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Abstract: The behavior of hydrological processes is periodic and stochastic due to the influence of 
climatic factors. Therefore, it is crucial to develop the models based on their periodicity and stochas-
tic nature for prediction. Furthermore, forecasting the streamflow, as one of the main components 
of the hydrological cycle, is a primary subject. In this study, a statistical method, Fuzzy C-means 
clustering, was used to find the periodicity in the daily discharge time series, whereas autoregres-
sive moving average, ARMA, was used in modeling every cluster. Dividing the daily stream flow 
time series into smaller groups based on their similar statistical behavior by using a statistical 
method for analyzing and a combination of Fuzzy C-means clustering and ARMA modeling is the 
innovation of this study. We draw on the daily discharge data of four different river stations in 
Hesse state in Germany. The collected data cover 18 years, from 2000 to 2017. Root mean square 
error (RMSE) was used to evaluate the accuracy. The results revealed that the performance of 
ARMA in four stations for predicting every cluster was reliable. In addition, it must be highlighted 
that by clustering the daily stream flow time series into smaller groups, forecasting different days 
of the year will be possible. 

Keywords: ARMA; Fuzzy; modeling; forecasting; time series; periodicity; clustering;  
daily stream flow; Hesse 
 

1. Introduction 
In the current world, water resources management plays an increasingly important 

role. Although 70 percent of the earth’s surface is covered by water, the problem is that 
sometimes it is too much or too little, and it is occasionally costly or polluted. On the other 
hand, not only is consuming water increasing all around the world due to population 
growth, land use change, and upgrading life standards [1], but also the negative direct 
impact of climate change on water resources and freshwater ecosystems has restricted 
them and put the world at the risk of losing some water resources [2]. It can be said that 
managing water resources has been one of the biggest challenges in all countries for the 
past decades, which has necessitated the use of innovative tools such as advanced statis-
tical methods and data mining for management, planning, and policy in the field of water 
resources. 

Data mining has been recognized as one of the most useful and powerful tools among 
the various sciences for analyzing high-volume data and large databases; finding the un-
known relationship between the data and using this knowledge has increased signifi-
cantly in the last decades [3–7]. Data mining means discovering knowledge and extracting 
useful information from a large amount of raw data. Various international scientific cen-
ters are using this important issue to prepare the information necessary for policymakers, 
planners, and managers to make decisions. Furthermore, data mining is a procedure to 
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divide the data into groups according to their type, discover the behavior of the groups 
and check the correlation between them, and research the scientific issues; there has been 
growth in using it in recent years. Liu et al. proved the capability of data mining for ana-
lyzing data compared to conventional methods. They showed that by using data mining, 
the efficiency of material data analysis could go up by 10% [8]. Data mining techniques 
have played a large role in water resources management as an exploratory process. In this 
regard, the following are some examples: 

A data mining approach is used as part of an integrated water management model 
to describe and simulate farmers’ decision rules in a catchment in northern Thailand [9]. 
Investigation of water resources data for quality and quantity time series [10] and prom-
ising likelihoods streamflow forecast models for river/reservoir systems and nonlinearity 
of climate teleconnections dynamics [11] are two other types of research in this field. Fur-
thermore, finding the dependency of monthly precipitation of some synoptic stations and 
eliminating the trend of surface temperature with the help of data mining is another ex-
ample [12]. 

Among the methods of data mining, the Fuzzy cluster is a method that divides the 
data into groups with similar items. It can be considered a data modeling technique that 
briefly explains the data. Therefore, data mining can be applied to a wide range of subjects 
[13]. Luczak et al. [14] specified the time of transaction of the COVID-19 epidemic between 
the European countries and followed the continuous changes during the transaction using 
the Fuzzy cluster method. They recognized the countries’ COVID-19 epidemic state in 
Europe in this research. The simplicity and efficiency of the Fuzzy clustering method are 
mentioned in Zhang et al. [15]. They have mentioned an improved Fuzzy clustering 
method for image segmentation in medical images, which is useful for judgment about 
illnesses based on nonlocal self-similarity and a prior low rank. The results showed that 
by utilizing this new approach, results would be valuable and acceptable. 

In addition, using this method in water resources research has increased dramati-
cally. The effective impact of using clustering analysis for estimating failure rate in water 
distribution networks and determining the relationship between failure-rate-effective fac-
tors has been acknowledged [16]. Using clustering to divide gauged and ungauged wa-
tersheds into homogenous groups based on a variety of topographical and climatic factors 
shows another application of clustering in water resource management [17]. Identification 
of hydrologically homogeneous regions to estimate the regional flood index was done by 
using the clustering method [18]. In another study, clustering has been the main method 
for describing and classifying the potential water resources availability (PWRA) distrib-
uted over an area [19]. Furthermore, the relationship between groundwater resources and 
surface waters was investigated by cluster analysis [20]. 

Periodic time series are often used for modeling climatological data, hydrology, eco-
nomics, electricity, engineering, etc. As a natural phenomenon, water flow behavior re-
peats over fixed time intervals, so periodic data should be considered [21]. Research in 
periodic time series has been done by researchers [22–26], and generally, it can be found 
that periodic hydrology time series, such as seasonal, monthly, weekly, and daily stream 
flow time series, have periodic and random features. Periodic features are defined by pe-
riodic average, standard deviation, and periodic skewness coefficient; constant or periodic 
correlation coefficient may indicate random features. A wide spectrum of techniques can 
model the time series once a periodic pattern has been discovered, improving the predic-
tion [27]. 

To our knowledge, no previous studies have investigated on deviation of the daily 
discharge of these four stations studied in this research into groups according to their 
behavior. This study uses the Fuzzy clustering method to find the periodicity based on 
the days with similar statistical behavior, not based on calendar divisions such as month 
or season. In addition, the suitability of ARMA (autoregressive moving average), a short-
memory powerful linear model, to model daily river discharge will be investigated. Our 

https://dictionary.cambridge.org/dictionary/english/continuously
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proposed method realizes the principle of parsimony in modeling and reduces the esti-
mation of periodic parameters. Additionally, this method will divide time series into 
smaller groups, and the linear features of any groups will be improved. Therefore, using 
ARMA (autoregressive moving average) models can have more accurate results. Policy-
makers and local authorities can use the results of this study to reduce the manageable 
damages caused by hydrological events by planning ahead. 

After the introduction, the study region, preparation of data, and methodology (Sec-
tion 2) are presented, followed by the results in Section 3. The discussion is in Section 4. 
Finally, the conclusions and outlook have been placed in the last section. 

2. Materials and Methods 
2.1. Study Site 

Located in the heart of Europe, Germany has a total area of 357,588 km2 with 53.5% 
agricultural land, 29.5% wood and forest, 12.5% city and traffic areas, 1.8% water, and 
2.4% other land uses [28]. The Hesse area (21,116 km2) is located in Germany, with the 
highest and lowest elevations of 950 and 71 m asl, respectively [28]. According to the Ger-
man Weather Service, the climate is classified as temperate oceanic, with a mean annual 
air temperature of 9.3 °C and mean annual precipitation of 790 mm (1991–2020) [29]. The 
selected state gauges Ehringen (lat = 51.38367, lon = 9.14531, catchment area = 137 km2), 
Hanau (lat = 50.13208, lon = 8.94581, catchment area = 920 km2), Biedenkopf (lat = 50.90598, 
lon = 8.53263, catchment area = 303 km2), and Günthers (lat = 50.65609, lon = 10.00497, 
catchment area = 182 km2) are located on four main rivers, namely, the Erpe, Kinzig, Lahn, 
and Ulster, respectively [30]. The Erpe is a tributary of the Twiste and belongs to the Weser 
river system. It has its source in the low mountain range Habichtswald in northern Hesse 
[31]. The Kinzig river runs along the northern lowlands and lower mountains of Ger-
many’s central lower mountainous region [32]. The Lahn river originates in the Rothaar 
Mountains in North Rhine-Westphalia and flows into the Rhine at Lahnstein, near Ko-
blenz (Rhineland-Palatinate). The Lahn measures approximately 245 km in length [33]. 
The Fulda and Ulster rivers drain Eastern Hesse almost entirely. The Weser’s second 
headstream, the Ulster, is a principal tributary of the Werra river. A source of the Ulster 
river can be found in the southeast of the study area near the highest peaks of the Rhön 
Mountains [34]. Figure 1. shows an overview of the study site in this study. 

 
Figure 1. The location of the selected stations (Ehringen, Biedenkopf, Günthers, and Hanau) on the 
selected rivers (Erpe, Kinzig, Lahn, and Ulster) in Hesse. Note: Source of DEM 
[https://www.bkg.bund.de/EN/Home/home.html (accessed on 20 October 2022)]. 
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2.2. Database 

2.2.1. Description 
In this study, four measurement stations, including Ehringen, Hanau, Biedenkopf, 

and Günthers, which provide the daily flow of the rivers, have been used to develop the 
model. Figure 2a–c, and d represent the daily discharge of the stations. In accordance with 
the situations of being on various hydrological conditions, the stations were chosen ran-
domly in Hesse’s four main geographical regions: North, South, East, and West. The data 
were collected from the Hessian Agency for Nature Conservation, Environment, and Ge-
ology (HLNUG), https://www.hlnug.de/static/pegel/wiskiweb2/ (accessed on 20 October 
2022). As a technical and scientific authority within the Hessian environmental admin-
istration, the HLNUG is responsible for environmental monitoring. An area-wide moni-
toring network records air pollutants and physical, chemical, and biological water and 
soil parameters. In addition to data recording, the main tasks include collecting, pro-
cessing, and evaluating such data. For this study, a unified length of time series was set, 
and the starting and ending date is from January 2000 to December 2017, respectively. 
Figure 2 shows the graphs of the data sets. Based on Figure 2, 2002 is the year with the 
maximum average daily discharge for the stations Ehringen, Hanau, and Günthers, 
whereas for Biedenkopf station, the maximum average daily discharge was in 2007. On 
the other hand, the minimum daily discharge for the stations happened in 2016 for 
Ehringen and Biedenkopf, in 2014 for Hanau, and in 2007 for Günthers. Table 1 summa-
rizes more details regarding the data. 
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Figure 2. (a) Daily discharge of Biedenkopf; (b) daily discharge of Ehringen; (c) daily discharge of 
Günthers; (d) daily discharge of Hanau; time scale refers to the period from 2000 to 2017. 

Table 1. Summary of descriptive statistics of daily discharge for four stations. 

Station Period Samples Average 
(m3/s) 

Standard 
Deviation (m3/s) 

Skewness 
(m3/s) 

Kurtosis 
(m3/s) 

Biedenkopf 2000–2017 6570 5.11 7.91 4.24 27.38 
Ehringen 2000–2017 6570 0.64 0.59 7.57 128.89 
Günthers 2000–2017 6570 2.56 3.29 5.51 47.01 

Hanau 2000–2017 6570 9.91 10.20 3.55 19.65 

2.2.2. Preprocessing 
The forecast package in R programming has done all the data processing procedures, 

including normalization and removing nonstationary factors and outliers. It is worth 
mentioning that there were no data gaps or missing values due to the data checking and 
preparation by the HLNUG. Therefore, in the first step, we stabled variance and normal-
ized the data using Box–Cox transformation. Then, for omitting the seasonality, the data 
has been standardized and checked for the stationary using an augmented Dickey–Fuller 
Test (ADF). Therefore, they will be ready for clustering and modeling. 

2.3. Methodology 
The flow chart of the methods used in this article is shown in Figure 3. As we are 

going to model the daily hydrological time series, which are usually periodic, we have to 

0

10

20

30

40

50

60

Fl
ow

 m
3 /s

Day

Günthers Daily Discharge

0

20

40

60

80

100

120

140

Fl
ow

 m
3 /s

Day

Hanau Daily Discharge



Water 2022, 14, 3932 6 of 18 
 

 

deal with them periodically and find the periods with similar behavior to put them into 
the same group. Therefore, as one of the data mining methods, the first Fuzzy cluster (see 
Section 2.3.1) has been applied to the time series to achieve the aim mentioned above. 
Then ARMA model (see Section 2.3.2) is utilized to find the best-fitted model for each 
cluster. Finally, a ten-point forecast was made for each cluster. 

 
Figure 3. Flow chart showing the used procedure from preparing data to achieving results. 

2.3.1. Augmented Dickey Fuller Test (ADF) 
Trend and seasonality are the most important factors that cause time series to be non-

stationary. Identifying the effects of these factors can be done by using stationary tests 
[35]. There are many different methods to test whether a time series is stationary or not. 
Among them, an ADF test has been used and is acknowledged to test the stationary of 
stream flow and hydrological time series in many studies [36–40]. The ADF test was in-
troduced by Dickey and Fuller in 1979 [41]. Then, in 1984, Said and Dickey improved it 
[42]. The main equation of ADF is as follows: 

∆Yt = α + βt + γYt−1 + ∑ (δj
p
j=1 ∆Yt−j) + εt  (1) 

where t is the time index, α is an intercept constant called drift, β is the coefficient on a 
time trend, γ is a coefficient presenting process root, p is the lag order of the first differ-
ences autoregressive process, and et is an independent, identically distributed residual 
term. 

2.3.2. Fuzzy C-Mean Cluster (FCM) 
Based on a Fuzzy cluster, every object in a dataset can join more than one cluster. 

One of the most widely used kinds of Fuzzy clusters is FCM. Allocating a degree of mem-
bership for every member in every cluster is the technique that FCM uses for decreasing 
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the uncertainly in recognizing the members. [43,44]. It calculates the distance of every ob-
ject from the cluster center and specifies the class of every object by optimizing the target 
function based on the minimum square error. It is proposed that Xt = {X1, X2, … , XN}. The 
FCM cluster partitions Xt into a collection of C clusters, C = {c1, c2, … , cc}, by an iterative 
minimization with respect to defined criteria [45]. The process of its objective function is 
defined below:  

JCM=∑ ∑ �xi − θj�
2

xi∈cj
c
j=1   (2) 

where Cj  is the jth cluster and θj  is its centroid and ‖ ‖ is the Euclidean distance. 
Every X will be placed in the nearest cluster in each repeat. Then, cluster centroids will 
be updated as follows: 

θj = 1
Nj
∑ XixiϵCj   (3) 

where Nj is the object number in cluster j and is subjected to ∑ Nj = N0
C
j=1 . 

2.3.3. ARIMA Model 
An autoregressive integrated moving average, or ARIMA, is a statistical analysis 

model that uses time series data to either better understand the data set or to predict future 
trends and enables the description and analysis of time series. An ARIMA model includes 
two stationary models, AR (autoregressive) and MA (moving average). To explain it more 
clearly, AR shows how a variable in a time series is connected to its lagged value, and MA 
is the linear mixture between an object and errors of previous objects. “I” is the value of 
difference between an observation and previous ones to reach the stationary [46]. There-
fore, if a time series is stationary, the ARIMA model will change to the ARMA model. In 
this case, d will be zero. The general mathematic forms of ARIMA (p, d, q) and ARMA (p, 
q) are defined as follows [47]: 

ARIMA: φP(B)∇dxt = θq(B)εt (4) 

ARMA:   φP(B)xt = θq(B)εt (5) 

where B is the backward operator (βxt = xt−1) and ∇xt = xt − xt−1 is a stationary pro-
cess. The AR component is φ(B) with p order, the MA component is θ(B) with q order, 
and d is a differencing parameter which is used to ensure data stability. Parameters of the 
ARIMA and ARMA models, p and q, have been estimated by an autocorrelation function 
graph (ACF) and partial autocorrelation correlogram (PACF). 

2.3.4. Performance Metric 
Root mean square error (RMSE) is utilized for evaluating the modeling outcome as a 

performance metric. The general form of RMSE is as follows: 

RMSE = �1
M
∑ (Pi − Oi)2M
i=1   (6) 

where M is the number of observations, Pi is the estimated value, and Oi is the actual 
observation. The lower the value, the more accurate the prediction [48]. 

3. Results 
After preprocessing the data by normalization and removing the nonstationary fac-

tors containing trend and seasonality, they became ready for operation, and the results 
are divided into four parts: normalization, clustering, modeling, and forecasting. 

3.1. Normalization 
The purpose of the stationarity test is to answer the question of whether the mean 

and variance values change over time or not. Most of the time series are nonstationary 
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due to different reasons, such as trend or periodicity. They should be stationary before 
modeling [49]. To fulfill this purpose, an ADF test has been used for testing stationarity. 
The trend should be omitted before applying the ADF test. To reach this goal, the data has 
been standardized by subtracting the mean from them and dividing by the standard de-
viation. Finally, the stationarity of the data was examined. Table 2 shows the results of the 
ADF test at the 95% confidence level. 

Table 2. Results of ADF test for daily discharge with 95% confidence. 

Station Lag 
ADF Unit Root 

Result 
ADF Statistic p-Value 

Biedenkopf 4 −14.42241 0 Stationary 
Ehringen 13 −7.734843 0 Stationary 
Günthers 10 −11.47729 0 Stationary 

Hanau 6 −12.90913 0 Stationary 

3.2. Clustering 
Due to the periodic behavior of hydrologic time series, their periodic classification 

based on days with similar statistical behavior and not based on season or month will give 
more realistic results. To achieve this aim, we divided the days with similar statistical 
behavior for each station using the Fuzzy C-means cluster method, frequently used in 
pattern recognition. Based on this, Biedenkopf is divided into four clusters, Ehringen five, 
Günthers four, and Hanau four clusters. After checking the days placed in each cluster, it 
was found that some days in the same cluster are not consecutive in three stations. There-
fore, to place the days which are in order in the same cluster, we made some changes in 
the number of clusters for those stations. After applying the method described above, 
Biedenkopf, with the decrease of one number in the number of clusters, decreased from 
four clusters to three clusters, the day 1 to day 81 into cluster number two, the day 82 to 
day 299 into cluster number one, and day 300 to the last day into cluster number five. This 
reduction in the number of clusters has been made for Ehringen as well, but for this sta-
tion, from five to three. Thus, the days in Ehringen are classified as day 1 till day 107 and 
placed into cluster number three, day 108 till day 189 into cluster number two, and the 
rest into cluster number one. However, there was not any change in the numbers of clus-
ters for Günthers, and they remained divided into four, day 1 till day 90 in cluster number 
five, day 91 to day 151 in cluster number four, day 152 to day 295 in cluster number three 
and the others into cluster number one. In addition, for the last station, Hanau, the number 
of clusters increased from four to five, from day 1 to day 59 into cluster number two, day 
60 to day 90 into cluster number three, from day 91 to day 151 into cluster number one, 
from day 152 to day 304 into cluster number four, and the rest in cluster number five. 
Table 3 presents the summary of clustering results for each station, and Figure 4 repre-
sents the plot of time series clustering before editing. 
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Figure 4. (a) Cluster plot for Biedenkopf; (b) cluster plot for Ehringen; (c) cluster plot for Günthers; 
(d) cluster plot for Hanau. 
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Table 3. Numbers of Clusters. 

Station 
Clusters 

No of Cluster Days Average 
(m3/s) 

Standard 
Deviation 

(m3/s) 

Skewness 
(m3/s) 

Kurtosis 
(m3/s) Before 

Editing 
After 

Editing 

Biedenkopf 4 3 
2 1–81 9.91 11.31 3.04 12.66 
1 82–299 2.63 4.14 5.86 59.38 
5 300–365 7.42 8.84 3.43 20.55 

Ehringen 5 3 
3 1–107 0.95 0.67 3.66 22.57 
2 108–189 0.60 0.54 12.64 265.76 
1 190–365 0.48 0.48 13.61 365.05 

Günthers 4 4 

5 1–90 4.46 4.67 4.21 25.73 
4 91–151 2.52 2.86 6.85 65.60 
3 152–295 1.26 1.44 9.87 161.24 
1 296–365 2.85 2.93 4.50 33.55 

Hanau 4 5 

2 1–59 18.19 15.74 2.73 9.97 
3 60–90 15.18 11.09 2.11 6.31 
1 91–151 8.57 6.70 2.68 9.08 
4 152–304 5.34 3.95 4.04 22.39 
5 305–365 12.02 9.90 2.24 6.91 

3.3. Modeling 
Identifying the behavioral pattern of stream flow can be a powerful aid in managing 

hydrological issues. Applying stochastic hydrology to recognize the streamflow models 
is one of the most practical methods and was introduced in 1964 [35]. 

As a statistical powerful linear model, the autoregressive moving average (ARIMA) 
is strongly approved by researchers [50], which is a kind of nonstationary variation of the 
ARMA model. Therefore, the ARMA model is extracted for stationary time series [47]. 

After applying the process described above for clustering and indicating the cluster 
numbers for each station, the ARMA model was extracted for each group to assess. Fi-
nally, the results of the best-fitted models at a daily scale have been represented in Table 
4. It can be seen that the model for the Hanau station, cluster number three, is ARMA (2,0). 
In this case, q = 0 means that this is the same model as AR (2). The accuracy of the models 
is indicated by the low value of RMSE and Akaike information criterion (AIC), shown in 
Table 4. 

Table 4. Summary of ARMA model parameters. 

Station Cluster Model 
Coefficients AIC RMSE 

p q   

Biedenkopf 

1 ARMA (2,2) 
1.7309 −0.6591 

2948.53 0.351 
−0.7386 −0.1691 

2 ARMA (2,2) 
1.5614 −0.2682 

−793.42 0.183 
−0.6116 −0.1553 

5 ARMA (1,2) 0.9088 
0.3375 

855.98 0.345 
0.0663 

Ehringen 
1 ARMA (3,1) 

1.5526 
−0.8009 3409.21 0.413 −0.6217 

0.0598 

2 ARMA (1,2) 0.9713 
−0.5694 

2859.04 0.634 
−0.1744 
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3 ARMA (2,2) 
1.5592 −0.4584 

871.71 0.302 
−0.5718 −0.3568 

Günthers 

1 ARMA (1,2) 0.8925 
0.0967 

952.29 0.351 
−0.1803 

3 ARMA (2,2) 
1.5167 −0.6099 

−0.04 0.241 
−0.5324 −0.135 

4 ARMA (1,1) 0.8952 −0.5683 2718.4 0.831 
5 ARMA (1,1) 0.8292 0.2832 861.77 0.314 

Hanau 

1 ARMA (1,3) 0.9226 
0.1881 

1092.25 0.395 −0.2797 
−0.1445 

2 ARMA (2,1) 
1.2575 

0.1114 −2045.8 0.091 
−0.3416 

3 ARMA (2,0) 
1.2172 

0 −541.66 0.147 
−0.276 

4 ARMA (2,2) 
1.6488 −0.6361 

−9711.9 0.413 
−0.6589 −0.2077 

5 ARMA (1,2) 0.8849 
0.3871 

−73.8 0.232 
0.0541 

3.4. Forecasting 
Daily discharge forecasting can be a noticeable help for flood and drought forecasting 

in a region, and it can reduce their damages with early warnings to communities. Figures 
5–8 represent the visual comparison of predicted values with true values of Biedenkopf, 
Ehringen, Günthers, and Hanau stations, respectively. A total of 50 days of forecasting, 
for the first 50 days of each cluster, has been done for all clusters except Hanau cluster 3, 
because there are 31 days in this cluster. 
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(c) 

Figure 5. (a) Forecasting plot for Biedenkopf cluster 1; (b) forecasting plot for Biedenkopf cluster 2; 
(c) forecasting plot for Biedenkopf cluster 5. 

  
(a) (b) 

 
(c) 

Figure 6. (a) Forecasting plot for Ehringen cluster 1; (b) forecasting plot for Ehringen cluster 2; (c) 
forecasting plot for Ehringen cluster 3. 
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Figure 7. (a) Forecasting plot for Günthers cluster 1; (b) forecasting plot for Günthers cluster 3; (c) 
forecasting plot for Günthers cluster 4; (d) forecasting plot for Günthers cluster 5. 
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(c) (d) 

 
(e) 

Figure 8. (a) Forecasting plot for Hanau cluster 1; (b) forecasting plot for Hanau cluster 2; (c) fore-
casting plot for Hanau cluster 3; (d) forecasting plot for Hanau cluster 4, (e) forecasting plot for 
Hanau cluster 5. 

4. Discussion 
Daily streamflow and time series show more fluctuations than series, which are clas-

sified based on a monthly, seasonal, or annual scale. Decomposing the daily series into 
their components, such as trend, cyclic, seasonal, or irregularity, is almost impossible com-
pared to monthly or seasonal series. Hydrological daily series clustering based on the 
Fuzzy C-means (FCM) method divides every series into subseries with similar behavior. 
Therefore, there will be several series with different lengths instead of one series. As a 
result, all daily streamflow time series were observed to exhibit periodicity. Figure 4 pre-
sents the cluster plots of these four selected stations graphically, tabulated in Table 3. As 
shown in Figure 4, the continuous lines specify the limitation area for each cluster, and 
every day is placed in a cluster exclusively. According to the FCM method, every day will 
be set in the cluster with the smallest distance from the average of that cluster. This way, 
the days with similar statistical behavior have been placed in one cluster. 

Considering previous research, daily streamflow time series have more powerful 
long-memory and nonlinearity properties than monthly or seasonal time series [35,51]. By 
decomposing the main daily streamflow time series into several smaller subseries using 
FCM, the behavior of this smaller subseries will tend to be linear. If a time series follows 
the linear process, modeling the time series by linear models, such as the Box–Jenkins 
model, can provide reliable and accurate results [52–54]. We evaluated the performance 
of the ARMA model as a linear model in forecasting the daily water discharge of each 
cluster. All of the collected data, from January 2000 to December 2017, was used to fit the 
best model on each cluster. Table 4 represents the ARMA model details for each cluster. 
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The criterion for evaluating the fitted models was the low value of RMSE and the Akaike 
coefficient, which are given in the last two columns of Table 4. 

After applying the algorithms described above to four different sampling stations, 
forecasting results were evaluated and compared by dividing the data into two parts for 
training and testing. The fitted model was applied to the data from January 2000 to De-
cember 2016 for the 2017 forecast. Then, forecasting plots for 2017 were compared with 
the historical plots to evaluate the model. Figures 5–8 present the visual comparison be-
tween each cluster’s forecasting and observation plots. The continuous line indicates the 
observation plot, and the dashed line indicates the forecasting plot, which is the output of 
our models. Based on our results, forecasting graphs for all clusters have a clearly evident 
flow rate changes trend and optimal points. This result corresponds to the ARMA model 
and, compared to other studies’ results, confirms the accurate and reliable results of the 
ARMA model as a linear model; these results also prove this issue. [55–57]. On the other 
hand, the forecast charts show that the ARMA model has performed well for forecasting 
less than thirty days. This result is consistent with the results of previous research. Based 
on previous research, ARMA models are known as short-term models and will be more 
beneficial for short-term forecasting [58–60]. 

5. Conclusions and Outlook 
This paper underlines the importance of Fuzzy clustering on the periodic autoregres-

sive ARMA model for stream flow forecasting. As a result of climatic influences, hydro-
logical processes behave in a periodic and stochastic manner. In order to make accurate 
predictions, it is crucial to develop the models based on their periodicity and stochastic 
nature. Streamflow forecasting is also a primary subject since it is an important compo-
nent of the hydrological cycle. Fuzzy C-means clusters were used to find the periodicity 
in the daily discharge time series, and autoregressive moving average, ARMA, was em-
ployed to model each cluster. Using a statistical method, dividing the daily streamflow 
time series into smaller groups based on their similar statistical behavior was done. Our 
analysis was based on the daily discharge data from four different river stations in the 
German state of Hesse. 

Regarding the results obtained in this study that focuses on four stations in Hesse, 
decreasing the length of periodic time series and using linear models is highly recom-
mended. By clustering the days of the year and modeling every cluster separately, linear 
time series will exist, and forecasting different days of the year based on the cluster formed 
will be possible. This method of segmentation and modeling, described here, can also be 
used for short-term prediction at other hydrological stations. As a disadvantage of this 
method, converting a time series into several subseries and modeling each cluster sepa-
rately is time-consuming. For future work, using different statistical methods—such as 
decision trees, wavelets, or machine learning—to decompose the original series into sub-
series of days and comparing the modeling results is recommended. 
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