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Abstract: Water quality indicators have been tied to natural or man-made surface hydraulic connec-
tion (SHC) conditions. Among these, temporally connected lakes (TCL) are hydraulic intermediates
between isolated (IL) and permanently connected lakes (PCL). Therefore, the aim of this study is
to answer if water quality indicators can estimate the possible overlap between the two opposed
conditions of SHC (IL and PCL) with the intermediate one (TCL) in lakes with similar modifications
in the water level regulation at the basin level. Among nine water variables sampled in six lakes with
the three SHC conditions mentioned, chlorophyll a (Chl-a), Secchi disk (SD), and total phosphorus
(TP) were identified as quality water indicators through principal component analysis. Furthermore,
said indicators were used to measure their overlap and trophic state index deviations. The Chl-a,
SD, and TP values in TCL showed a 0.72 overlap of PCL and IL. TP surplus measured in all the
lakes was meaningful in urbanized ILs and lessened in a rural lake (PCL6) with submerged rooted
macrophytes. The estimated overlap of trophic indicators between TCL, IL, and PCL in this study
must be verified at a global representative scale for predictive and preventive use in the conservation
of tropical coastal plain lakes.

Keywords: aquatic indicators; environmental impact; overlapped indicators; physicochemical
homogenization

1. Introduction

The marked spatial and temporal variation of surface hydraulic connection (SHC)
leads to intra-annual fluctuations of water quality indicators, as it modifies hydrogeomor-
phological and biogeochemical processes in lakes in the same floodplain [1–3]. Among
these processes, the water exchange and residence time are relevant, which affect both
water budgets, nutrients, and phytoplankton biomass [4–7], and short-time enrichment
in floodplain lakes [8,9]. Among other factors, SHC variation can be analyzed by dif-
ferent conditions, such as intermittency (permanently connected, temporarily connected,
and isolated) and natural or man-made interconnection between the river and lakes in
the floodplain.

In this regard, for temporarily connected lakes (TCL), area magnitudes, as well as
the physicochemical and phytoplankton biomass variables, fluctuate widely during the
annual cycle, compared to permanently connected (PCL) and isolated (IL) lakes [10–12].
Short water residence times and the variation in nutrient concentrations, phytoplankton
biomass, and increased light passage in PCL depend on the inter-annual fluctuation of the
water level [1,8,9,13]. In ILs, there is less water volume and the residence time of water
increases [6,14]. These conditions help explain increases in nutrient concentrations and
algal biomass related to eutrophication, reduced light, dominant toxic algae, and, due to
human impact, the exacerbation of the trophic state [15,16]. In this context, biogeochemical
processing is also strongly tied to the residence times, and the intra-annual variation of the
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water level explains the differences in nutrient enrichment in the three different hydraulic
connection conditions [10,13].

SHC changes in coastal plains are linked to natural geo-hydromorphological processes
over medium to long terms [17]. Recently, short-term alterations in SHC and lake conser-
vation have been associated with the construction of hydraulic infrastructure and waste
from urban, agricultural, and livestock activities [18,19], which have modified the surface
water drainage and natural intra-annual flow variation patterns at a watershed scale [20,21].
Nonetheless, the magnitude of hydraulic disconnection is also related to smaller spatial
scales, as hydrogeomorphology in floodplain rivers and lakes is heterogeneous throughout
the basin [17,22]. Aside from the spatial scales, the restricted intra-annual fluctuation in
water levels [23,24] is linked with hydrological modifications, causing a loss of lateral
flooding and an increase in water residence time [4,24–26]. The loss of lateral flooding,
together with the increase in water residence time, help explain the almost permanent
eutrophication conditions established by the temporally limited hydraulic interconnection
or the isolation of the TCL and IL lakes in the drainage area under study [27,28], as has
been recorded for other basins [12,13,25,29]. Along this gradient of surface connectivity, the
temporally connected floodplain lakes are intra-annually isolated or interconnected, which
can mean that they share the SHC of both lakes, PCL, and IL. However, the water quality
indicators in TCL have been scarcely included in most of the published results [1,12,30,31].

In this context, the determination of water quality indicators linked to SHC alteration
has been rarely addressed in some regions, such as Africa, South Asia, and part of North
America [3]. This unawareness of the fluctuation of water quality indicators (e.g., chloro-
phyll a, Secchi disk transparency, total phosphorus, electrical conductivity, and dissolved
oxygen saturation) does not allow any form of anticipating critical environmental risks due
to the lack of time series data [32] or detecting the main sources of pollution and degrada-
tion of aquatic ecosystems, in some cases, of man-made recurrent modifications, such as
the annual high mortality of manatees in the Grijalva Basin [33]. In this sense, different
SHC conditions in lakes (PCL, TCL, and IL) help resolve hypotheses that are tied to the
alterations in the variations of water quality indicators and their effects on biodiversity [1,3].
Therefore, the objective of this research was to identify which water quality indicators
explain their possible overlap in floodplain lakes with three surface hydraulic connection
conditions (IL, TCL, and PCL) in a hydrologically altered floodplain, understanding overlap
as the measure of data of the water quality indicators that result common with respect to
a reference interval according to [34]. In this context, we hypothesize that water quality
indicators measured at IL and PCL overlap with TCL indicators in a floodplain with similar
surface hydraulic alteration at the basin level, but with different urban and hydraulic
infrastructure. Then, the overlap of water quality indicators in different conditions of
SHC in lakes located in floodplains could be a predictive and preventive tool for their
conservation management.

2. Materials and Methods
2.1. Study Area

The flow in the Grijalva River basin runs from the northwest highlands and discharges
into the southwestern Gulf of Mexico (Figure 1). This basin, located in the humid tropic, is
topographically divided into three zones [35]: highlands (>60 MASL), terraces and knolls
(20 to 60 MASL), and floodplain (<20 MASL). The study area is located in this last zone.
The Mezcalapa, Pichucalco-La Sierra, and Tepetitán-Chilapa are the three main rivers that
drain into the floodplain in this basin, however the La Sierra River is the only river that
freely drains and remains flowing, while the Mezcalapa is dammed, and both influence the
study area polygon.
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Figure 1. Location of the study area in the Grijalva River basin (III) and surrounding basins (I = 
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politan Area of Villahermosa (MAV) and the surrounding rural areas in the floodplain. (1) Carrizal 
River, (2) Grijalva River, (3) Medellin-Gonzalez River, (4) Samaria River, (5) Mezcalapa Viejo River, 
(6) Pichucalco River, (7) La Sierra River. IL1 = Las Ilusiones, IL2 = Loma de Caballo, TCL3 = Playa 
del Pozo, TCL4 = Maluco, PCL5 = Manguito, PCL6 = Pucte. MASL = meters above sea level. 

The Mezcalapa River drains the Mezcalapa Viejo, Samaria, Carrizal, Medellin-Gon-
zalez, and Grijalva river areas. This drainage network was modified to avoid flooding the 
current Metropolitan Area of Villahermosa (MAV) by the construction of five banks to 
divert river water (16th to 20th centuries), five dams (20th century), 207 km of embank-
ments, 56 bridges, and an added 62 h of roads (late 20th to early 21st centuries), as well as 
the urban sprawl that took place over the last 50 years [36,37]. The last three hydraulic 
transformations are key to this study, as the dams and the urban infrastructure regulate 
the intra-annual water level variations in two drainage areas down-river: the Mezcalapa 
River and the Grijalva River, and divert the flow to avoid flooding the MAV, further 
changing the flow magnitude and the natural flood cycle of both rivers [38–41]. These 
changes attributed to hydraulic and urban transformations are evidence of the alteration 
of wetlands in the Grijalva River floodplain [42]. 

Since the MAV is located in the altered study area, the MAV has an area of 20,655 ha 
[43] and is inhabited by 755,425 people, whereas the rural area has 115,066 inhabitants 
[44]. Downstream from the MAV, floodways were later built, modifying the road-em-
bankments of the banks of the Grijalva River, and these generate temporary lateral flows 
into the current floodplain [36]. Agricultural, livestock, and forestry activities are also car-
ried out in over 70% of the study area; in contrast, aquatic emergent macrophytes cover 
3% of the drainage area of the Carrizal River, 6% in the Grijalva River drainage area, and 
15% in the Medellin-Gonzalez drainage area [45]. Floating aquatic plants are common in 
most of the lakes, the water Eichhornia crassipes (Mart.) Solms among them. The submerged 
rooted macrophyte Vallisneria americana Michx. was only recorded in Pucte Lake, or PCL6 

Figure 1. Location of the study area in the Grijalva River basin (III) and surrounding basins
(I = Coatzacoalcos, II = Tonala, IV = Usumacinta). Distribution and configuration of lakes in
the Metropolitan Area of Villahermosa (MAV) and the surrounding rural areas in the floodplain.
(1) Carrizal River, (2) Grijalva River, (3) Medellin-Gonzalez River, (4) Samaria River, (5) Mezcalapa
Viejo River, (6) Pichucalco River, (7) La Sierra River. IL1 = Las Ilusiones, IL2 = Loma de Caballo,
TCL3 = Playa del Pozo, TCL4 = Maluco, PCL5 = Manguito, PCL6 = Pucte. MASL = meters above sea level.

The Mezcalapa River drains the Mezcalapa Viejo, Samaria, Carrizal, Medellin-Gonzalez,
and Grijalva river areas. This drainage network was modified to avoid flooding the current
Metropolitan Area of Villahermosa (MAV) by the construction of five banks to divert river
water (16th to 20th centuries), five dams (20th century), 207 km of embankments, 56 bridges,
and an added 62 h of roads (late 20th to early 21st centuries), as well as the urban sprawl
that took place over the last 50 years [36,37]. The last three hydraulic transformations are
key to this study, as the dams and the urban infrastructure regulate the intra-annual water
level variations in two drainage areas down-river: the Mezcalapa River and the Grijalva
River, and divert the flow to avoid flooding the MAV, further changing the flow magnitude
and the natural flood cycle of both rivers [38–41]. These changes attributed to hydraulic
and urban transformations are evidence of the alteration of wetlands in the Grijalva River
floodplain [42].

Since the MAV is located in the altered study area, the MAV has an area of 20,655 ha [43]
and is inhabited by 755,425 people, whereas the rural area has 115,066 inhabitants [44].
Downstream from the MAV, floodways were later built, modifying the road-embankments
of the banks of the Grijalva River, and these generate temporary lateral flows into the
current floodplain [36]. Agricultural, livestock, and forestry activities are also carried out
in over 70% of the study area; in contrast, aquatic emergent macrophytes cover 3% of the
drainage area of the Carrizal River, 6% in the Grijalva River drainage area, and 15% in the
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Medellin-Gonzalez drainage area [45]. Floating aquatic plants are common in most of the
lakes, the water Eichhornia crassipes (Mart.) Solms among them. The submerged rooted
macrophyte Vallisneria americana Michx. was only recorded in Pucte Lake, or PCL6 [46].
In this context, the increase in population in the urban zone and the loss of hydrophytic
vegetation coverage in the rural area are indications of other factors that alter the ecological
conditions of the study area [18,42,46].

The six sampled lakes are located in the plain of the Grijalva River basin. The six
lakes are hydraulically independent. Four are interconnected with their tributary, two PCL
with the Medellin-Gonzalez and two TCL with the Grijalva Rivers, while the two IL were
interconnected with the Carrizal River in the drainage area of the Río Mezcalapa (Figure 1).
Of these three rivers, the Carrizal and Grijalva Rivers pass through both the MAV and the
surrounding rural area, while the Medellin-Gonzalez is located down-river of the MAV
(Figure 1, Table S1).

The two isolated lakes (IL) are located in the MAV. Their hydraulic isolation was
established by the construction of a roadside for a highway or embankment without sewers
due to urban expansion [27]. In contrast, the other four lakes include two temporally
connected lakes (TCL) and two permanently connected lakes (PCL), located in the rural
area, 17 to 22 km down-river of the MAV, respectively. Constructing five floodways along
the roadside embankments restored the hydraulic connectivity of the two TCL during
the rainy seasons [36]. Finally, the absence of urban infrastructure, combined with the
construction of highways with bridges, explains the permanent hydraulic connection
among the main river in PCL, the tributaries, and the lakes in the Medellin-Gonzalez River
drainage area (Figure 1, Table S1).

In the Grijalva River basin plain, the Grijalva River gauge station (# 30006, El Muelle)
was used as a reference for the variation in water levels on the plain of the Grijalva River
basin, which varied from 1.5 to 4.9 m above sea level (MASL) on average from 2005 to 2014
and presented at least four contrasting water level conditions [47] (Figure 2).
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Figure 2. Daily water level variations in the Grijalva River. Water level data were taken from
the hydrometric station of Las Gaviotas II, key 30,083 [47]. 4 sampling periods = black circle
(T1 = transition to low level; T2 = low level; T3 = transition to high level; T4 = high level).
Grey area = minimum and maximum water level. Black line = average water level (2005–2014).
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2.2. Sampling

Sampling was carried out in six shallow lakes with three different surface hydraulic
connections: isolated lakes, Las Ilusiones (IL1) and Loma de Caballo (IL2), temporally
connected lakes, Playa del Pozo (TCL3) and Maluco (TCL4), and permanently connected
lakes, Manguito (PCL5) and Pucte (PCL6) (Figure 1, Table S1). The sampling design in-
cluded 3 sampling sites per lake during 4 periods (T1 = transition to low level,
20–25 January; T2 = low level, 3–9 May; T3 = transition to high level, 7–16 July;
T4 = high level, 24–28 September) throughout a hydrological cycle (2013–2014), for a
total of 72 samples for each of the 9 biological and physicochemical variables recorded.
All samples were collected from 8:00 a.m. to 01:00 p.m. The four sampling times were
established considering the expected water level changes in the Grijalva River [28,47].

According to [16,48–50], the water quality variables were quantified or measured.
In situ recordings (meters) were taken for the water level (WL) using a Hondex PS-7
echo sounder (HONDA Electronics CO., LTD. Aichi, Japan) and water transparency was
measured with a Secchi disk (SD). The values of dissolved oxygen saturation (DOS, %),
potential hydrogen (pH), and electrical conductivity (EC, µS cm−1), and concentrations of
ammonium (NH4

+, mg L−1), nitrates (NO3
−, mg L−1), and chlorophyll a (Chl-a, µg L−1)

were estimated using a YSI 6600 V2–2 multi-parameter probe (Xylem Analytics. Queens-
land, Australia). Water samples were collected at mid-depth after recording the depth at
each site in the lakes [51]. Total phosphorus (TP, mg L−1) was determined in the laboratory
using YSI 9500 photometer and YSI CR 3200 Thermoreactor (Xylem Analytics. Queensland,
Australia) [52]. Quantifications added up to 648 data points.

2.3. Data Quality Control

Data for the sampling depth (SZ), sampling time (ST), and water temperature (WT)
were analyzed at the three sites per lake to corroborate data reliability and the environ-
mental conditions. As a first step, the WL and WT variance values were analyzed through
non-parametric comparisons for each pair using the Wilcoxon test, at 5% statistical sig-
nificance. Additionally, the WL, Chl-a, SD, WT, SZ, and ST values were transformed to
natural logarithms as the original distributions of the variables were skewed, which re-
sulted in linear relationships between variables. This was analyzed as SZ-Chl-a, SZ-SD,
Chl-a-ST, and WT-ST, with a statistical dispersion of data analysis, followed by a parametric
linear correlation (Pearson, p < 0.05) [53]. All analyses were carried out with the statistical
program JMP® version 10 (SAS Institute, Inc., Cary, NC, USA).

The results obtained from the control data indicated that WL (p > 0.0531) and WT
(p > 0.3260) were not statistically significant in the six lakes, since the greatest difference of
the WL median among all samples was 0.24 m. Likewise, the WT values (27.7 ± 3.3 ◦C) were
minimal for such tropical shallow lakes. The non-significant variation among the values
of all samples of SZ-Chl-a (r0.05 (2), 71 = 0.01244, p > 0.9173) and SZ-SD (r0.05 (2), 71 = 0.10082,
p > 0.3994) indicated that the data recorded for both parameters were non-statistically
affected by the sampling of water collected at mid-depth in each sample throughout the
hydrological year. The data dispersion between Chl-a-ST (r0.05 (2), 71 = 0.1718, p > 0.1489)
and WT-ST (r0.05 (2), 71 = 0.02988, p > 0.8032) was also insignificant, which meant that the ST
variation (8:00 a.m. to 01:00 p.m.) did not incur a bias in the Chl-a and SD data.

2.4. Data Analysis

Principal components analysis (PCA) was applied to the dataset of environmental
variables (WL, SD, DOS, pH, EC, NH4

+, NO3
−, Chl-a, and TP) to identify temporal and

spatial patterns linked to a strong indicator synthesis [54,55]. Except for pH, the remaining
eight variables were used in the PCA with data normalized by logarithmic transformation
(log x + 1) due to the presence of small numbers (for example, NH4

+ and NO3
−) and

to eliminate their dependence on the units of measure used [53,56]. Based on these new
values, the dissimilarities were calculated for the Euclidean distance, based on a correlation
matrix [53,57].
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The criteria used in those selected as meaningful principal components (PCs) corre-
sponded to eigenvalues greater than 1 (Kaiser–Guttman criterion) and with a significant
variation (Bartlett, p < 0.05) and the maximum percentage of variance explained [57].
Moreover, the variables with PC loadings greater than |0.4| were selected [56] given the
maximization of the data to contribute significantly to describe and represent the distri-
bution patterns of the variables by each PC. This PCA was performed using the statistical
software JMP® version 10 (SAS Institute, Inc., Cary, NC, USA).

The robust variables selected (water quality indicators) by the PCA were analyzed
with descriptive statistics to help explain their expected overlapping distribution be-
tween TCL and IL or PCL. For this purpose, all values of the water quality indicators
of TCL were used as the reference interval to estimate its overlap with IL and PCL.
The reference interval of TCL (RITCL) was calculated through the mean and standard
deviation (x ± SD) [34] of the data per each water quality indicator. The class size
(CS) per each water quality indicator was only calculated for TCL using the formula:
CSTCL = upper limit – lower limit, where the upper and lower limits are the range of the data
of each water quality indicator [58]. The overlap interval is defined as the area where the
data of the quality water indicators of IL and PCL coincide with the RITCL (see gray area or
interval overlap in Figure 3). Finally, the overlap size (OS) for the three water quality indica-
tors of PCL and IL was calculated using the formula: OSIL or PCL = upper limit − lower limit,
where the lower and upper limits are the upper limit datum and the lower limit datum of the
overlap interval of IL or PCL [34]. Then, the overlapping between TCL and IL or PCL was
expressed as the proportionality overlap (PO). PO was estimated per each one of the three
water quality indicators using the formula: PO = ((OSIL or PCL) × (CSTCL)−1), where OS
IL or PCL and CSTCL were already explained. For example, the reference interval of Chl-a in
TCL (from 6.8 to 27.4 µg L−1) allowed to calculate the CSTCL = 27.4−6.8 = 20.6 µg L−1. The
overlap interval of PCL is between 7.7 and 22.6 µg L−1 since the data are placed within the
RITCL (see gray area in Figure 3). If OSPCL = 22.6−7.7 = 14.9 µg L−1 and CSTCL = 20.6 µg L−1,
then the PO between PCL and TCL = ((14.9 µg L−1) × (20.6 µg L−1)−1) = 0.72 (Table 1).
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Figure 3. Distribution of the trophic indicator data, Chl-a (a), SD (b), and TP (c), for three con-
ditions of surface hydraulic connection. IL = isolated lakes, TCL = temporally connected lakes,
PCL = permanently connected lakes. Continuous black lines = TCL average and standard deviation
(x ± SD). Dotted lines = IL and PCL average and standard deviation (x ± SD). Grey area = interval
overlap of IL and PCL with TLC.

The data of the variables distributed in the CSTCL and overlap interval of IL and PCL
were employed to estimate the trophic state index (TSI) [47], and this was followed by
the calculation of the deviations of TSI, TSIChl-a-TSISD, and TSI Chl-a-TSITP to identify the
limnological conditions [59] in the three hydraulic connection types of the six lakes.
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Table 1. Proportionality overlap of indicator data distribution between TCL with IL and PCL and
trophic state in three conditions of surface hydraulic connection. mean = x; standard deviation = SD.

Chl-a SD TP

µg L−1 m mg L−1

IL TCL PCL IL TCL PCL IL TCL PCL

Recorded
overlapping

sites
7 17 10 14 19 13 14 16 14

Proportion of
overlapping sites 0.41 - 0.59 0.74 - 0.68 0.88 - 0.88

Reference
intervals

(x ± SD) (RITCL)
- 6.8–27.4 - - 0.3–0.9 - - 0.48–1.14 -

Class size
of TLC (CS) 20.6 0.6 0.66

Overlap intervals 16.2–27.3 - 7.7–22.6 0.3–0.6 - 0.3–0.9 0.49–1.12 - 0.48–0.8
Overlap size (OS) 11.1 14.9 0.3 0.6 0.63 0.32

Proportionality
overlap (PO) 0.54 - 0.72 0.50 - 1.0 0.95 - 0.48

Trophic state E E E H E E H H H

3. Results
3.1. Spatial and Temporal Fluctuation of Environmental Variables

A summary of the statistics of the nine environmental variables measured in six lakes
is presented in Table S2. Variables related to the trophic state (Chl-a, SD, TP) varied in
concentration from 2.3 to 82.3 µg L−1 for Chl-a, water transparency (measured with Secchi
disk) ranged from 0.2 to 2.1 m, and TP ranged in concentration from 0.32 to 2.79 mg L−1.
The average SOD was 87% and the pH was 7.5. Average NO3

− and NH4
+ concentrations

were 4.30 and 0.62 mg L−1, respectively. The average EC was 323 µS cm−1 and the WL
was 1.0 m.

The first three PCs together explained 64.2% of the variance and seven variables (Ch-a,
TP, SD, DOS, pH, NO3

−, NH4
+) had loadings greater than |0.4| as a minimum in one PC

(Table 2). The positive relationship between Chl-a and TP was observed in PC1 and these
two showed a negative association with SD. These ratios separated the IL samples from the
PCL samples, but both resulted in an overlapping distribution with the TCL samples. This
PC explained 28% of the recorded total variance. This PC obtained eigenvalues greater than
1 (p = 0.0001). The three variables (Chl-a, SD, and TP) were considered strong indicators of
water eutrophication for the three conditions of hydraulic connectivity in the six sampled
lakes (Figure 4, Table 2).

Table 2. Loadings, eigenvalues, and PCA variance. Loadings greater than |0.4| and eigenvalues
greater than 1 in each PC are in bold. WL = water level, SD = Secchi disk depth, DOS = dissolved
oxygen saturation, pH = hydrogen potential, EC = electrical conductivity, NH4+ = ammonium,
NO3− = nitrate, TP = total phosphorus, Chl-a = chlorophyll-a. n = 648.

Variables PCI PC2 PC3

WL −0.136 0.120 −0.089
SD −0.478 −0.055 0.313

DOS −0.013 0.677 0.176
EC −0.323 0.146 0.368
pH 0.190 0.525 0.343
TP 0.493 0.043 0.134

NH4
+ 0.164 −0.200 0.590

NO3
− 0.193 −0.424 0.481

Chl-a 0.553 0.073 −0.113
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Table 2. Cont.

Variables PCI PC2 PC3

Eigenvalue 2.521 1.834 1.428
Explained variance (%) 28.0 20.4 15.9

Accumulated variance (%) 28.0 48.4 64.2
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PC2 is used for demonstrating the positive relations among DOS, pH, and negative
NO3

−, and based on this the TCL and PCL are partially separated from the IL. PC2
accounted for 20.4% of the variance explained by the PCA (Figure 4, Table 2).

In PC3, loadings of NO3
− and NH4

+ were positively related and were not associated
with connection conditions, but they were related to T1, and their explained variance was
15.9% (Table 2). Both PC2 and PC3 had eigenvalues greater than 1 (p = 0.0001) (Figure 4).
The variables discarded in the PCA were EC and WL since both were not associated with
significant changes in the limnetic condition (156–494 µS cm−1) and with the expected
inter-annual changes in depth, as it only varied from 0.3 to 2.3 m in the six lakes sampled
(Table 2).

3.2. Overlapping of Water Quality Indicators under Three Surface Hydraulic Conditions

Overlap of the range of Chl-a concentrations in TCL (6.8 to 27.4 µg L−1) resulted with
the ranges of IL (16.2 to 27.3 µg L−1) and PCL (7.7 and 22.6 µg L−1) in 0.41 and 0.59 of the
overlapping sites of IL and PCL, respectively (Table 1). The overlap of Chl-a at TCL sites had
the lowest values in IL and the highest in PCL (Figure 3). In reference to the magnitude of
variation of Chl-a values by hydraulic connection, the maximum variation (class size) was
recorded in TCL, with 20.6 µg L−1, followed by PCL and IL (Table 1). The proportionality
overlap between the class size of TCL with IL was 0.54, and PCL had 0.72. These 3 class
sizes included 34 overlapping values out of a total of 72 measured, and these represented
0.47 of the proportionality overlap between the 3 hydraulic connection conditions (Table 1).
The 34 overlapping values are between 6.8 and 27.4 µg L−1 of Chl-a. For ILs, the 17 Chl-
a data greater than the upper range TCL value (27.4 µg L−1) resulted between 29.9 and
82.3µg L−1. Among these, 12 records with the highest pigment concentrations (32.9–82.3µg L−1)
were recorded in the lake 1 (IL1). Moreover, PCL had 14 records of Chl-a concentrations
below the lower TCL range (6.8 µg L−1), ranging from 2.3 to 5.7 µg L−1, which in lake 6
(PCL6) showed the lowest Chl-a concentrations in 11 measurements (Figure 3).

In SD, there were complete overlaps between TCL and PCL (0.3 to 0.9 m), with ILs
slightly decreased (0.3 to 0.6 m), which represented an overlap of sites of 0.68 and 0.74,
respectively (Table 1). The overlap of TCL at the IL sites happened with most of their
intermediate interval data, while the overlap of TCL with PCL yielded results with the
lowest values of their interval (Figure 3). The proportionality overlap between the class
size of TCL with PCL was total, and with IL was 0.5, which was linked to the maximum
magnitude (0.6 m) of the class size in TCL and PCL (Table 1). From a total of 72 measured
data points, 46 overlapping values were added in the 3 class sizes, which was equivalent
to 0.64 proportionality overlap between IL, TCL, and PCL (Table 1). The 46 overlapping
values were between 0.3 and 0.9 m for water transparency (SD). In opposition to Chl-a,
in PCLs, the 11 SD values greater than the upper TCL interval value (0.9 m) ranged from
1 to 2.1 m and 10 records in PCL6 stood out for higher light passage. In contrast, 9 IL
measurements of the SD records were lower than the lower TCL interval value (0.3 m),
which ranged from 0.15 to 0.25 m only in IL1 (Figure 3).

Although the range of TP in PCL (0.48 to 0.80 mg L−1) was narrower than those of
TCL (0.48 to 1.14 mg L−1) and IL (0.49 to 1.12 mg L−1), the overlap of the range of TCL
with IL and PCL was 0.88 (Figure 3, Table 1). Between TCL and PCL, the proportionality
overlap between the class size was 0.48, and IL was 0.95 (Table 1). In the 3 class sizes,
44 overlapping values were recorded out of 72 measurements, which corresponded to a
0.69 proportionality overlap for the 3 surface hydraulic connection conditions (Table 1).
The 44 overlapping values were between 0.48 and 1.14 mg L−1 of TP. Similar to Chl-a,
9 TP concentrations in IL were greater than the upper range value of TCL (1.14 µg L−1),
with a fluctuation from 1.20 to 2.79 µg L−1. Six of these values in IL1 were the nutrient’s
maximum values, while five of the twelve records measured in PCL6 resulted with the
lowest TP concentrations (0.34 to 0.44 µg L−1) and lower than the lower range value of
TCL (0.48 µg L−1) (Figure 3). Between TCL and PCL, the overlap between SD (1.0) and
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Chl-a (0.72) was outstanding. Whereas, between TCL and IL, the PT overlapped in 0.95,
and mostly with IL2 and PCL5 values.

3.3. Trophic State under Different Surface Hydraulic Conditions

Based on the Chl-a concentrations, the three types of surface hydraulic connections
were eutrophic; likewise, with the SD data, the TCL and PCL were eutrophic, and in the ILs
they stood out for their hypereutrophic condition. Similarly, due to the PT concentrations,
the hypereutrophic state stood out in the three SHC conditions (Table 1). Deviations of
TSIChl-a from those of TSISD and TSITP resulted in negative relationships between TSIChl-a
and TSISD, as well as between TSIChl-a and TSITP, for both TLC, PCL, and IL.

4. Discussion
4.1. Water Quality Indicators in Lakes with Different Surface Hydraulic Conditions

The three indicators (Chl-a, SD, and TP) that explained the greatest variability in PC1
in this study coincided with those used to estimate the trophic state [48], since the changes
in phytoplankton biomass, SD, and TP in floodplain lakes were associated with different
conditions of SHC, under scarce variation in water levels [29,60]. Furthermore, these three
indicators are relevant in tropical and subtropical floodplain systems since phytoplankton
biomass is an important source of carbon for aquatic organisms [49].

The expected inverse relationship between Chl-a and SD has been explained by the
fact that phytoplankton biomass depends on light intensity [61]. In the study area, this
inverse relationship was straightened by the TP surplus effect. However, the fluctuations
in light intensity are multi-scale and multifactorial, being linked to the combined effects
of the daily and seasonal variations, the latitudinal location, the quantity and quality of
suspended solids, and dissolved organic substances [59,62]. Moreover, the light refraction is
frequently limited by re-suspension of materials in continuously warm polymictic shallow
lakes [63,64]. Then, its effect on phytoplankton biomass was not noticeable because the
maximum water turbidity was under 90 NTU in the six lakes sampled in this study.

The direct relationship between Chl-a and TP can be linked to the conversion of
inorganic nutrients to organic nutrients in sediments, which is typically attributed to algal
and vegetative communities in floodplains [65]. However, the internal TP enrichment is
generated through autochthonous organic matter and the exchange with the sediment in
conditions of reduced intra-annual fluctuations in water levels [13,29]. Furthermore, the
phosphorus enrichment generated by allochthonous matter provided by runoff can be
attributed to persistent inputs of urban and agricultural wastewater [16,24,27,28,46,61,66].
In addition, increased TP from sediment resuspension and nutrient assimilation changes
the composition of the phytoplankton community, and favors cyanobacterial blooms, which
can cause light limitation conditions, as analyzed in a shallow lake in the central part of
Jutland, Denmark [67].

The variables DOS, pH, NO3
−, and NH4

+ were partially linked to any of the three
SHC conditions or to intra-annual variation, and therefore were discarded as indica-
tors. In this regard, ILs stood out in terms of maximum values of DO (95% ± 55%) and
pH (7.8 ± 0.8) considering the excess algal biomass in urbanized ILs within the MAV as
well as in other regions [27,68]. In TCLs, NO3

− data (<1 mg L−1) were attributed to its
assimilation by submerged aquatic macrophytes in preserved lakes [69]. While most of the
NO3

− and NH4
+ values were greater than 1 mg L−1 in all data recorded for the IL, 50% in

the PCL at T1, this is similar in lakes of the Usumacinta River and Taihu Lake basins [9,70].
Regarding the two variables discarded in the PCA, the WL amplitude was narrow

(Table S2) relative to that recorded (1.5 to 4.9 m) in the basin floodplain [47]. This reduction
in WL has been linked to the limited or non-existent hydraulic interconnection between
lakes and rivers on the plains of the MAV, as a result of the operation and construction
of hydraulic and urban infrastructure [18,36,42]. The second variable (EC) was included
in the PCA because of its significant relationship with Chl-a [49], but it lacked statisti-
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cal correlations with the other eight variables and only reiterated the limnetic condition
(Table S2) [71] in the sampled lakes.

4.2. Overlapping of Water Quality Indicators in Three Surface Hydraulic Conditions

In the study area, TLCs showed the greatest variation in the concentrations of the
three indicators, Chl-a, SD, and TP (Table 1), which was reflected in their proportional-
ity overlap with PCL and IL. This amplitude in the variation of indicators in TCL has
been related to seasonal flooding water that induces changes in the physicochemistry of
water in temporary lakes in the Grijalva basin, the Amazon River, and the Poyang Lake
floodplain [11,12,28]. However, the restricted temporal effect of flooding in the study area
by the embankments reduced the expected seasonal variation of the water levels. Thus,
the effect of the embankments helps to support that the higher variation detected in the
concentrations of the three indicators is mainly explained by the limited SHC, which in
turn is linked to a higher water residence rate [7]. In the case of Chl-a, the proportionality
overlap of TCL was slightly greater with PCL than with IL. In this regard, overlapping Chl-a
concentrations were also recorded between permanently connected lakes and temporary
lakes in Poyang Lake’s floodplain wetlands, altered in their SHC [12].

All Chl-a values that overlapped between 6.8 and 27.4 µg L−1 in the three conditions
of SHC were eutrophic [15,48]. This result is consistent with the eutrophic conditions
recorded in lakes isolated by artificial embankments and receiving urban inputs, as well
as in TCLs regulated in their water level and in permanently connected lakes affected by
urban wastewater [12,16,30,72,73].

The total overlap in SD stood out between the TLC and PCL, although 84% and 92%
of the data were eutrophic (≥0.5 m), respectively, and the SD variation was minimal in
the three SHCs. Based on the above, the magnitude and amplitude of water transparency
is high in TCL during the annual cycle in wetlands that are connected to free-flowing
rivers [30]. However, in floodplains with dammed rivers, seasonal shallow lakes show
intra-annual fluctuations opposite to the Secchi disk depth, which was mainly attributed
to surface runoff and continuous sediment discharge causing permanent turbidity in
seasonal lakes [16,74]. In this context, the eutrophic state of shallow lakes temporarily
and permanently connected to their upstream dammed rivers was explained using SD
values [16,75]. In contrast, the ILs stood out for the decrease in the variation of SD values,
since most of the records (64%) were hypereutrophic (<0.5 m) [15,76]. In hypereutrophic
tropical ILs, the restriction in the passage of light is frequent and its variation is minimal
due to the re-suspension of materials [27,77].

Finally, the overlap of the variation of TP concentrations in TCLs and ILs was greater
compared to the concentrations of PCLs. However, all three conditions of SHC were
hypereutrophic according to [15], as the superimposed TP concentrations equaled or
exceeded 0.480 mg L−1. Thus, the nutrient enrichment in the studied lakes with limited or
non-existent interconnections was independent of the conditions of SHC. In this context, the
hypereutrophication condition has been recorded in other tropical lakes altered by hydraulic
infrastructure, resulting in a loss of lateral flooding, restricted water level variation, and
an increased water residence time, which affect the dynamics of bioavailable organic
phosphorus [28,29,78,79]. The increase of TP concentrations and hypereutrophication in
the sampled lakes may be related to autochthonous and allochthonous organic matter,
sediment resuspension, and runoff of wastewater from the MAV and from agricultural
areas in the rural zone, which was recorded in this and other study areas [8,27,46,68,80,81].

Regarding the non-overlapping values of Chl-a, TP, and SD between IL and PCL with
TCL, the variation of the first two was expected to be inverse to SD due to TP assimilation
by phytoplankton that influences the passage of light [13,61]. Accordingly, the records
measured in IL1 and PCL6 stood out at the extremes of the upper overlap for Chl-a and
TP, and lower for SD (Figure 3). In the case of Chl-a and TP, of their 27 non-overlapping
values outside the class size, 15 were IL1 and 12 were IL2. Moreover, from the 11 non-
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overlapping SD data outside the class size, 1 and 10 values were recorded in PCL5 and
PCL6, respectively (Figure 3).

The maximum Chl-a and TP concentrations in IL, located above the upper TCL range,
are tied to the hydraulic and urban disturbance recorded in the six lakes included in
this study, since IL1 has been reported as eutrophicated with elevated TP, Chl-a, and
inorganic nitrogen values since the 1990s [82] and currently has low fish diversity related
to its hydraulic isolation condition [42]. Similarly, hydraulically isolated lakes registered
eutrophic or hypereutrophic conditions in the Grijalva, Illinois, and Atchafalaya River
basins [6,14,27]. The biggest overlap of TCL with IL2 is attributed to the fact that this lake
has a degree of urban disturbance lower than IL1, because it is at the outer limit of the
urban sprawl [37,83].

The higher percentage of maximum SD values in PCL6 is linked to its less disturbed
condition with respect to PCL5. The most notable difference between the two lakes is
associated with the presence of submerged rooted macrophytes in PLC6, as these macro-
phytes have been frequently tied to higher transparency and lower Chl-a concentration in
lakes [14,69], which is also reflected in the conservation of environmental functions and
services, such as water quality, trophic status, and species richness [67,84,85].

4.3. Variation of Trophic State Linked to Surface Hydraulic Conditions

The predominant eutrophication in the six shallow lakes sampled in the three SHCs
was caused by the TP surplus, according to the interpretation of the trophic state index de-
viations [58]. These persistent high TP concentrations are associated with the combination
of organic matter accumulation and the modifications to natural flood cycles by infras-
tructure in the upstream floodplain, as has been reported in other watersheds [21,86–88].
In the case of the TCL and PCL of the study area, runoff comes from agricultural and
livestock activities [28,81], with similar impacts in other aquatic ecosystems [69,70], while
in ILs, TP concentrations are further exacerbated by the addition of runoff from urban
waste activities and infrastructure [27,28,72]. Surplus TP related to urbanization, agricul-
ture, and hydraulic infrastructure has been reported in other lakes located in different
basins [8,60,78,89]. Persistent hypereutrophication by TP negatively affects lake functions
by excessively increasing algal biomass, and in turn causes the decline of rooted submerged
macrophytes and decreases aquatic fauna diversity [42,88,90].

5. Conclusions

The hypothesis of this study was partially proven because the values of the three water
quality indicators (Chl-a, SD, TP) in TCL registered an overlap greater than 0.72 in relation
to PCL and IL. In the study area, the surplus of TP measured in all lakes, particularly in
the ILs, indicates the effect of the degree of disturbance cause by urbanization. However,
the PT surplus was attenuated in a rural lake (PCL6) by the presence of submerged rooted
macrophytes. Considering the high overlap of the three water quality indicators between
TCL, PCL, and IL, it is necessary to verify whether these results can be applied as a
predictive and preventive tool for conservation management, through an analysis on a
more representative spatial and temporal scale of the variations measured in lakes located
in tropical coastal plains.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14233931/s1, Table S1: Identification (ID) and location of the
lakes and river on the Grijalva River plain. I = infrastructure, SHC = surface hydraulic connection,
R = rural, U = urban. Table S2: Physicochemical variables and chlorophyll-a in lakes under three
surface hydraulic connection conditions (IL = isolated lakes, TCL = temporally connected lakes,
PCL = permanently connected lakes) at four sampling times (T1: transition to low level, T2: low level,
T3: transition to high level, T4: high level) throughout an annual cycle. Average values, standard
deviation, minimum and maximum. Samples per connection type = 24 repetitions. SHC = surface
hydraulic connection.
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