paper No. 56 were used. ETo is the evaporative capacity of the atmosphere,
independently of crop type, crop growth-stage, and management conditions, and it is
given by

ETo =
0.408∆(Rn −G) + Y 900

T+273 u2(es − ea)

∆ + Y(1 + 0.34u2)
(6)

where Rn is net radiation at the crop surface [MJ m−2 day−1], G is soil-heat-flux density
[MJ m−2 day−1], T is mean daily air-temperature at 2 m height [◦C], u2 is wind speed at 2 m
height [m s−1], es is saturation vapor-pressure [kPa], ea is actual vapor-pressure [kPa], es-ea
is saturation vapor-pressure deficit [kPa], ∆ is slope of the vapor-pressure curve [kPa ◦C−1],
and γ is psychrometric constant [kPa ◦C−1].

Pe is the portion of the rainfall that is actually stored in the soil. It is the difference
between total rainfall and actual evapotranspiration. The climatic variables can be used to
directly calculate Pe. There are several methods to calculate Pe. In this study, the USDA
Soil Conservation Service method was applied:

Pe =

{ P(125−0.2 ∗ P)
125 , P ≤ 250 mm

125 + 0.1 ∗ P, P > 250 mm

}
(7)

where P is total rainfall.
The value of the coupling degree is between 0 and 1, and it is computed as

Li =


0 Pei = 0

Pei
ETci

Pei < ETci

1 Pei ≥ ETci

 (8)

where Li is the coupling degree between ETc and Pe at growth stage i.

2.5. Deficit Irrigation-Scheduling

One of the water-resource-management options modeled by SWAT is irrigation op-
eration. The main purpose of irrigation operation is to evaluate the effect of irrigation-
scheduling on irrigation systems, crop growth, and yield. Irrigation in an HRU can be
scheduled by the user (pre-defined schedule) or automatically by SWAT, in response to
a water deficit in the soil [15]. In this study, irrigation-scheduling scenarios were set on
the SWAT model, using pre-defined scheduling operations. The timing and depth of the
applied water were filled in by the management module. SWAT enables the scheduling
of management operations by day or by the fraction of potential heat units. The model
examines whether a month and day have been specified for the timing of each operation,
before proceeding. In this study, the irrigation-scheduling in the management operation
was carried out using a schedule, by day. Eight irrigation treatments (one full-irrigation
and seven deficit-irrigation treatments) were used to simulate potato and wheat yield and
evapotranspiration. The deficit amount was defined based on the calculated ETc at specific
growth-stages. The irrigation depth based on the ratio or percentage in Table 2 was filled
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in using the SWAT model at specific growth-stages. The accumulated potential-heat-unit
resets to zero at each calendar year. Therefore, to keep going with the calendar-year heat
unit, the planting date was set to January 1st. Generally, four operations were scheduled:
planting time, fertilization time, irrigation depth and time, and kill/harvest time. During
simulation, irrigation efficiency (IRR_EFM) and surface runoff (IRR_SQ) were considered
as 70% and 10%, respectively. An auto-fertilizer operation was chosen to replenish the
soil nutrients.

Table 2. Irrigation-scheduling treatments: irrigation-depth percentage based on ETc.

Growth-Stage-Based Deficit Irrigation (% of ETc)

Growth-Stage Irrigation Depth for Potato (%) Growth-Stage Irrigation Depth for Wheat (%)

TRT Seedling Vege.t Starch ac. Maturity Seedling Vege.t Grain fill. Maturity

CK 100 100 100 100 100 100 100 100
T1 25 100 100 100 25 100 100 100
T2 100 25 100 100 100 25 100 100
T3 100 100 25 100 100 100 25 100
T4 100 100 100 25 100 100 100 25
T5 25 25 25 25 25 25 25 25
T6 50 50 50 50 50 50 50 50
T7 75 75 75 75 75 75 75 75

Note(s): TRT: Treatment; CK: Full-irrigation treatment; Vege.t: Vegetative; Grain fill.: Grain filling; Starch ac:
starch accumulation.

2.6. Crop-Water Production Function

The association between applied irrigation-water during specific seasons and crop
yield is described by the crop-water production function. An alternative definition of the
production function that specifies seasonal evapotranspiration as the independent variable
rather than applied irrigation-water has been put forth by some agronomic studies [43–45].
There are two principles of crop-water production function [46]. The first one is the
“Boule principle,” which expresses the multiplicative effect of moisture deficiency on yield,
which occurs during different growth-stages [47,48]. The other one is the “arithmetic
principle,” which defines the additive effect of the water deficiency on yield, which occurs
at the different growth-stages [49,50]. Earlier studies on different crops indicated that the
prediction ability of the Jensen model was better than other models [44,51]. Thus, in this
study, we applied the Jensen model to compute the crop-water-production functions of
potato and wheat in the study area. The model is given by:

Ya

Ym
= ∏n

i=1

(
ETa

ETm

)λi

i
(9)

where Ya and Ym are actual and maximum yield from the deficit- and full-irrigation treat-
ment, respectively, (kg/hm2), ETa and ETm are the actual and maximum evapotranspiration
from the deficit- and full-irrigation treatment respectively, (mm), i represents growth stages,
n represents growth-stage number and λ is the Jensen’s moisture-sensitivity index.

After simulation of yield and evapotranspiration, the Jensen moisture stress sensitivity
index (λ) was calculated for both crops using the Python/Jupyter notebook packages based
on a multiple nonlinear-regression analysis.

2.7. Irrigation-Scheduling Optimization Model

Optimization of irrigation-scheduling between irrigation cycles for maximum yield
was modeled, using the computed crop-water-production function. The seasonal relative
evapotranspiration of the deficit-irrigation treatments and the number of days in each
irrigation interval were used for the maximization model. During a field survey, irrigation
interval- days and duration of irrigation-time data were collected from sample irrigation
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schemes in the study area. The calculated moisture stress-sensitivity index was transformed
into corresponding irrigation interval-days, using the cumulative curve of the sensitivity
index. The optimal relative evapotranspiration for maximum relative yield was calculated
by using the genetic algorism (GA) on the platform of MATLAB (R2020a, MathWorks Inc.,
Natick, MA, USA). The irrigation-scheduling optimization model is

Max Ya = Ym ∗∏n
i=1

(
ETa

ETm

)λi

i
(10)

Subject to : ∑n
i=1

ETai

ETmi
∗d−C ∗ ∑n

i=1 d (11)

0 <
ETai

ETmi
≤ 1

where i represents the irrigation interval considered, n represents number of irrigation
cycle in the growing season, d is the number of days in one irrigation cycle, and C is the
seasonal relative evapotranspiration of the deficit treatments.

2.8. General Framework of the Study

The general outline of the study is shown in Figure 3. First, a SWAT model was
developed in the study area using DEM, climatic, soil, and land-use data. Next, the SWAT
model was calibrated and validated with stream-flow- and crop-yield data. In the calibrated
SWAT model, full- and deficit-irrigation treatments were scheduled to simulate potato
and wheat yields and evapotranspiration. The Jensen moisture stress-sensitivity index
was then computed from simulated yield and evapotranspiration, and the Jensen crop-
water-production function was developed for potato and wheat. The optimal irrigation-
scheduling was then solved, using the developed crop-water-production function.
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3. Result
3.1. SWAT Model Performance

The SWAT model was calibrated and validated using 18 years (1991–2008) of monthly
stream-flow data from the Bilate gauging station, based on the data that was available.
Of these, two years (1991–1992) of the data were allocated to model warm-up; ten years
(1993–2002) of the data were used for calibration; and six years (2003–2008) of the data were
adopted for validation. One-at-a-time (OAT) and global sensitivity-analysis methods were
applied to identify the most sensitive parameters. The parameters with the smaller p-value
and the absolute value of the larger t-stat value were nominated for further calibration
and validation of the model. The most sensitive parameters were the curve number (CN2),
groundwater-recession factor (ALPHA_BF), time taken for water to exit from beneath
the root zone (GW_DELAY), threshold depth of water in the shallow aquifer required for
return flow to occur (GWQMN), soil-evaporation compensation factor (ESCO), available
water capacity of the soil layer (SOIL_AWC), soil moist-bulk density (SOL_BD), Manning’s
n value for overland flow (OV_N), average slope-length of the watershed (SLSUBBSN),
and deep-aquifer percolation fraction (RCHRG_DP). After simulation, the performance
of the model was evaluated, using performance indicators. According to the performance
indicators, the agreement between measured- and simulated-stream-flow data was good.
The timings of flow events (peaks and valleys) were also well estimated (Figure 4). The
statistical values indicated that for the calibration period, the values of R2 and ENS were
0.72, and the value of RSR was 0.53, while in the validation period, the values of R2, ENS,
and RSR were 0.72, 0.65, and 0.59, respectively. Based on Moriasi et al. (2015) criteria, the
model showed good performance in the study area.
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Crop parameters were also calibrated manually, using annual average-yield data
collected from different districts in the watershed. The fraction of leaf-area index, harvest
index, and parameters related to growing season-length had more influence on yield and
crop evapotranspiration during simulation. The identified crop parameters and their values
before and after calibration are presented in Table 3.
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Table 3. Adjusted crop-parameters.

Parameter Parameter Description
Potato Wheat

Before After Before After

BLAI Maximum leaf-area index 4 4.5 4.0 4.0

DLAI Fraction of growing season
when leaf area starts declining 0.6 0.6 0.8 0.8

LAIMX1 Fraction of BLAI at point 1 0.01 0.05 0.01 0.04
LAIMX2 Fraction of BLAI at point 2 0.95 0.90 0.95 0.84

FRGRW1 Fraction of the plant-growing
season at point 1 0.10 0.15 0.15 0.10

FRGRW2 Fraction of the plant-growing
season at point 2 0.5 0.45 0.5 0.45

HVSTI Harvest index 0.95 0.90 0.4 0.35

3.2. The Relationship between Pe and ETc in the Target Season

The coupling degree indicates how much the effective precipitation meets the crop
water-demand in the growth stages. In this study area, the annual rainfall pattern has
bimodal characteristics, with a short rainy season (March–May) and the main rainy season
(June–September). Usually, irrigation agriculture is practiced in the area from November
to the start of the main rainy season. ETo in this period is much greater than the rainfall
(Figure 5). The coupling degree among Pe and ETc indicated that Pe in this period could
not fulfill the required amount of ETc for potato and wheat throughout the growing
season (Figure 6).
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3.3. Statistical Analysis of the Simulated Yield

The statistical analysis of the SWAT simulated yield indicated that the yield of all
deficit-irrigation treatments showed a significant difference from the full irrigation in
both crops. However, the significance level varies with the stage of growth at which
the deficit was scheduled and the amount of the deficit. Water stress at seedling and
maturity stages has less effect on yield than at vegetative and starch-accumulation/grain-
filling stages. With the least significant difference (LSD) level of 288.3 and 165.7 for potato
and wheat, respectively, the yield difference between the full-irrigation treatment and all
deficit-irrigation treatments is presented in Table 4.
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Table 4. Statistical analysis of SWAT simulated yield.

Potato Wheat

TRT Rank Yield (kg/ha) % of Yield
Reduced TRT Rank Yield (kg/ha) % of Yield

Reduced

CK 8056.609 a - CK 4501.07 a -
T1 7308.935 b 9 T1 4060.017 b 10
T4 7252.461 b 10 T4 3986.577 b 11
T7 6742.744 c 16 T7 3678.789 c 18
T2 5825.637 d 28 T2 3056.719 d 32
T6 5576.38 d,e 31 T3 2829.889 e 37
T3 5414.225 e 33 T6 2804.272 e 38
T5 4193.523 f 48 T5 2086.153 f 54
LSD 288.3 LSD 165.7

Note(s): There are no significant yield differences between treatments in a column with the same letter at p < 0.05.

The Jensen moisture stress-sensitivity index was calculated using the simulated maxi-
mum and actual yield and evapotranspiration. The simulated yield and evapotranspiration
data were used from HRUs in five representative subbasins based on the agro-ecology of
the watershed. The moisture stress-sensitivity index varies across subbasins, particularly
at vegetative and starch-accumulation/grain-filling stages (Table 5). In both crops, the
moisture stress-sensitivity index at vegetative and starch-accumulation/grain-filling stages
is greater than at seedling and maturity stages. The average regional moisture-sensitivity-
index for potato is 0.05, 0.28, 0.32, and 0.06 at seedling-, vegetative-, starch-accumulation-,
and maturity-stages, respectively, and the regional average moisture-sensitivity-index for
wheat is 0.06, 0.36, 0.40, and 0.07 at seedling-, vegetative-, grain-filling-, and maturity-stages,
respectively. For both crops, the Jensen crop-water-production function was established,
using the calculated moisture stress-sensitivity index.

The Jensen crop-water-production function for potato in the study area:

Ya

Ym
=

(
ETa1

ETm1

)0.05
∗
(

ETa2

ETm2

)0.28
∗
(

ETa3

ETm3

)0.32
∗
(

ETa4

ETm4

)0.06
(12)

The Jensen crop-water production function for wheat in the study area:

Ya

Ym
=

(
ETa1

ETm1

)0.06
∗
(

ETa2

ETm2

)0.36
∗
(

ETa3

ETm3

)0.40
∗
(

ETa4

ETm4

)0.07
(13)
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The developed Jensen crop-water-production function model estimated the relative
yield of treatments with an R2 of 0.99 for both crops and root mean square errors (RMSE) of
0.068 and 0.08 for potato and wheat, respectively (Table 6). The Jensen model predicts the
relative yield accurately for less-deficit treatments (T1 and T4). For high irrigation-deficit
treatments (T5), prediction accuracy is reduced. The average prediction performance of the
model is good.

Table 5. Moisture stress-sensitivity index in selected subbasins.

Sub-Basins
Growth Stages of Potato Growth Stages of Wheat

Seedling Vege.t Starch ac. Maturity Seedling Vege.t Grain fill. Maturity

1 0.03 0.12 0.17 0.04 0.03 0.14 0.24 0.04
5 0.05 0.11 0.17 0.02 0.02 0.11 0.19 0.04
8 0.04 0.25 0.31 0.05 0.04 0.38 0.38 0.06

12 0.06 0.26 0.30 0.04 0.07 0.38 0.38 0.06
26 0.07 0.46 0.47 0.10 0.09 0.49 0.55 0.09

Basin level 0.05 0.28 0.32 0.06 0.06 0.36 0.40 0.07

Table 6. SWAT-simulated and Jensen-model-predicted relative yield.

TRT

Potato Wheat

SWAT Simulated
Relative Yield

Jensen Predicted
Relative Yield

SWAT Simulated
Relative Yield

Jensen Predicted
Relative Yield

1 0.91 0.93 0.90 0.91
2 0.72 0.68 0.68 0.60
3 0.67 0.64 0.63 0.57
4 0.90 0.91 0.89 0.90
5 0.52 0.37 0.46 0.29
6 0.69 0.61 0.62 0.54
7 0.84 0.82 0.82 0.77
R2 0.99 0.99
RMSE 0.068 0.08

3.4. Irrigation-Scheduling Optimization

The seasonal irrigation cycles and developed crop-water-production function were
used to optimize irrigation-scheduling in the optimization model. The calculated moisture
stress-sensitivity indices were transformed into corresponding irrigation cycles, using the
cumulative-sensitivity-index curve (Figure 7) and number of days in each growth stage. In
the study area, the average number of days for a full growing season of potato and wheat is
115 and 90, respectively. For potato, 10, 15, 40, 35, and 15 intra-seasonal growth-stage days
for establishment, seedling, vegetative, starch accumulation, and maturity, respectively,
were considered. Similarly, for wheat, 7, 8, 35, 25, and 15 intra-seasonal growth-stage
days for establishment, seedling, vegetative, grain filling, and maturity, respectively, were
considered. Taking into account the availability of irrigation water in the study area, a
fifteen-day irrigation interval was assumed (Table 7).

The seasonal relative-evapotranspiration of the deficit-irrigation treatments was opti-
mized in between irrigation-cycles, based on the transformed moisture stress-sensitivity
index. Considering the length of growing seasons, seven and six seasonal irrigation-cycles
were adopted for potato and wheat, respectively. The genetic algorithm toolbox on the
MATLAB 2020a platform was used to solve the optimal value of relative evapotranspiration
for maximizing relative yield, and results are presented in Figures 8 and 9. The percentage
of maximized yield was determined, relative to the yield from prior optimization. The
optimization result indicated that the seasonal evapotranspiration of all treatments showed
some level of yield maximization, except at T5 and T6. In both crops, the highest yield
maximization was attained at T3 and T2 (Figure 10). In the case of potato, the highest yield
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maximization was obtained at T3 (25%), followed by T2 (21%). Similarly, for wheat, the
highest yield maximization was achieved at T3 (34%), followed by T3 (29%).
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Table 7. Transformed moisture stress-sensitivity index in fifteen-days interval.

Potato Wheat
DAP Transformed Sensitivity Index DAP Transformed Sensitivity Index

10 0 7 0
25 0.05 15 0.06
40 0.105 30 0.154
55 0.105 45 0.154
70 0.1157 60 0.211
85 0.1371 75 0.24
100 0.1371 90 0.07
115 0.06

Water 2022, 14, x FOR PEER REVIEW 14 of 20 
 

 

25 0.05 15 0.06 

40 0.105 30 0.154 

55 0.105 45 0.154 

70 0.1157 60 0.211 

85 0.1371 75 0.24 

100 0.1371 90 0.07 

115 0.06   

The seasonal relative-evapotranspiration of the deficit-irrigation treatments was op-

timized in between irrigation-cycles, based on the transformed moisture stress-sensitivity 

index. Considering the length of growing seasons, seven and six seasonal irrigation-cycles 

were adopted for potato and wheat, respectively. The genetic algorithm toolbox on the 

MATLAB 2020a platform was used to solve the optimal value of relative evapotranspira-

tion for maximizing relative yield, and results are presented in Figures 8 and 9. The per-

centage of maximized yield was determined, relative to the yield from prior optimization. 

The optimization result indicated that the seasonal evapotranspiration of all treatments 

showed some level of yield maximization, except at T5 and T6. In both crops, the highest 

yield maximization was attained at T3 and T2 (Figure 10). In the case of potato, the highest 

yield maximization was obtained at T3 (25%), followed by T2 (21%). Similarly, for wheat, 

the highest yield maximization was achieved at T3 (34%), followed by T3 (29%). 

In addition, yield maximization was also achieved at T1, T4, and T7 in both crops, 

but the amount was smaller, compared with T2 and T3. Prior to optimization, the yields 

of potato and wheat were reduced by 33% and 37%, respectively, at T3 (Table 4), while 

after optimization, the yields increased by 25% and 34%, respectively. At T2, the yields of 

potato and wheat were reduced by 28% and 32%, respectively, before optimization; how-

ever, the yields increased by 21% and 29%, respectively, after optimization. On the other 

hand, irrigation-scheduling optimizations at T5 and T6 were unable to maximize yield in 

both crops. In these treatments, the simulated yield was higher than the yield after opti-

mizing the irrigation schedule. 

  

Figure 8. Cont.



Water 2022, 14, 3960 14 of 19Water 2022, 14, x FOR PEER REVIEW 15 of 20 
 

 

  

  

Figure 8. Optimal relative ETa for potato under different levels of seasonal-irrigation water. 

  

  

Figure 8. Optimal relative ETa for potato under different levels of seasonal-irrigation water.

Water 2022, 14, x FOR PEER REVIEW 15 of 20 
 

 

  

  

Figure 8. Optimal relative ETa for potato under different levels of seasonal-irrigation water. 

  

  

Figure 9. Cont.



Water 2022, 14, 3960 15 of 19Water 2022, 14, x FOR PEER REVIEW 16 of 20 
 

 

  

Figure 9. Optimal relative ETa for wheat under different levels of seasonal-irrigation water. 

  

Figure 10. Optimal relative yield before and after optimization: (a) potato and (b) wheat. 

4. Discussion 

Irrigation-scheduling optimization is an important strategy to cope with climate 

change impacts and the shortage of agricultural water-resources [12,52]. In this study, non-

deficit- and deficit-irrigation treatments were scheduled in the SWAT model, and yield and 

evapotranspiration of potato and wheat crops were simulated. The simulated yield and 

evapotranspiration from each HRU in the selected subbasins were used to compute the Jen-

sen moisture stress-sensitivity index for the two crops. Two groups of deficit-irrigation treat-

ments were used. In the first group, water deficits were scheduled only at a single growth-

stage, which allows for distinguishing the most moisture-sensitive growth stages. In the sec-

ond group, water deficits were triggered at all growth stages, based on the ETc of the specific 

growth-stages, which is also important for examining the water-stress level and its impact 

on yield. The computed moisture stress-sensitivity indexes were used to establish the Jensen 

crop-water-production function model. Irrigation-scheduling was then optimized, using the 

developed crop-water-production function for seasonal irrigation-intervals. 

The findings indicated that water stress at vegetative- and starch-accumulation/grain-

filling stages, lowers production more significantly. These stages of the crop growth-cycle 

are dominated by tillering and reproduction, and this is when the crop photosynthetic-ac-

tivity peaks. At this point, water stress will have a more negative impact on vegetative 

growth and production. Comparable findings from field experiments on wheat by [53] and 

potato by [51,54] have been reported. The moisture stress-sensitivity index of the two crops 

was high at the vegetative and starch-accumulation/grain-filling stages and low at the 

Figure 9. Optimal relative ETa for wheat under different levels of seasonal-irrigation water.

Water 2022, 14, x FOR PEER REVIEW 16 of 20 
 

 

  

Figure 9. Optimal relative ETa for wheat under different levels of seasonal-irrigation water. 

  

Figure 10. Optimal relative yield before and after optimization: (a) potato and (b) wheat. 

4. Discussion 

Irrigation-scheduling optimization is an important strategy to cope with climate 

change impacts and the shortage of agricultural water-resources [12,52]. In this study, non-

deficit- and deficit-irrigation treatments were scheduled in the SWAT model, and yield and 

evapotranspiration of potato and wheat crops were simulated. The simulated yield and 

evapotranspiration from each HRU in the selected subbasins were used to compute the Jen-

sen moisture stress-sensitivity index for the two crops. Two groups of deficit-irrigation treat-

ments were used. In the first group, water deficits were scheduled only at a single growth-

stage, which allows for distinguishing the most moisture-sensitive growth stages. In the sec-

ond group, water deficits were triggered at all growth stages, based on the ETc of the specific 

growth-stages, which is also important for examining the water-stress level and its impact 

on yield. The computed moisture stress-sensitivity indexes were used to establish the Jensen 

crop-water-production function model. Irrigation-scheduling was then optimized, using the 

developed crop-water-production function for seasonal irrigation-intervals. 

The findings indicated that water stress at vegetative- and starch-accumulation/grain-

filling stages, lowers production more significantly. These stages of the crop growth-cycle 

are dominated by tillering and reproduction, and this is when the crop photosynthetic-ac-

tivity peaks. At this point, water stress will have a more negative impact on vegetative 

growth and production. Comparable findings from field experiments on wheat by [53] and 

potato by [51,54] have been reported. The moisture stress-sensitivity index of the two crops 

was high at the vegetative and starch-accumulation/grain-filling stages and low at the 

Figure 10. Optimal relative yield before and after optimization: (a) potato and (b) wheat.

In addition, yield maximization was also achieved at T1, T4, and T7 in both crops, but
the amount was smaller, compared with T2 and T3. Prior to optimization, the yields of
potato and wheat were reduced by 33% and 37%, respectively, at T3 (Table 4), while after
optimization, the yields increased by 25% and 34%, respectively. At T2, the yields of potato
and wheat were reduced by 28% and 32%, respectively, before optimization; however,
the yields increased by 21% and 29%, respectively, after optimization. On the other hand,
irrigation-scheduling optimizations at T5 and T6 were unable to maximize yield in both
crops. In these treatments, the simulated yield was higher than the yield after optimizing
the irrigation schedule.

4. Discussion

Irrigation-scheduling optimization is an important strategy to cope with climate
change impacts and the shortage of agricultural water-resources [12,52]. In this study,
non-deficit- and deficit-irrigation treatments were scheduled in the SWAT model, and yield
and evapotranspiration of potato and wheat crops were simulated. The simulated yield
and evapotranspiration from each HRU in the selected subbasins were used to compute the
Jensen moisture stress-sensitivity index for the two crops. Two groups of deficit-irrigation
treatments were used. In the first group, water deficits were scheduled only at a single
growth-stage, which allows for distinguishing the most moisture-sensitive growth stages.
In the second group, water deficits were triggered at all growth stages, based on the
ETc of the specific growth-stages, which is also important for examining the water-stress
level and its impact on yield. The computed moisture stress-sensitivity indexes were
used to establish the Jensen crop-water-production function model. Irrigation-scheduling
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was then optimized, using the developed crop-water-production function for seasonal
irrigation-intervals.

The findings indicated that water stress at vegetative- and starch-accumulation/grain-
filling stages, lowers production more significantly. These stages of the crop growth-cycle
are dominated by tillering and reproduction, and this is when the crop photosynthetic-
activity peaks. At this point, water stress will have a more negative impact on vegetative
growth and production. Comparable findings from field experiments on wheat by [53]
and potato by [51,54] have been reported. The moisture stress-sensitivity index of the two
crops was high at the vegetative and starch-accumulation/grain-filling stages and low at
the seedling and maturity stages. In fact, at the later stages, the leaf area and canopy size of
the crops are relatively small. Therefore, crop water-use during these stages is low, and
yield reduction due to moisture stress is less significant. As a result, the majority of the
water applied at these stages evaporates from the soil. Similar results have been reported
in different parts of the world, such as by [51] for potato and [55] for wheat. However, the
magnitude of the moisture stress-sensitivity indexes differs. This variation might be due to
differences in local climate conditions and moisture-stress levels. The relative crop yield
was estimated using a developed water-production function, which is associated with the
moisture-stress-sensitivity index parameter. Compared to the simulated relative yield, the
Jensen model accurately predicted the relative yield, with negligible errors. This conclusion
is supported by the findings of a maize field-experiment conducted by [44].

The optimization of irrigation-scheduling for crops using moisture stress-sensitivity
levels is a practical method for saving irrigation water and reducing associated production
costs. In this study, the seasonal relative evapotranspiration of different deficit levels of
irrigation water was optimized, to evaluate yield maximization. Since our goal was to
maximize yield with deficit irrigation, all maximized yields following optimization were
compared to the yield under full irrigation. The optimization result indicated that in both
crops, yield maximization was achieved at T3, T2, T1, T4, and T7 (Figure 10). At T3 and
T2, the yield was maximized to a greater extent than with other treatments. This was due
to the fact that, first, T1 and T4 had lower seasonal deficit-levels than other treatments;
second, the deficit at T1 and T4 was scheduled at seedling and maturity growth-stages,
respectively. For these reasons, the yield reduction brought on by water stress at T1 and
T4 was less significant, in comparison with other deficit treatments. Since T1 and T4 were
initially close to optimal (the yield of full irrigation), the amount of maximized relative
yield after optimization was less than T3 and T2. Increasing irrigation water-consumption
gradually boosts yield, until it reaches the optimum level, after which additional increases
in irrigation water would not increase yield but might even slightly reduce it [12]. On the
other hand, the seasonal amount of irrigation water-level at T3 and T7 was almost equal
in both crops. The simulated yield of T3 was far less than T7. However, after irrigation-
scheduling optimization, the relative yield of the two treatments came to be approximately
equal. As discussed above, a high-yield reduction was observed when moisture stress
was scheduled at the vegetative and starch-accumulation/grain-filling stages (T3 and T2).
After optimizing the relative evapotranspiration between irrigation cycles, significant yield
maximization was achieved at T3, with the same amount of seasonal-irrigation water.
Generally, the results indicated that scheduling the irrigation water for growing seasons
based on the moisture stress-sensitivity level of the crops is valuable for saving irrigation
water and maximizing the yield of deficit irrigation. In times of water scarcity, it also
enables irrigators to determine how much water they need to maintain for the optimal
yield. In addition, such kinds of irrigation-scheduling optimization allow a substantial
degree of flexibility in planning the irrigation interval, to consider different soil and climatic
conditions [46].

This study also revealed that optimizing irrigation-scheduling does not always reflect
optimistic results. Optimizing irrigation-scheduling in the case of a high irrigation-water-
deficit level may not maximize yield. As it is shown in Figure 10, irrigation-scheduling
optimization at T5 (75% deficit throughout the growing season) and T6 (50% deficit through-
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out the growing season) was not successful in either crop. This suggests that, for bet-
ter outcomes, the crop water-requirement level should be considered when optimizing
irrigation-scheduling.

5. Conclusions

To conserve irrigation water, irrigation-scheduling optimization was developed, using
a simulation-optimization model. Following calibration of the sensitive parameters, deficit
and non-deficit irrigation treatments were scheduled in the SWAT model, to identify the
moisture-stress-sensitive growth-stages of potato and wheat. The crop-water production
function of potatoes and wheat in the study area was calculated using the Jensen moisture
stress-sensitivity index. Different seasonal deficit-irrigation levels were optimized between
seasonal irrigation-cycles for yield maximization. The general conclusions are:

(1) The model can be applied to manage the complicated simulation-optimization irrigation-
scheduling problems for wheat and potato, in the study area.

(2) The Jensen moisture stress-sensitivity index indicated that the vegetative and starch-
accumulation/grain-filling growth-stages of potato and wheat crops are the most
moisture-stress-sensitive stages. Moisture stress at these stages would significantly
lower the crop yield.

(3) Optimizing irrigation-scheduling based on growth-stage moisture-stress-sensitivity
levels can save up to 25.6% of irrigation water in the study area, with insignificant
yield-reduction. Furthermore, optimizing deficit irrigation-scheduling based on mois-
ture stress-sensitivity levels can maximize the yield of potato and wheat by up to 25%
and 34%, respectively.

(4) Planning to save irrigation water should be based on the ETc of the crops. That means
irrigation-scheduling optimization may not be effective if the seasonal-irrigation water
is too low, compared with ETc.

Furthermore, additional water-stress-based optimization experiments are recom-
mended, to expand on the current findings in the study area.
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