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Abstract: Recent evidence of the impact of watershed underlying conditions on hydrological pro-
cesses have made the assumption of stationarity widely questioned. In this study, the temporal
variations of frequency distributions of the annual maximum flood were investigated by continuous
hydrological simulation considering nonstationarity for Weihe River Basin (WRB) in northwestern
China. To this end, two nonstationary versions of the GR4J model were introduced, where the produc-
tion storage capacity parameter was regarded as a function of time and watershed conditions (e.g.,
reservoir storage and soil-water conservation land area), respectively. Then the models were used
to generate long-term runoff series to derive flood frequency distributions, with synthetic rainfall
series generated by a stochastic rainfall model as input. The results show a better performance of
the nonstationary GR4J model in runoff simulation than the stationary version, especially for the
annual maximum flow series, with the corresponding NSE metric increasing from 0.721 to 0.808.
The application of the nonstationary flood frequency analysis indicates the presence of significant
nonstationarity in the flood quantiles and magnitudes, where the flood quantiles for an annual
exceedance probability of 0.01 range from 4187 m3/s to 8335 m3/s for the past decades. This study
can serve as a reference for flood risk management in WRB and possibly for other basins undergoing
drastic changes caused by intense human activities.

Keywords: GR4J model; nonstationarity; flood frequency analysis; time-varying parameter

1. Introduction

The occurrence of hydrological extremes has always been a challenge for human
civilization. In the last decades, the exposure of critical infrastructures to flood has brought
the attention of the scientific community on regional and national scales [1,2]. The Sixth
Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) highlighted
the increase in extreme precipitation and the associated increase in the frequency and
magnitude of river floods in many regions, including Asia, central Africa, and western
Europe [3]. The change in the magnitude and frequency of these extremes has questioned
the assumption of stationarity, on which most flood frequency analysis (FFA) studies were
based [4,5]. Failure to account for nonstationarity, especially nowadays when the change of
flood regimes due to climate change or/and human activities can no longer be ignored,
may lead to underestimation or overestimation of the design flood value.

Design flood value associated with a specific return period (e.g., 100-year that is most
commonly used in relevant studies) is traditionally estimated based on flood frequency
analysis through statistical approaches [6]. Recently, with the concept that stationarity is
dead [4], various methodologies using a probabilistic model of flood frequency considering
nonstationarity have been introduced [7–15]. Khaliq et al. [16] provide a comprehensive
review of these approaches, including the incorporation of trends in distribution parameters,
trends in statistical moments, etc. Most studies of FFA considering nonstationarity adopted
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time-varying models to describe the variation of flood regimes [17–20]. However, applying
a time-dependent model is inadequate because it fails to account for the change caused by
climate change and/or human activities, which are usually the fundamental drivers. Thus,
recent studies [21–26] have investigated the possibility of incorporating external forcings,
such as climate factors, into models for FFA, and their work reported a better description of
variation in flood regimes. However, it is unclear how these methods can be used to project
future conditions since they are not physically based.

An alternative to statistical approaches is to derive flood frequency distribution using
hydrological modeling, where design flood value for a specific return period was estimated
using simulated runoff series from a hydrological model forced by observed or synthetic
rainfall series [27–34]. The simulation can be event-based or continuous, with the latter
approach increasing in use for its independence on the assumption about equal return
periods for the design rainfall event and resulting design flood. Moreover, it becomes
less necessary to account for the initial soil moisture conditions within the catchment
when applying continuous simulation. A detailed review of applications of continuous
simulation in design flood estimation can be found in the work of Boughton and Droop [35].
Through the continuous simulation approach, the design flood value can be determined
by derived flood frequency analysis using long-term simulated flows series [28–33]. To
this end, long-term continuous rainfall series with a sufficient temporal resolution are
required, especially for small catchments. Due to the limitation of the resolution and length
of available observed data, some researchers turn to synthetic rainfall series generated by
stochastic rainfall models [36–40]. Moreover, recent years have witnessed the increasing
availability of satellite-based rainfall products (e.g., GPM) and reanalysis rainfall products
(e.g., ERA5 and UERRA), which can serve as a good solution for data-scare areas [41,42].

The potential advantage of deriving flood frequency analysis using a hydrological
model over a statistical one is being able to account for the flood-related physical processes
explicitly. However, this method may be invalid under changing environments, such as
alteration in land use or the construction of new flood protection projects, whose effect
cannot be reflected by the observed historical flood records. Thus, some recent studies try
to diagnose and interpret hydrological nonstationarity, aiming to improve the structure
of hydrological models and corresponding simulation/forecasting performance under
such conditions [43–45]. The current state of the art is the application of conceptual
hydrological models with time-varying parameters, which are usually assumed to represent
changing watershed conditions. For example, Wallner and Haberlandt [44] reported a
significantly improved streamflow simulation performance of the HBV model when the
model parameter was made dependent on the climate indices. Deng et al. [45] linked the
parameters of the two-parameter monthly water balance model with catchment properties.
Their case study in southern China shows that the incorporation of time-varying parameters
can lead to a more reliable prediction of monthly streamflow under changing environments.

However, most recent studies focus on deriving flood frequency analysis using a
statistical model with time-varying parameters. Although the method of deriving flood
frequency using continuous hydrological simulation and hydrological modeling with time-
varying parameters have been validated in previous studies, few studies link them together
to derive flood frequency analysis under nonstationary conditions. Thus, this study aims
to derive flood frequency using a hydrological model with time-varying parameters under
changing watershed conditions. The flood quantiles in different sub-period were derived
using continuous simulation results by the stationary and nonstationary GR4J model, with
the Weihe River basin (WRB) as the study area. Then the differences in estimated flood
quantiles and magnitudes by the stationary and nonstationary models were presented to
emphasize the importance of applying nonstationary modeling in flood designing.

2. Study Area and Data

The Weihe River basin (WRB) in northwestern China was chosen as the study area
for its high nonstationarity, with runoff series from Huaxian station (near the outlet of the
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basin) on a declining trend over the past decades [46–55], mainly due to the intensifying
human activities associated with water extraction and diversion [49,50]. The WRB is located
between 104◦00′ E–110◦20′ E and 33◦50′ N–37◦18′ N, with a length of 818 km and a drainage
area of 134,800 km2, as shown in Figure 1. The elevation within WRB ranges from 340 to
3671 m, with a decrease from northwest to east.
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Figure 1. Location of Weihe River Basin (WRB) in China (a) and stations with hydrological and
meteorological measurements (b).

The daily runoff series from 1951 to 2011 were obtained from the Huaxian station.
The daily rainfall and mean temperature series were obtained from the 21 meteorological
stations (see Figure 1) within or around WRB for the same period as the runoff data. The
daily potential evaporation of the corresponding period was estimated by the modified
Hargreaves equation [56]. To account for the possible impact of human activities on the
underlying conditions and flow regimes within WRB, the socio-economic factors, includ-
ing population (POP), gross domestic product (GDP), irrigated land area (IA), cultivated
land area (CA), reservoir storage (RS) and soil-water conservation land area (SWC) were
considered as the candidates of external covariates for time-varying parameters. These
factors can serve as indicators for the alterations of watershed conditions (e.g., land use and
land cover) and have been used to assess the impact of human activities on flow regimes in
previous work [57,58]. Considering the majority of cities, population, and farmed land area
within WRB located in the Shaanxi Province, the covariates mentioned above for the period
of 1951–2011 were represented by data of this province [59,60], as shown in Figure 2.
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(a–f) represent population, gross domestic product, cultivated land area, irrigated land area, reservoir
storage and soil-water conservation land area, respectively.

3. Methodology
3.1. GR4J Model: Stationary and Nonstationary

The hydrological model applied in this study is the lumped conceptual GR4J model [61].
The GR4J model was chosen for its parsimony in model parameters while still maintaining
adequate process representation, including fast and slow responses together with a soil
moisture component. The GR4J model has 4 parameters that are required to be calibrated,
as presented in Table 1.

Table 1. Description of the parameters within the GR4J model.

Parameter Description Unit Feasible Range

θ1 production storage capacity mm 20–1200

θ2 groundwater exchange coefficient mm −5–3

θ3
one day ahead maximum capacity of

the routing store mm 20–500

θ4 time base of unit hydrograph days 1–5

The stationary and two nonstationary versions of the GR4J model were applied for
continuous simulation purposes in the study, i.e., the stationary model (model zero), where
parameter values keep constant over time; the time-dependent model (model one), where
the parameters vary as a function of time; and the time-varying model (model two), where
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the parameters vary as a function of covariate related to watershed underlying conditions.
For both models one and two, the parameter θ1 was allowed to vary over time because it
stands for the production storage capacity of the watershed and has proved to be the most
sensitive parameter of GR4J in previous studies [62–64].

For model one, the parameter θ1 was treated as a liner function of time, as follows

θ1,t
1 = a + bt (1)

where θ1,t
1 stands for θ1 in model one for the year t. The coefficients {a, b} are unknown and

are therefore calibrated together with the parameter θ2, θ3 and θ4 in model one.
To reveal how the parameter θ1 would vary with the underlying conditions variation

caused by human activities, θ1 in model two was treated as a function of multiple covariates,
as follows

θ2
1,t = β0 +

m

∑
i=1

βihi(xi,t) (2)

where θ2
1,t represents the value of θ1 in model two for the year t, xi,t(i = 1, 2, ..., m) are m

explanatory variables for the year t, βi(i = 0, 1, ..., m) are m + 1 regression coefficients. Note
that function hi(·) stands for the dependence of the parameter θ1,t on explanatory variables
xi,t, which can be identical, logarithmic, or exponential, so as to represent possible linear or
nonlinear relationships of the parameter θ1 to changing watershed conditions.

3.2. Parameter Estimation and Model Selection

For model two, the selection of proper covariates for the parameter θ1 from several
candidate explanatory variables is essential. In total, 6 covariates (POP, GDP, IA, CA, RS,
and SWC) were considered in this study, as mentioned above. In order to investigate the
potential for the nonstationary GR4J model in runoff simulation, all combinations of the
6 external covariates (in total 63 covariate combinations, C1

6 +C2
6 +C3

6 +C4
6 +C5

6 +C6
6 = 63)

were tested, and their corresponding performance was evaluated in terms of the Nash-
Sutcliffe efficiency coefficient (NSE) metric. The combination of covariates corresponding
to the highest NSE metric was regarded as optimal.

Parameters of all 3 models were calibrated using the SCEM [65] method, which has
been widely used for practical assessment of parameter uncertainty in hydrological model-
ing [65–67]. The most likely parameter set in terms of NSE metric can be identified through
the SCEM method, as well as their underlying posterior distribution [65–69]. To account
for uncertainty in parameters, 1000 parameter sets were then sampled from the posterior
probability distribution. Of the 1000 sampled parameter sets, the one corresponding to
the highest NSE metric was regarded as the approximation of the global optimum and
used for model evaluation and selection. Considering the limitation of model comparison
and selection based on a single metric, additional criteria were adopted, including the
Kling-Gupta efficiency coefficient (KGE), the relative error (RE) between simulated and
observed annual total volume, and the daily-scale flow-duration curves, which enables
comparison between the probability distribution of simulated and observed runoff and
may contribute to figuring out the potential biases (e.g., possible underestimation of high
flows).

The period of 1951–1990 was used for parameter calibration (for all models) and model
selection (for model two only). The period of 1991–2011 was used for model validation.
In order to reduce the possible impact of initial conditions, a 1-year warm-up period
was applied for both the calibration and validation period, and the simulation within the
warm-up period was excluded before the model evaluation procedure.

Note that WRB is highly seasonal, typically with low flow during winter. In order to
avoid the possible impact of low flow on the analysis, a peak-over-threshold calibration
strategy was adopted. This strategy excludes flows below a threshold of 100 m3/s for the
model evaluation procedure, thus placing greater emphasis on the simulation performance
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of high flow [70]. This censoring threshold was chosen because roughly 40% days from
1951 to 2011 witnessed a flow below 100 m3/s for WRB.

3.3. Deriving Flood Frequency Distribution through Monte Carlo Simulation

For flood frequency analysis under the stationarity assumption, the underlying wa-
tershed conditions were assumed to be time-invariant; thus, a constant value of design
flood for a specific return period could be determined. However, under nonstationary
conditions, the design flood value for a certain return period may change over time due
to the evolving watershed conditions. In order to achieve flood frequency analysis under
nonstationary conditions, the historical period was divided into several sub-period. Based
on the parameter from each sub-period, the Monte Carlo simulation method using the GR4J
model was adopted to generate long-term runoff series; subsequently, the flood frequency
distribution for certain sub-period could be determined.

As for model input for the Monte Carlo simulations, long-term rainfall series were
generated by the weather generator BCC/RCG-WG [71], which was developed by Beijing
Climate Center of China Meteorological Administration and Regional Climate Group at the
University of Gothenburg. The stochastic model generates continuous rainfall series whose
arrival time, duration, and intensity are all random, governed by a gamma distribution with
parameters assumed to change monthly [72]. The calibration and validation of monthly
parameters of the stochastic model have been conducted for 672 meteorological stations all
over China in previous works [72,73]. Details on the model and its calibration/validation
procedure can be found in the work of Liao et al. [73].

In practice, maximum annual flows are mainly relevant to annual maximum rainfall
events and their antecedent rainfalls. In the case of WRB, Xiong, and Jiang [25] reveal a
considerable correlation between annual maximum daily runoff and its 15-day antecedent
rainfall, which shows a negligible variation. This study assumed that the characteristics
of storms (annual maximum rainfall events) were stationary over the study period, thus
enabling investigations on how the variation of watershed conditions affects the design
flood value. Note that when applied in future scenarios, a perturbation with a climate
change signal to the weather generator is necessary to generate rainfall series corresponding
to the possible climate scenarios.

The GR4J model and the weather generator were used in the Monte Carlo simulation
to generate daily runoff series of 100 years. Ten rainfall realizations generated by the
stochastic model were used to consider uncertainty in rainfall (i.e., input for the GR4J
model). As mentioned above, a total of 1000 parameter combinations were obtained from
the posterior parameter distribution to account for uncertainty in the parameters of GR4J.
Thus, in total 10,000 model runs were applied to derive the flood frequency distributions
and corresponding uncertainty for certain sub-period.

4. Results
4.1. Simulation Performance of the Stationary and Nonstationary GR4J Models

For model two, 63 covariate combinations were tested, and their corresponding per-
formance was evaluated in terms of the NSE metric. For the sake of brevity, only 4 cases
are presented in Table 2 for illustration purposes. Note that for each covariate combination,
1000 parameter sets were obtained from the posterior probability distribution, and only the
highest-NSE one was presented here for model selection purposes. Case C0 was designed
to represent the stationary GR4J model. Under cases C1–C3, the external covariate RS and
SWC were introduced in different schemes to describe the temporal variation of the produc-
tion storage capacity parameter θ1. It can be found that the runoff simulation performance
improved when the parameter θ1 was allowed to change over time. For example, the NSE
value is 0.753 under case C1, where only the covariate RS was considered when compared
to 0.711 for the stationary GR4J model. The highest NSE value (0.765) was achieved under
case C3, where both RS and SWC were incorporated into the time-varying parameter. Thus,
the time-varying model under C3 was chosen as the optimal model two. Table 2 also
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gives the equation for the time-varying parameter θ1,t under 4 cases, where RS and SWC
represent the mean value of covariate RS and SWC for the period from 1951 to 2011.

Table 2. Model evaluation and selection for the nonstationary GR4J model (model 2).

Case
Covariate Equation for the Time-Varying

Parameter θ1,t
NSE [-] KGE [-] RE [%]

RS SWC

C0 θ1,t = 542.1 0.711 0.801 11.5

C1 X θ1,t = 290.3 + 195.6 RSt
RS

0.753 0.845 8.9

C2 X θ1,t = 296.8 + 152.4 SWCt
SWC

0.748 0.839 9.4

C3 X X θ1,t = 304.5 + 102.1 RSt
RS

+ 69.2 SWCt
SWC

0.765 0.853 8.5

Table 3 gives a summary of statistics of simulation performance using the stationary
GR4J model (model zero) and the modified versions (models one and two). Note that there
are numerous versions of model two, and only the highest-NSE one is present here. The
NSE, KGE, and RE metrics in Table 3 indicate that all three models achieved acceptable
simulation performance for both calibration and validation periods. Model two, which
incorporates RS and SWC as external variables, achieved the highest NSE value for both the
calibration and validation period, followed by model one and model zero. This indicates
that the nonstationary GR4J model can achieve a better simulation performance than the
stationary one.

Table 3. Simulation performances of the stationary and nonstationary GR4J model for WRB.

Model Covariates
Calibration Period (1951–1990) Validation Period (1991–2011)

NSE
[-]

KGE
[-]

RE
[%]

NSE
[-]

KGE
[-]

RE
[%]

Model zero none 0.711 0.801 11.5 0.692 0.791 13.5

Model one time 0.743 0.832 9.8 0.714 0.812 10.1

Model two RS, SWC 0.765 0.853 8.5 0.716 0.818 9.8

Figure 3 shows the comparison between the observed and simulated flow-duration
curves (FDC) from models zero, one, and two with the parameter set corresponding to the
highest NSE metric. All models achieved a good simulation performance for flow with
an exceedance probability of less than 20%. Model two apparently outperforms model
zero and one in terms of high flows. The flow-duration curves were also presented for the
autumn season when floods are most likely to occur (Figure 3b). The results indicate good
performance for models zero, one, and two in simulating high flows and poor performance
in reproducing low flows. This is expected given NSE is the objective function and the
peak-over-threshold calibration strategy was applied.

Predictions of the annual maximum flow were obtained from the simulated runoff
series using the GR4J models (model zero, one, and two) with the 1000 parameter sets.
Figure 4 compares the observed and simulated annual maximum flows for the period of
1951–2011. The observed annual maximum flows are represented by blue dots. The 95%
prediction uncertainty bounds associated with the parameter are represented by the dark-
shaded area, and the 95% prediction interval related to the model residuals corresponds to
the light-shaded area. The NSE metric for the annual maximum flood series is denoted by
NSEAMF in Figure 4.
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The results from the stationary model with a constant parameter set (model zero) and
the nonstationary model assuming temporal dependence only (model one) can adequately
describe the variation in maximum annual flows (see Figure 4a,b), with most observed
floods lying within the uncertainty bounds. For WRB, model two produced the most reliable
estimation of maximum annual flows under nonstationary conditions (NSEAMF = 0.808)
when compared to model zero (NSEAMF = 0.721) and model one (NSEAMF = 0.748), together
with comparative narrower uncertainty bounds. This also proves the benefit and advantage
of incorporating reservoir storage RS and soil-water conservation project SWC that are
related to local regulation strategies as covariates.

Note that the incorporation of the time-varying parameter can be regarded as a
modification of the model structure since one or more parameters require calibration
are incorporated. Thus, whether a significant improvement in simulation performance
can be achieved highly depends on the rationality of the modified model structure. For
models with time-varying parameters, the selection of appropriate covariate to describe
the dynamic of watershed conditions is of great importance. In this study, the combination
of covariate RS and SWC leads to the highest NSE metric. Other covariates related to
watershed conditions (e.g., vegetation cover) may achieve a more significant improvement
in simulation performance. This is an interesting topic that deserves further research.

4.2. Dynamic Variation of Time-Varying Parameter

Figure 5 presents the dynamic variation of the parameter θ1 for models one and two
over the whole period with a 5-year spacing. The production storage capacity determines
the catchment responsiveness and the allocation of rainfall input into interception, evap-
otranspiration, groundwater, and runoff. A larger production storage capacity means
stronger resistance effects of rainfall input on runoff generation, i.e., weaker responsiveness
of the watershed to rainfall variability.
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For both models one and two, the increasing trend in the parameter θ1 is apparent.
This can be partially explained by the aforementioned external variables RS (reservoir
storage) and SWC (soil-water conservation land area). The construction of large reservoirs
in WRB sprang up in the 1960s and reached an upsurge in the late 1970s, which may lead
to a significant shift in flood regime and, therefore, a noticeable change in flood magnitude
at the outlet of the basin. The soil-water conservation projects (including the construction
of terraces, afforestation, etc.) that started in the late 1950s and still persist today also
contributed to larger storage for the rainfall during runoff generation, thus causing a much
lower flow given the same rainfall input.
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4.3. Performance of the Stochastic Rainfall Model

In order to validate the reliability of the stochastic rainfall model mentioned above,
10 realizations of long-term synthetic rainfall series on a daily basis (each 100-year in length)
were generated for 21 meteorological stations within WRB. For brevity, only the result
of the meteorological station Tianshui is shown here. Table 4 shows comparisons of the
event characteristics of the 61-year observed rainfall series and the synthetic rainfall series
generated by the stochastic rainfall model. The statistics of the generated rainfall series show
good agreement with those of the observed historical records, with a slight overestimation
of the mean volume of a rainfall event. The standard deviation and skewness of event
volume were also well reproduced.

Table 4. Event characteristics of the observed rainfall series (OBS) and the synthetic rainfall series
(STOCH) for the meteorological station Tianshui.

Event Characteristics Unit OBS STOCH

Number of rainfall events per year - 54 48
Mean of event volume mm 9.54 10.08

Standard deviation of event volume mm 14.76 13.58
Skewness of event volume - 3.24 3.52

A frequency analysis was conducted on the annual maximum rainfall series for both
the observed and synthetic rainfall series. Note that rainfall series can be generated for long
periods using the stochastic model but only can be compared with the shorter observation
statistic. Selected results are presented in Figure 6, where the observed values mainly lie
within the boundary of the corresponding synthetic rainfall records. This indicates a good
reproduction of rainfall series using the stochastic model, and the synthetic rainfall series is
adequate for the purpose of Monte Carlo simulation.
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4.4. Flood Frequency Derivation Using the Stationary and Nonstationary Model

Figures 7 and 8 show the comparison of flood quantiles for an exceedance probability
of 0.01 using the stationary model (model zero) and nonstationary models (models one
and two). The 95% uncertainty bounds were estimated from simulation results from the
10,000 model runs, as mentioned above.

For the stationary model (model zero), the flood quantile for an exceedance probability
of 0.01 (i.e., return period of 100-year) was a constant value of 6521 m3/s (see Figure 7).
For model one, the corresponding flood magnitudes were continuously on a downward
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trend. This is expected since the parameter θ1 of model one was time-dependent only. An
FFA of the Huanxian station using model two (see Figure 8) shows that the flood quantiles
for an annual exceedance probability of 0.01 range from 4187 m3/s (in 2011) to 8335 m3/s
(in 1960). A noticeable decline occurred in the late 1970s when the reservoir storage and
soil-water conservation area were undergoing drastic changes, indicating a more reasonable
interpretation of the variation of flood magnitudes over time compared to model one. The
variation in flood quantiles is in line with the work of Xiong et al. [25] and Hesarkazzazi
et al. [74].

The results also stress the problems when assuming stationarity in flood frequency
analysis and design. The application of the nonstationary models indicates that flood
quantiles and magnitudes for WRB underwent significant variability over the past decades.
In such cases, the assumption of stationarity may lead to an apparent misestimate of design
flood for the future.
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5. Discussion

Applying time-varying parameters in hydrological modeling has proved to be a
useful approach to diagnosing hydrological nonstationarity under changing underlying
watershed conditions. The key issue remains the selection of proper external covariates that
are related to watershed conditions variation. This study chooses six external covariates and
searches for the optimal one in a brute-force approach. A more comprehensive approach to
identifying the most likely covariate combination requires further investigation.

The introduction of external covariates helps the models grasp the variations in flood
frequency during the calibration and validation periods. This is in line with the work of
Xiong et al. [25] and Jiang et al. [55]. However, before utilizing such a model as a predictive
tool for future scenarios, the predictions of climate and anthropogenic indices are necessary.

6. Conclusions

In this study, flood frequency analysis considering nonstationarity by continuous
simulation using the GR4J model with time-varying parameters was conducted for the
Weihe River basin, and the main findings are as follows:

1. Improved model performance can be achieved when the parameter θ1 (representing
the production storage capacity) is treated as time-dependent or as a function of
external variables that reflect changes in the hydrological responses within WRB;

2. Incorporating the watershed conditions as covariates for the model parameter (model
two) can better describe nonstationarity in the flood frequency and magnitude in
WRB than the over-simplified time-dependent model (model one);

3. The nonstationary model can achieve a more rational description of variations in the
frequency and magnitude of floods over time, which reveals the deficiency when
applying a stationary model under changing watershed conditions.
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