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Abstract: Agriculture is extremely vulnerable to climate change. Greenhouse farming is recognized 

as a promising measure against climate change. Nevertheless, greenhouse farming frequently en-

counters environmental adversity, especially greenhouses built to protect against typhoons. Short-

term microclimate prediction is challenging because meteorological variables are strongly intercon-

nected and change rapidly. Therefore, this study proposes a water-centric smart microclimate-con-

trol system (SMCS) that fuses system dynamics and machine-learning techniques in consideration 

of the internal hydro-meteorological process to regulate the greenhouse micro-environment within 

the canopy for environmental cooling with improved resource-use efficiency. SMCS was assessed 

by in situ data collected from a tomato greenhouse in Taiwan. The results demonstrate that the 

proposed SMCS could save 66.8% of water and energy (electricity) used for early spraying during 

the entire cultivation period compared to the traditional greenhouse-spraying system based mainly 

on operators’ experiences. The proposed SMCS suggests a practicability niche in machine-learning-

enabled greenhouse automation with improved crop productivity and resource-use efficiency. This 

will increase agricultural resilience to hydro-climate uncertainty and promote resource preserva-

tion, which offers a pathway towards carbon-emission mitigation and a sustainable water–energy–

food nexus. 

Keywords: smart microclimate-control system (SMCS); machine learning; system dynamics; water–

energy–food nexus; agricultural resilience 

 

1. Introduction 

The Sustainable Development Goals (SDGs) call for imperative action to ensure food 

security while preserving natural resources and maintaining environmental sustainabil-

ity, especially in the era of climate change [1]. Significant changes in Earth’s climate have 

fostered more extreme weather events in recent decades and therefore have increasingly 

impacted global agriculture by deeply implicating the fate of food systems and directly 

affecting the future of “eating” for humans. For instance, Taiwan suffered from 15 extreme 

weather events in 2016, including 4 typhoons, 3 torrential rains, 4 severe rains, and 4 cold 

snaps. The huge agricultural loss caused by these extreme weather events accounted for 

10.3% of the total value of agricultural production, resulting in severe fluctuations in food 

prices and disturbance in social equilibrium. Besides, changes in temperature and precip-

itation patterns may increase crop failures and production declines [2].  

Agricultural systems are vulnerable to changes not only in climate but also in other 

evolving factors like farming practices and technology. The impacts of climate change on 

agricultural systems globally have been investigated in recent decades [3–6]. Greenhouses 
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are an expensive and technological solution for the challenges climate change poses to 

agriculture. However, they are not a universal tool that will solve all problems since it is 

infeasible to grow all crops indoors. For specific, high-value crops, this makes sense. Cli-

mate-smart agriculture is an integrated approach that seeks to manage landscapes by as-

sessing interlinked food security and climate change to simultaneously improve crop 

productivity as well as reduce agricultural vulnerability to pests and climate-related risks 

[7]. Greenhouse cultivation that creates a controllable and stable environment facilitating 

crop growth and yield could be a climate-smart practice [8–10]. Hemming et al. [11] indi-

cated that the opportunities and challenges for the future implementation of sensor sys-

tems in greenhouses could be explored by using artificial-intelligence techniques. Green-

house farming is recognized as a promising measure to cope with climate change because 

this physical practice can promote crop growth and productivity by adequately control-

ling a microclimate to increase food security [12–14]. Due to the high agricultural loss in-

duced by extreme weather events in 2016, the Council of Agriculture in Taiwan launched 

a five-year funding program in December of 2016 to encourage greenhouse construction 

or upgrades (2000 ha expected) for mitigating agricultural losses and maintaining stable 

food prices in the future. Among limited managerial tools, spraying plays a pivotal role 

in greenhouse control of environmental cooling, especially for places like Taiwan with hot 

and humid weather, where environmental adversity can occur in greenhouses. For in-

stance, Bwambale et al. [15] conducted a review of smart irrigation-monitoring and con-

trol strategies that aimed to improve water-use efficiency in precision agriculture. Tona et 

al. [16] conducted a technical–economic analysis on spraying equipment for specialty 

crops and indicated that the purchase price would make the robotic platform profitable. 

Spraying systems are evidently one of the key environmental-control strategies for green-

house cultivation. Nevertheless, most of the previous research related to spraying for en-

vironmental cooling focused mainly on cooling effects [17], without considering resource 

consumption. For resource preservation, it is required to consider the resource-use effi-

ciency of spraying for environmental cooling. 

Greenhouse cultivation by nature substantially depends on environmental controls 

to stabilize crop productivity [18,19]. Accurate prediction or simulation of a greenhouse 

internal environment is needed to evaluate environmental-control strategies for crop 

growth [20–25]. Besides, short-term microclimate prediction is challenging because mete-

orological variables are strongly interconnected with values changing rapidly during an 

event. With the motivation to fill the research gap and support the above-mentioned gov-

ernmental greenhouse policy to achieve SDGs #2 (Zero Hunger), #12 (Responsible Con-

sumption and Production), and #13 (Climate Action), this study developed a water-centric 

smart microclimate-control system (SMCS) for greenhouse cultivation in response to cli-

matic variation. The SMCS was designed to automatically activate early spraying for en-

vironmental cooling while consuming less water and energy. The SMCS seamlessly inte-

grates a system-dynamics (SD) model coupled with a physically based (i.e., a hydro-me-

teorological process) estimation model, a machine-learning prediction model, and a spray 

mechanism. A traditional greenhouse-spraying system based on the physically based es-

timation model and the spray mechanism coupled with operators’ experience served as a 

benchmark for exploring the usefulness and applicability of the proposed SMCS. A to-

mato greenhouse located in Changhua County of Taiwan formed the case study, where 

the in situ datasets for use in this study were collected by Internet of Things (IoT) devices. 

The SMCS is expected to increase greenhouse automation and reinforce the efficiency of 

resource utilization, which can pave the way to reducing carbon emissions and promoting 

water–energy–food-nexus synergies in greenhouse farming. 

2. Materials and Methods 

This study proposes a water-centric SMCS that fuses system-dynamics and machine-

learning techniques to regulate the greenhouse micro-environment within the canopy, 

with improved resource-use efficiency. The research flow chart is shown in Figure 1. We 
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first collected the historical IoT monitoring data of the investigative greenhouse. Based on 

the IoT data, the SD model simulated the greenhouse microclimate within the canopy be-

fore and after spraying for environmental cooling. The back-propagation neural-network 

(BPNN) model predicted one-hour-ahead greenhouse internal temperature and relative 

humidity, where the initial inputs were the IoT data. Based on the prediction results, a 

spray mechanism was designed to determine the necessity of early spraying for environ-

mental cooling. Consequently, the impacts of spraying on the internal environment and 

resource consumption were investigated. This study further compared the spray effects 

between the SMCS and the traditional greenhouse-spraying system (a benchmark), with 

the main focus on the resource consumption of spraying for environmental cooling. In the 

end, the potential of the SMCS for agricultural-loss mitigation in the perspective of water–

energy–food-nexus synergies was discussed. It was noted that both traditional and ma-

chine-learning-based systems were constructed based on the IoT data collected from the 

same trial during 20 May and 20 July 2019. 

  

Figure 1. Research flow chart of this study. 

2.1. Study Area and Materials 

In this study, a total of 1488 hourly meteorological datasets related to tomato cultiva-

tion were collected on 20 May and 20 July 2019 by IoT devices installed inside and outside 

a privately owned greenhouse located in Changhua County of Taiwan (Figure 2). The IoT 

devices (Figure 2) installed in the greenhouse were developed by the Taiwan Agricultural 

Research Institute. The size of the greenhouse is about 52 m × 30 m × 6 m (length × width 

× height), indicating that the land area of the greenhouse is about 1560 m2. Monitoring 
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items consisted of internal/external temperature, internal/external relative humidity, ex-

ternal insolation, wind speed, and wind direction (Table 1). It is noted that this study 

adopted IoT datasets for model-construction and evaluation purposes only. 

 

Figure 2. Location and structure of the greenhouse investigated in this study. 

Table 1. IoT monitoring data collected in this study for model-validation purposes (20 May–20 July 

2019 at a 10 min scale). 

Item Notation SI Unit 

External temperature To °C 

External relative humidity RHo % 

External insolation paro W/m2 

Wind speed WS m/s 

Wind direction WD ° 

Internal temperature Ti °C 

Internal relative humidity RHi % 

2.2. System Dynamics (SD) for Simulating Greenhouse Environment 

SD is a set of process-oriented research methods specializing in the causal-feedback 

relationship among many variables and high-order non-linear systems [26–28]. It also spe-

cializes in explaining the results of system behavior through structural reasons behind the 

behavior [29]. SD has been widely used for simulating the non-linear behaviors in com-

plex systems over time in various fields, including greenhouse management, forecasting 

and experimentation [30–32], rooftop farming [33], and the water–food–energy nexus 

[34,35]. 

This study explored the causal loops of SD for greenhouse cultivation by considera-

tion the spray effect (Figure 3a). It is noted that the SMCS was constructed to reduce in-

ternal temperature and increase internal relative humidity by raising the partial pressure 

of water vapor to achieve the effect of cooling and humidification. A physically based 

model was constructed based on the SD model to estimate the greenhouse internal tem-

perature and relative humidity before and after spraying. The framework of the SD model 

coupled with the physically based estimation model is shown in Figure 3. 
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Figure 3. Model construction of the proposed smart microclimate-control system (SMCS) for green-

house cultivation in consideration of the spray effect. (a). SD model. (b). BPNN prediction model. 

(c). Physically based estimation model. 

Referring to Lee et al. [17], greenhouse internal relative humidity and temperature 

were considered to be a function of the conservation of mass and the conservation of en-

ergy, which consisted of two parts. Part 1 estimated the internal relative humidity by cal-

culating enthalpy and heat conduction. Part 2 estimated the internal temperature by cal-

culating the variation in moisture in the air. The formulation of greenhouse internal rela-

tive humidity and temperature is briefly introduced below. 
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2.2.1. Formulation of Greenhouse Internal Relative Humidity 

The physically based estimation model of internal relative humidity was constructed 

by the equations of the conservation of mass and the conservation of energy (Equation 

(1)).  

dH

dt
× VGH × Dair  =  β

i,t
× Wateri,t  +  Venti,t × Dair × (Ho,t − Hi,t) (1) 

where 
dH

dt
 is the indoor absolute humidity change rate in a time period (kg/m3 h), βi,t is the 

spray efficiency (%), Wateri,t denotes the amount of spray (kg) , Venti,t denotes the indoor 

ventilation (kg/h), and Hi,t (Ho,t) denote the internal (external) absolute humidity (kg/m3) 

at t. VGH denotes the total capacity of the greenhouse (m3), and Dair denotes the air density 

(1.2 kg/m3). 

Hi,t  =  0.62198 ×
RHi,t × esii,t

(Patm − RHi,t × esii,t)
 (2) 

Ho,t  =  0.62198 ×
RHo,t × esio,t

(Patm − RHo,t × esio,t)
 (3) 

where RHi,t (RHo,t) denotes the indoor (external) relative humidity (%) at t, esii,t (esio,t) de-

notes the indoor (external) saturated vapor pressure (kpa) at t, and Patm denotes the at-

mospheric pressure (101 kpa).  

esii,t  =  0.6178 × e

17.2694×Ti,t

(Ti,t + 237.3) (4) 

= 0.6178 × e
17.2694×To,t
(To,t + 237.3) (5) 

where Ti,t (To,t) denotes the indoor (external) temperature (°C) at t. 

β
i,t

 =  1.1906 − 0.09077 × RHi,t (6) 

Venti,t  =  Ci,t × WSt × AGH (7) 

where Ci,t is the ventilation utilization factor at t, AGH is the ventilation area of the green-

house (m2), and WSt denotes the wind speed (m/h) at t. 

Hi,t + 1  =  Hi,t  +  
dH

dt
 (8) 

where Hi,t + 1 and Hi,t denote the indoor absolute humidity at t + 1 and t (kg/m3), respec-

tively. 

eii,t + 1 =  
Hi,t + 1 × Patm

Hi,t + 1  +  0.62198
 (9) 

where eii,t + 1 denotes the indoor partial pressure of water vapor (kpa) at t + 1. 

Consequently, the internal relative humidity (RHi,t + 1) at t + 1 could be calculated by 

Equation (10). 

RHi,t + 1 =  
eii,t + 1

esii,t + 1

 (10) 

2.2.2. Formulation of Greenhouse Internal Temperature 

The internal temperature was also constructed by the equations of the conservation 

of mass and the conservation of energy (Equation (11)). 
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dh

dt
 × Dair × VGH 

= (hi,t − ho,t)  × Venti,t  +  Kin × Aw × (Ts,t − Ti,t)  + Af × Kf × (Ti,t − Tf,t) 

(11) 

where 
dh

dt
 denotes the indoor change rate of enthalpy in a time period (kj/kg h); hi,t and 

ho,t denote the indoor and external enthalpies (kj/kg) in the air at t, respectively; Venti,t 

denotes the ventilation rate (m3/h) at t; VGH denotes the total capacity of the greenhouse 

(m3); Dair denotes the air density (1.2 kg/m3); Kin denotes the indoor coating material’s heat-

convection parameter in the air (6.4 W/m2 °C); Aw denotes the area of the coating material 

(m2); Ts,t, Ti,t, and Tf,t denote the indoor temperature (°C) of the coating material, the indoor 

temperature (°C), and the indoor ground temperature (°C) at t, respectively; Af denotes 

the total ground area of the greenhouse (m2); and Kf denotes the indoor ground-to-air heat 

convection parameter (4.65 W/m2 °C). 

hi,t =  1.006 × Ti,t  +  Hi,t × (2501 +  1.085 × Ti,t) (12) 

where Hi,t denotes the indoor absolute humidity (kg/m3) at t. 

ho,t =  1.006 × To,t  +  Ho,t × (2501 +  1.085 × To,t) (13) 

where To,t denotes the external temperature (°C) at t, and Ho,t denotes the external absolute 

humidity (kg/m3) at t. 

Ts,t  =  To,t  +  a × (
Rno,t

Kout

) (14) 

where a is the solar-absorption rate on the surface of the material (0.65%), Rno,t denotes 

the external solar radiation (W/m2) at t, and Kout denotes the thermal conductivity on the 

surface of the material (6.3 W/m2 °C). 

Rno,t =  (1 − ref) × par
o,t

 +  Rnlon (15) 

where ref denotes the ground reflectivity (0.2), paro,t denotes the external insolation at t 

(W/m2), and Rnlon denotes the atmospheric long-wave radiation (343 W/m2). 

Tf,t  =  To,t + 
Rno,t − B × (To,t  +  273.15)

4

(4 × B × (To,t  +  273.15)3)
 (16) 

where B is the Boltzmann constant (5.67 × 10−8 Wm−2K−4). 

Because this study considered spray to be a means of humidification and cooling, it 

required calculating the internal heat moving away due to spray, as shown in Equation 

(17) (refer to [36]). 

Q
t
 =  β

i,t
 ×  Wateri,t  ×  Hfg (17) 

where Qt denotes the heat moving away due to spray (kj/h), βi,t denotes the indoor spray 

efficiency (%) at t, Wateri,t denotes the indoor spray amount (kg/h) at t, and Hfg denotes 

the latent heat of water evaporation (2256.6 kj/kg). 

dT =  

dh
dt

× VGH × Dair − Qt

4.186 × Cp × VGH × Dair
 (18) 

where dT denotes the indoor temperature change in a time period (°C/h), and Cp denotes 

the specific heat of the air (1.0052 kj/kg °C). 

Consequently, the internal temperature at t + 1 could be obtained from Equation (19). 

Ti,t + 1  =  Ti,t  +  dT (19) 
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where Ti,t + 1 and Ti,t denote the indoor temperature (°C) at t + 1 and t, respectively. 

Details of the formulation of greenhouse relative humidity (Part 1) and internal tem-

perature (Part 2) can be found in the Supplementary Material. 

2.3. Machine Learning for Predicting Greenhouse Internal Environment 

Artificial neural networks (ANNs) in machine learning are a family of computation 

methods that imitate the operation and learning of the human nerve system. ANNs are 

broadly used to tackle diverse environmental issues, such as rainfall forecasts [37,38], 

evaporation prediction [39,40], flood forecasts [41–46], hydrological analysis [47–51], eco-

logical-environment analysis [52,53], air-quality estimation [54], agricultural automation 

[55], and greenhouse environmental control [22,56,57].  

The BPNN is one of the most widely used ANNs. This study utilized the BPNN to 

predict one-hour-ahead greenhouse internal temperature (Ti(t + 1)) and relative humidity 

(RHi(t + 1)) based on current information on six meteorological factors, including external 

temperature (To), external relative humidity (RHo), external insolation (paro) and wind 

speed (WS), internal temperature (Ti), and internal relative humidity (RHi) (Figure 3b). 

The construction of the BPNN prediction model was based on a total of 1488 hourly IoT 

data, where 64, 16, and 20% of the data were shuffled and randomly allocated into train-

ing, validation, and testing stages, respectively. The architecture of the BPNN model con-

structed in this study is illustrated in Figure 3b. The parameter setting of the BPNN model 

is shown in Table 2, where the number of neurons in the hidden layer and the batch size 

were determined to be 20 and 64, respectively, through trial-and-error processes. The rel-

evant trial-and-error results are presented in Tables 3 and 4. 

Table 2. Parameter setting of the BPNN model. 

Item BPNN 

Number of hidden neurons 10, 20, 40 

Number of epochs 200 

Early stopping 20 

Batch size 8, 16, 32, 64 

Learning rate 0.001 

Activation function Scaled exponential linear unit (SELU) 

Optimizer Adam 

Table 3. Trial-and-error results of the number of hidden neurons in the BPNN model. 

Number of  Temperature Relative Humidity 

Hidden Neurons R2 RMSE R2 RMSE 

10 0.80 1.61 °C 0.87 4.45% 

20 1 0.82 1.55 °C 0.88 4.19% 

40 0.81 2.42 °C 0.87 4.40% 

Note: 1 The number of hidden neurons that was determined for constructing the BPNN model in 

consideration of the model complexity and the values of the evaluation indicators. 

Table 4. Trial-and-error results of the batch number in the BPNN model. 

Batch Number 
Temperature Relative Humidity 

R2 RMSE R2 RMSE 

8 0.83 2.08 °C 0.88 4.28% 

16 0.81 1.56 °C 0.87 4.53% 

32 0.82 1.67 °C 0.88 4.35% 

64 1 0.83 1.55 °C 0.88 4.19% 

Note: 1 The batch number that was determined for constructing the BPNN model in consideration 

of the values of the evaluation indicators. 
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2.4. Construction of the Spray Mechanism 

Figure 4 presents the spray-simulation flow chart of the SMCS. According to the one-

hour-ahead predictions (t + 1) of greenhouse internal temperature and relative humidity 

obtained from the BPNN model, a spray mechanism with spraying criteria was designed 

to determine the time to spray, which is introduced as follows.  

  

Figure 4. Spray-simulation flow chart of the SMCS that integrates the SD model, the BPNN predic-

tion model, the physically based estimation model, and the spray mechanism. 

According to Xue et al. [58] on greenhouse cultivation, the net photosynthetic rate 

and cumulative photosynthesis of tomato leaves could be significantly improved when 

the internal relative humidity reached 70%. Liou et al. [59] indicated that the formation of 

lycopene in tomatoes would be reduced if the greenhouse internal temperature exceeded 

28 °C. Therefore, this study managed to activate sprayers for environmental cooling under 

two conditions: when the internal relative humidity fell below 70%, and when the internal 

relative humidity and the internal temperature exceeded 90% and 28 °C, respectively. 

To avoid resource over-consumption, sprayers would not be activated if the internal 

relative humidity exceeded 90% or the internal temperature fell below 25 °C. Besides, the 

switching on/off of the sprayers would be carried out based on the predicted values of 

internal relative humidity and temperature. Therefore, the spray mechanism would acti-

vate sprayers for environmental cooling subject to two criteria: (1) the one-hour-ahead 

prediction of internal relative humidity would be less than 70% and the one-hour-ahead 

prediction of internal temperature would be higher than 25 °C, and (2) the one-hour-ahead 

prediction of internal relative humidity would be less than 90% and the one-hour-ahead 
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prediction of internal temperature would be higher than 28 °C. Spraying would terminate 

either when the internal temperature and relative humidity met the environmental suita-

bility for tomato growth or when the total amount of spray exceeded the maximal spray 

volume within one hour (i.e., 1.35 kg). 

In the case of no spraying being required for environmental cooling, the one-hour-

ahead predictions of internal temperature and relative humidity obtained from the BPNN 

model would be fed back to the system and serve as the initial input values of the BPNN 

model at the next time-step (the orange dotted line in Figure 4). If either above-mentioned 

activation criterion for spraying was met, a spray of 0.001 kg would be carried out, leading 

to a re-calculation of the internal temperature and relative humidity after spraying by us-

ing the physically based estimation model. The spraying process would repeat until reach-

ing the stop criteria. It is noted that a sprayer would not be activated if the required 

amount of spray was less than its minimal spray volume (= the minimal duration of spray 

× the rate of spray). When spraying terminates, the final one-hour-ahead estimates (t + 1) 

of internal temperature and relative humidity obtained from the physically based model 

would be fed back to the system and serve as the initial input values of the BPNN model 

at the next time-step (the orange dotted line in Figure 4). For the greenhouse investigated 

and the sprayer selected for use in this study, it would require three sprayers to cover the 

entire greenhouse farm (1560 m2). The weight of spray each time would be 0.001 kg per 

sprayer, and the total weight of spray per hour would be 1.35 kg for three sprayers. There-

fore, the control loop would be evaluated at a rate of 8 s. 

2.5. Evaluation of Model Performances 

To explore the spray effect of the SMCS on greenhouse farming, the above-mentioned 

spraying process for environmental cooling was implemented on all 1488 IoT data col-

lected in this study. For comparison purposes, a traditional greenhouse-spraying system 

was established by integrating the physically based estimation model with the spray 

mechanism only, whereas the physically based model was responsible for estimating one-

hour-ahead greenhouse internal temperature and relative humidity before and after 

spraying. 

This study used the root-mean-square error (RMSE) and the coefficient of determi-

nation (R2) as the statistical indicators to evaluate model performance. Their mathematical 

formulas refer to Equations (20) and (21). 

Root-Mean-Square Error 

RMSE =  √
1

N
∑ (yi  −  oi)

2
N

i = 1
 (20) 

Coefficient of Determination 

R2  =  

[
 
 
 

∑ (yi  −  y̅)(oi  −  o̅)N
i = 1

√∑  (yi  −  y̅)2N
i = 1 √∑  (oi  −  o̅)2N

i = 1 ]
 
 
 
2

 (21) 

where N is the total number of data, yi is the output value of the model, oi is the observa-

tion value, and y̅ and o̅ are the average of the output value and the observation value, 

respectively. 

According to the definitions of the two indicators, it is obvious that a model is con-

sidered to perform well if it produces a higher R2 value but a lower RMSE value than the 

comparative model(s). 
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3. Results 

This study developed a water-centric SMCS dedicated to greenhouse farming and 

the spray effect on greenhouse microclimate for environmental cooling with the relevant 

resource consumption being investigated. The operation of the SMCS was composed of 

four main phases: to simulate greenhouse environmental dynamics in consideration of 

the spray effect (by the SD model), to predict one-hour-ahead internal temperature and 

relative humidity (by the BPNN model), to determine the necessity of spraying for envi-

ronmental cooling (by the spray mechanism), and to estimate the required amount of 

spray to manage a microclimate suitable for tomato growth in the coming hour (by the 

physically based model). The SMCS was applied to the 1488 in situ data collected from a 

greenhouse on 20 May 2019 and 20 July 2019. The modeling results are presented and 

discussed as follows. 

3.1. Comparison of Model Accuracy and Reliability between the Physically Based and  

ANN Models 

Table 5 shows the performance of the physically based estimation model and the 

BPNN prediction model with respect to greenhouse internal temperature and relative hu-

midity based on test datasets. For the physically based estimation model, the R2 and RMSE 

values of the internal temperature were 0.80 and 1.89 °C, respectively, whereas those of 

the internal relative humidity were 0.79 and 8.17%, respectively. The results demonstrate 

the accuracy and reliability of the physically based model. As for the BPNN prediction 

model, its R2 and RMSE values of the internal temperature were 0.83 and 1.37 °C, respec-

tively, whereas those of the internal relative humidity were 0.88 and 3.9%, respectively. 

The results also demonstrate the accuracy and reliability of the BPNN model. It appears 

that the BPNN model is superior to the physically based model in terms of higher R2 and 

lower RMSE values. 

Table 5. Performance of the physically based estimation model and the BPNN prediction model 

with respect to greenhouse internal temperature and relative humidity based on test datasets. 

Indicators 
 Temperature Relative Humidity 

Physically Based BPNN Physically Based BPNN 

R2 0.80 0.83 0.79 0.88 

RMSE 1.89 °C 1.37 °C 8.17% 3.9% 

Figures 5 and 6 show the errors and error distributions of internal-temperature and 

relative-humidity estimates obtained from the physically based model and the BPNN 

model, respectively. In both error plots, positive values indicate overestimation whereas 

negative values indicate underestimation. Regarding the physically based estimation 

model, it can be seen in Figure 5a that the errors of the internal temperature mostly fell 

within 1 and 2 °C (overestimated), with an overestimation occurrence frequency (1098 

times) much higher than the underestimation one (387 times). According to Figure 5b, the 

errors in the internal relative humidity were mostly concentrated within −3% and −6% 

(underestimated), with an underestimation occurrence frequency (787 times) higher than 

the overestimation one (699 times). 
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(a) 

  
b) 

Figure 5. Errors and error distributions of greenhouse microclimate estimates from the physically 

based model (20 May 2019–20 July 2019). (a). Internal temperature. (b). Internal relative humidity. 
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(a) 

 
(b) 

Figure 6. Errors and error distributions of greenhouse microclimate predictions from the BPNN 

model (20 May 2019–20 July 2019). (a). Internal temperature. (b). Internal relative humidity. 
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Regarding the BPNN prediction model, the results of Figure 6a indicate that the er-

rors of the internal temperature mainly fell within −1 and 0 °C (under prediction), where 

underprediction (1176 times) occurred more frequently than overprediction (302 times). 

According to Figure 6b, the errors in the internal relative humidity were mainly concen-

trated within −3% and 0%, where underprediction (959 times) also occurred more fre-

quently than overprediction (517 times). It also appears that the BPNN model performed 

better than the physically based model in terms of smaller error ranges and error distri-

butions centering at zero. 

Furthermore, the results shown in Table 5 and Figures 5 and 6 are quite consistent, 

which shows that the overall performance of the BPNN model was slightly better than 

that of the physically based model. This recommended the incorporation of the BPNN 

model into the SMCS to predict one-hour-ahead internal temperature and relative humid-

ity in this study. 

3.2. Comparison of the Spray Effect of Traditional and Smart Control Systems on Greenhouse 

Internal Environment 

Tables 6 and 7 show the results of internal temperature and relative humidity before 

and after spraying by the traditional spraying system and the proposed SMCS, respec-

tively.  

Table 6. Results of greenhouse environmental control on internal temperature and relative humid-

ity before and after spraying for environmental cooling by the traditional spraying system (20 May 

2019–20 July 2019). 

Indicators 
 Temperature Relative Humidity 

Before After Before After 

Max 38.8 °C 28.1 °C 100% 100% 

Min 23.8 °C 23.8 °C 37% 56% 

Average 29.6 °C 27.0 °C 72% 86% 

Standard devia-

tion 
3.6 °C 1.3 °C 16% 7% 

The results of Table 6 indicate that the average and standard deviation of the internal 

temperature after spraying decreased by 2.6 and 2.3 °C, respectively. For the internal rel-

ative humidity after spraying, the average value increased from 72% to 86%, whereas the 

standard deviation dropped from 16% to 7%. 

Table 7. Results of greenhouse environmental control on internal temperature and relative humid-

ity before and after spraying for environmental cooling by the SMCS (20 May 2019–20 July 2019). 

Indicators 
 Temperature Relative Humidity 

Before After Before After 

Max 34.3 °C 32.9 °C 91% 100% 

Min 21.3 °C 22.1 °C 48% 69% 

Average 28.0 °C 26.6 °C 74% 89% 

Standard devia-

tion 
2.9 °C 1.5 °C 12% 4% 

The results of Table 7 show that both the average and standard deviation of the in-

ternal temperature after spraying decreased by 1.4 °C. For the internal relative humidity 

after spraying, the average value increased from 74% to 89%, whereas the standard devi-

ation dropped from 12% to 4%. These results demonstrate that the SMCS could more ef-

fectively reduce the internal temperature while increasing the internal relative humidity 
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after spraying than the traditional one, which supports the practicability of the proposed 

SMCS on greenhouse farms. 

3.3. Comparison of Resource Consumption between Traditional and Smart Microclimate -

Control Systems 

Concerning spray-related resources utilization for greenhouse environmental control 

over the entire investigative period, water consumption could be obtained directly from 

summing up the amount of spray at each time-step while power consumption would be 

converted from horsepower and the total operating hours of the sprayers. For spray-sim-

ulation purposes, this study adopted the “FH-09 power spray motor” sprayer launched 

by the Fog Century Environmental Protection and Energy Saving Enterprise Co. Ltd., lo-

cated in Taichung City, Taiwan. The main specifications of the sprayer are a horsepower 

of 1.125 kW, a water absorption of 0.15 kg/h, and an applicable area of about 400 to 600 

m2. Considering the greenhouse investigated in this study occupies an area of 1560 m2, it 

would require three sprayers to cover the entire greenhouse farm. 

Table 8 compares the traditional and the proposed control systems regarding the re-

source consumption of spraying for environmental cooling. 

Table 8. Comparison between traditional and smart microclimate-control systems regarding the 

resource consumption of spraying for environmental cooling. 

Item 
Water 

(kg) 

Electric Power 

(kWh) 

Number of On/Off 

Switch of Sprayers 

Traditional spraying system 129,478 90.0 736/1488 

Smart spraying system 42,962 29.8 726/1488 

Resource-saving amount1 86,516 60.2 10/- 

Resource-saving rate2 66.8% 66.8% 1.4%/- 

Traditional spraying system 129,478 90.0 736/1488 

Notes: 1 Amount of the traditional spraying system—amount of the SMCS. 2 Resource saving 

amount/amount of the traditional spraying system. 

It is noted that the numbers of the on/off switches of the sprayers associated with the 

two comparative systems differed slightly (736 times for the traditional system vs. 726 

times for the smart system). Therefore, the difference of the two systems in power con-

sumption enabling the switching on/off of the sprayers could be ignored. Under this as-

sumption, the traditional system consumed about 129,478 kg of water and 90 kWh of elec-

tric power for greenhouse environmental control during the entire tomato-cultivation pe-

riod. In contrast, the SMCS only consumed about 42,962 kg of water and 29.8 kWh of 

electric power. The results demonstrate that the SMCS consumed far fewer resources for 

spraying than the traditional system, with water- and power-saving rates reaching 66.8%. 

It was further noticed that early spraying for environmental cooling suggested by the 

SMCS allowed the wind to blow away excess internal water vapor one hour ahead, lead-

ing to a decrease in the internal relative humidity. Spray efficiency is known to be in-

versely proportional to the internal relative humidity. Therefore, the amount of spray 

could be reduced due to early spraying. 

4. Discussion 

4.1. Evaluation of Hazard Mitigation by the SMCS 

This study further evaluated the potential contribution of the proposed SMCS to the 

governmental greenhouse policy launched in 2016 regarding the construction of 2000 ha 

of reinforced greenhouses within five years. Taking the agricultural loss in 2020 released 

by the Council of Agriculture in Taiwan as an example, under the scenario that all 2000 

ha of greenhouses could be equipped with the SMCS, the agricultural loss caused by ex-

treme weather events would be significantly reduced by 22% (= 2000 (greenhouse area in 
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ha) / 9097 (total damaged area in ha)) on average. Besides, resource saving in water and 

energy would achieve 1,109,918 tons (= ((86,516 kg / 1560 m2) × 10,000) × 2000 ha / 1000) 

and 771,795 kWh (= ((60.2 kWh / 1560 m2) × 10,000) × 2000 ha), respectively (Table 8). This 

suggests the smart greenhouse microclimate-control practice bears high potential for tack-

ling climate change and can significantly promote the nexus synergies among water, en-

ergy, and food, especially when encountering extreme weather events. 

4.2. Conributions of the SMCS 

The proposed SMCS makes two main contributions. Firstly, for maintaining an envi-

ronment suitable for crop growth, the traditional greenhouse-spraying system requires 

monitoring sensors like IoT devices to detect the internal temperature or relative humidity 

for switching sprayers on/off. Nevertheless, this may impose the risk of an unsuitable en-

vironment on greenhouse farming between two time-steps. For example, the operational 

time interval was one hour in this study. Even if the greenhouse environment complies 

with the suitability conditions of crop growth at the current minute, it may violate the 

suitability conditions in the next minute. In contrast, the SMCS can predict the greenhouse 

microclimate for the next hour well, thereby spraying in advance to prevent an unsuitable 

environment for crop growth. Besides, the SMCS avoids using IoT sensors because the 

extra hardware and maintenance costs of the monitoring devices also place a heavy bur-

den on greenhouse owners. Secondly, the SMCS consumes fewer resources of water and 

energy (electricity) when spraying for environmental cooling than the traditional method, 

indicating that the SMCS can mitigate greenhouse-gas emissions. Low resource consump-

tion also represents cost-effectiveness and relatively high profits, leading to more com-

mercial value that can be achieved by the SMCS. 

The greenhouse-management practice developed can be applied to crops and areas 

of interest with adequate modification of the environmental suitability for crop growth. 

Similar methodology for developing the SMCS can also be applied to different greenhouse 

types. Future research can consider incorporating crop evapotranspiration, soil-moisture 

content, nutrients, and fertilization into the SMCS to increase the prediction accuracy of 

the greenhouse environment and promote crop productivity and quality. Ventilation is 

also a major factor in the control of greenhouse temperature. In future research, ventila-

tion will be considered by incorporating the greenhouse-control factors (e.g., skylight, 

roller shades on each wall, and inner shade net) into the proposed water-centric smart 

microclimate-control system (SMCS) to increase its operational efficiency and effective-

ness. 

5. Conclusions 

This study proposed a water-centric smart microclimate-control system (SMCS) for 

greenhouse farming, with a mission to manage the microclimate through efficient spray-

ing for environmental cooling. The SMCS can maintain stable crop productivity when ex-

treme weather events occur. The SMCS can determine the necessity of spraying for envi-

ronmental cooling according to the predictions of greenhouse internal temperature and 

relative humidity. The results demonstrate that the SMCS could achieve the same envi-

ronmental-control effect as the traditional one while consuming far fewer resources for 

spraying, which makes greenhouse farming move towards carbon-emission mitigation 

and sustainable management of the water–energy–food nexus. There are four main find-

ings drawn from this study, shown below. 

Firstly, the cost of sensor installation is a major concern for farmers in Taiwan, espe-

cially concerning device investment and maintenance issues. The BPNN model could 

(Figure 1) predict greenhouse microclimate based on external climate conditions with less 

water and energy. After the BPNN model is constructed, this science-based management 

practice requires no in situ monitoring sensors, which favorably lessens greenhouse own-

ers’ investment in environmental control and makes a positive contribution to the overall 
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cost–benefit ratio of greenhouse farming. The physically based model engaging the inter-

nal hydro-meteorological process could produce satisfactory accuracy and reliability in 

estimating greenhouse microclimate, despite it performing slightly worse than the BPNN 

prediction model. 

Secondly, the SMCS could predict the greenhouse internal environment well one 

hour ahead and spray in advance when needed for environmental cooling, which pre-

vents crops from being exposed to an unsuitable cultivation environment. 

Thirdly, the SMCS could achieve savings as high as 66.8% of water and energy com-

pared to the traditional method. Therefore, the SMCS gains more commercial value than 

the traditional method because low resource consumption means low production cost and 

relatively high profits. 

Fourthly, the reduction in agricultural loss caused by extreme weather events in 2020 

would reach 22% if the SMCS could be implemented in 2000 ha of greenhouses (the goal 

of the governmental greenhouse policy launched in 2016 in Taiwan). This would lead to 

effective resource saving in water and energy of 1,109,918 tons and 771,795 kWh per year, 

respectively. This greenhouse-control strategy significantly contributes to environmental 

sustainability and greenhouse-gas-emission mitigation.  

This study suggests a practicability niche in machine-learning-enabled greenhouse 

automation with improved crop productivity and resource-use efficiency. The proposed 

SMCS substantially moves greenhouse farming towards the SDGs in the perspectives of 

food security, natural-resource preservation, and environmental sustainability.  
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