How to Create a Regional Diatom-Based Index: Demonstration from the Yuqiao Reservoir Watershed, China
Abstract
:1. Introduction
2. Methods
2.1. Establishment of the Yuqiao Reservoir Watershed Diatom Assemblage Index (YRDAI)
2.1.1. General Routine for YRDAI Establishment
2.1.2. Coexistence-Based Approach for Diatom Reclassification
2.1.3. Correlation-Based Approach for Diatom Reclassification
2.1.4. Calculation of Diatom Index Score
2.2. Case Study Area and Sample Analysis
2.2.1. Yuqiao Reservoir
2.2.2. Sample Collection and Analysis
2.3. Data Analysis
3. Results
3.1. Pollutants
3.2. Diatoms
3.3. YRDAI Performance
4. Discussion
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, Z.; Zuo, Q.; Shao, Q. A New Framework for Assessing River Ecosystem Health with Consideration of Human Service Demand. Sci. Total Environ. 2018, 640–641, 442–453. [Google Scholar] [CrossRef]
- Su, Y.; Li, W.; Liu, L.; Hu, W.; Li, J.; Sun, X.; Li, Y. Health Assessment of Small-to-Medium Sized Rivers: Comparison between Comprehensive Indicator Method and Biological Monitoring Method. Ecol. Indic. 2021, 126, 107686. [Google Scholar] [CrossRef]
- Zhao, Y.W.; Zhou, L.Q.; Dong, B.Q.; Dai, C. Health Assessment for Urban Rivers Based on the Pressure, State and Response Framework—A Case Study of the Shiwuli River. Ecol. Indic. 2019, 99, 324–331. [Google Scholar] [CrossRef]
- Almeida, S.F.P.; Feio, M.J. DIATMOD: Diatom Predictive Model for Quality Assessment of Portuguese Running Waters. Hydrobiologia 2012, 695, 185–197. [Google Scholar] [CrossRef]
- Liu, S.; Xie, G.; Wang, L.; Cottenie, K.; Liu, D.; Wang, B. Different Roles of Environmental Variables and Spatial Factors in Structuring Stream Benthic Diatom and Macroinvertebrate in Yangtze River Delta, China. Ecol. Indic. 2016, 61, 602–611. [Google Scholar] [CrossRef]
- Liu, W.; Xu, M.; Zhao, N.; Zhou, X.; Pan, B.; Tian, S.; Lei, F. River Health Assessment of the Yellow River Source Region, Qinghai-Tibetan Plateau, China, Based on Tolerance Values of Macroinvertebrates. Environ. Sci. Pollut. Res. 2019, 26, 10251–10262. [Google Scholar] [CrossRef]
- Shan, C.; Dong, Z.; Lu, D.; Xu, C.; Liu, Q. Study on River Health Assessment Based on a Fuzzy Matter-Element Extension Model. Ecol. Indic. 2021, 127, 107742. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Y.; Jing, L.; Cai, H.; Xu, L. Sustainability Assessment of Regional Water Resources Under the DPSIR Framework. J. Hydrol. 2015, 532, 140–148. [Google Scholar] [CrossRef]
- Ector, L.; Hlubikova, D.; Hoffmann, L. Preface: Use of Algae for Monitoring Rivers. Hydrobiologia 2012, 695, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, D.M.; Resh, V.H. Freshwater Biomonitoring and Benthic Macroinvertebrates; Chapman & Hall: New York, NY, USA, 1993; ISBN 978-0-412-02251-7. [Google Scholar]
- Cunningham, L.; Snape, I.; Stark, J.S.; Riddle, M.J. Benthic Diatom Community Response to Environmental Variables and Metal Concentrations in a Contaminated Bay Adjacent to Casey Station, Antarctica. Mar. Pollut. Bull. 2005, 50, 264–275. [Google Scholar] [CrossRef]
- Oeding, S.; Taffs, K.H. Developing a Regional Diatom Index for Assessment and Monitoring of Freshwater Streams in Sub-Tropical Australia. Ecol. Indic. 2017, 80, 135–146. [Google Scholar] [CrossRef]
- Lavoie, I.; Campeau, S.; Darchambeau, F.; Cabana, G.; Dillon, P.J. Are Diatoms Good Integrators of Temporal Variability in Stream Water Quality? Freshw. Biol. 2008, 53, 827–841. [Google Scholar] [CrossRef]
- Smucker, N.J.; Vis, M.L. Diatom Biomonitoring of Streams: Reliability of Reference Sites and the Response of Metrics to Environmental Variations across Temporal Scales. Ecol. Indic. 2011, 11, 1647–1657. [Google Scholar] [CrossRef]
- Stevenson, J. Ecological Assessments with Algae: A Review and Synthesis. J. Phycol. 2014, 50, 437–461. [Google Scholar] [CrossRef]
- Beyene, A.; Addis, T.; Kifle, D.; Legesse, W.; Kloos, H.; Triest, L. Comparative Study of Diatoms and Macroinvertebrates as Indicators of Severe Water Pollution: Case Study of the Kebena and Akaki Rivers in Addis Ababa, Ethiopia. Ecol. Indic. 2009, 9, 381–392. [Google Scholar] [CrossRef]
- Watanabe, T.; Asai, K.; Houki, A. Numerical Estimation to Organic Pollution of Flowing Water by Using the Epilithic Diatom Assemblage—Diatom Assemblage Index (DAIpo). Sci. Total Environ. 1986, 55, 209–218. [Google Scholar] [CrossRef]
- Duong, T.T.; Feurtet-Mazel, A.; Coste, M.; Dang, D.K.; Boudou, A. Dynamics of Diatom Colonization Process in Some Rivers Influenced by Urban Pollution (Hanoi, Vietnam). Ecol. Indic. 2007, 7, 839–851. [Google Scholar] [CrossRef]
- Sakai, M.; Kawakami, M.; Amada, K. Evaluation of the Water Quality of the Hakata River Based on Diatoms. J. Environ. Sci. 2013, 25, S132–S135. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Sheldon, F.; Bunn, S.E.; Zhang, Q. Using Diatom Indices for Water Quality Assessment in a Subtropical River, China. Environ. Sci. Pollut. Res. 2013, 20, 4164–4175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, T.; Cai, Q.; Liu, J. Using Epilithic Diatom Communities to Assess Ecological Condition of Xiangxi River System. Environ. Monit. Assess. 2006, 112, 347–361. [Google Scholar] [CrossRef]
- Watanabe, T.; Asai, K.; Houki, A. Epilithic Diatom Assemblage Index to Organic Water Pollution (DAIpo) and Its Ecological Significance. Ann. Grad. Sch. Humanit. Sci. Nara Womens Univ. 1986, 1, 77–95. [Google Scholar]
- Kelly, M.G.; Whitton, B.A. The Trophic Diatom Index: A New Index for Monitoring Eutrophication in Rivers. J. Appl. Phycol. 1995, 7, 433–444. [Google Scholar] [CrossRef]
- Jakovljević, O.S.; Popović, S.S.; Živić, I.M.; Stojanović, K.Z.; Vidaković, D.P.; Naunovic, Z.Z.; Krizmanić, J.Ž. Epilithic Diatoms in Environmental Bioindication and Trout Farm’s Effects on Ecological Quality Assessment of Rivers. Ecol. Indic. 2021, 128, 107847. [Google Scholar] [CrossRef]
- Lee, K.-L.; Choi, J.S.; Lee, J.-H.; Jung, K.-Y.; Kim, H.S. Response of Epilithic Diatom Assemblages to Weir Construction on the Nakdong River, Republic of Korea. Ecol. Indic. 2021, 126, 107711. [Google Scholar] [CrossRef]
- Torres-Franco, A.F.; Alatrista-Góngora, G.R.; Guzmán-Rodríguez, N.P.; Calizaya-Anco, J.A.; Mota, C.R.; Figueredo, C.C. Physicochemical and Diatom Trophic State Indexes: A Complementary Approach for Improving Water Sustainability in a High Andean Urban Stream. Ecohydrol. Hydrobiol. 2019, 19, 577–587. [Google Scholar] [CrossRef]
- Wood, R.J.; Mitrovic, S.M.; Lim, R.P.; Warne, M.S.J.; Dunlop, J.; Kefford, B.J. Benthic Diatoms as Indicators of Herbicide Toxicity in Rivers—A New SPEcies At Risk (SPEARherbicides) Index. Ecol. Indic. 2019, 99, 203–213. [Google Scholar] [CrossRef]
- Lane, C.R.; Reiss, K.C.; DeCelles, S.; Brown, M.T. Benthic Diatom Composition in Isolated Forested Wetlands Subject to Drying: Implications for Monitoring and Assessment. Ecol. Indic. 2009, 9, 1121–1128. [Google Scholar] [CrossRef]
- Mangadze, T.; Dalu, T.; William Froneman, P. Biological Monitoring in Southern Africa: A Review of the Current Status, Challenges and Future Prospects. Sci. Total Environ. 2019, 648, 1492–1499. [Google Scholar] [CrossRef] [PubMed]
- Coste, M.; Ayphassorho, H. Etudes de La Qualité Des Eaux Du Bassin Artois-Picardie á Làide Des Communautés de Diatomées Benthiques (Aplication Des Indices Diatomiques), Rapport Cemagref, Bordeaux-Agence de l’Eau Artois-Picardie, Douai Coste, M., Bosca, C., Dauta, A. Use of algae for monitoring rivers in France. In Use of algae for monitoring rivers, Proceedings of International Symposium; Whitton, B.A., Rott, E., Friedrich, G., Eds.; Institut für Botanik, Universität Innsbruck: Innsbruck, Austria, 1991; pp. 75–88. [Google Scholar]
- Descy, J.-P. A New Approach to Water Quality Estimation Using Diatoms. Nova Hedwig. 1979, 64, 305–323. [Google Scholar]
- Descy, J.-P.; Coste, M. A Test of Methods for Assessing Water Quality Based on Diatoms. SIL Proc. 1991, 24, 2112–2116. [Google Scholar] [CrossRef]
- Köhler, J.; Whitton, B.A.; Rott, E. (Eds.) Use of Algae for Monitoring Rivers II. In Internationale Revue der Gesamten Hydrobiologie und Hydrographie; Wiley: Hoboken, NJ, USA, 1997; Volume 82, p. 340. ISBN 3-9500090-0-2. [Google Scholar] [CrossRef]
- Prygiel, J.; Lévêque, L.; Iserentant, R. Un Nouvel Indice Diatomique Pratique Pour l’Évaluation de La Qualité Des Eaux En Réseau de Surveillance. Rev. Sci. Eau 1996, 9, 97. [Google Scholar] [CrossRef]
- Duong, T.T.; Coste, M.; Feurtet-Mazel, A.; Dang, D.K.; Gold, C.; Park, Y.S.; Boudou, A. Impact of Urban Pollution from the Hanoi Area on Benthic Diatom Communities Collected from the Red, Nhue and Tolich Rivers (Vietnam). Hydrobiologia 2006, 563, 201–216. [Google Scholar] [CrossRef]
- Abarca, N.; Jahn, R.; Zimmermann, J.; Enke, N. Does the Cosmopolitan Diatom Gomphonema Parvulum (Kützing) Kützing Have a Biogeography? PLoS ONE 2014, 9, e86885. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Q.; Zhao, X.; Borthwick, A.G.L.; Liu, Y.; Chen, Q.; Ni, J. Molecular Biogeography of Planktonic and Benthic Diatoms in the Yangtze River. Microbiome 2019, 7, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bere, T. Are Diatom-Based Biotic Indices Developed in Eutrophic, Organically Enriched Waters Reliable Monitoring Metrics in Clean Waters? Ecol. Indic. 2015, 62, 312–316. [Google Scholar] [CrossRef]
- Lobo, E.; Callegaro, V.L.M.; Hermany, G.; Bes, D.; Wetzel, C.; Linton, M. Use of Epilithic Diatoms as Bioindicators from Lotic Systems in Southern Brazil, with Special Emphasis on Eutrophication. Acta Limnol. Bras. 2004, 16, 25–40. [Google Scholar]
- Besse-Lototskaya, A.; Verdonschot, P.F.M.; Coste, M.; Van de Vijver, B. Evaluation of European Diatom Trophic Indices. Ecol. Indic. 2011, 11, 456–467. [Google Scholar] [CrossRef]
- Oeding, S.; Taffs, K.H. Are Diatoms a Reliable and Valuable Bio-Indicator to Assess Sub-Tropical River Ecosystem Health? Hydrobiologia 2015, 758, 151–169. [Google Scholar] [CrossRef]
- Kennedy, B.; Buckley, Y.M. Use of Seasonal Epilithic Diatom Assemblages to Evaluate Ecological Status in Irish Lakes. Ecol. Indic. 2021, 129, 107853. [Google Scholar] [CrossRef]
- Watanabe, T.; Asai, K.; Ohtsuka, T.; Tuji, A.; Houki, A. Picture Book and Ecology of the Freshwater Diatoms; Uchida Rokakuho Publishing: Tokyo, Japan, 2005. [Google Scholar]
- Pianka, E.R. The Structure of Lizard Communities. Annu. Rev. Ecol. Syst. 1973, 4, 53–74. [Google Scholar] [CrossRef] [Green Version]
- Carayon, D.; Eulin-Garrigue, A.; Vigouroux, R.; Delmas, F. A New Multimetric Index for the Evaluation of Water Ecological Quality of French Guiana Streams Based on Benthic Diatoms. Ecol. Indic. 2020, 113, 106248. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Li, C.W.; Hu, B.B.; Xie, H.J.; Song, A.Y. Impact of a “source-sink” landscape pattern in an urbanized watershed on nitrogen and phosphorus spatial variations in rivers: A case study of Yuqiao Reservoir watershed, Tianjin, China. Acta Ecol. Sin. 2017, 37, 839–845. [Google Scholar] [CrossRef]
- Bere, T.; Tundisi, J.G. Applicability of the Pampean Diatom Index (PDI) to Streams around São Carlos-SP, Brazil. Ecol. Indic. 2012, 13, 342–346. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.C.; Prygiel, J.; Vosloo, A.; de la Rey, P.A.; van Rensburg, L. Can Diatom-Based Pollution Indices Be Used for Biomonitoring in South Africa? A Case Study of the Crocodile West and Marico Water Management Area. Hydrobiologia 2007, 592, 455–464. [Google Scholar] [CrossRef]
- Lavoie, I.; Hamilton, P.B.; Wang, Y.K.; Dillon, P.J.; Campeau, S. A Comparison of Stream Bioassessment in Quebec (Canada) Using Six European and North American Diatom-Based Indices. Nova Hedwig. 2009, 135, 37–56. [Google Scholar]
- Butcher, R.W. Studies in the Ecology of Rivers: VI. The Algal Growth in Certain Highly Calcareous Streams. J. Ecol. 1946, 33, 268. [Google Scholar] [CrossRef]
- Bennion, H.; Kelly, M.G.; Juggins, S.; Yallop, M.L.; Burgess, A.; Jamieson, J.; Krokowski, J. Assessment of Ecological Status in UK Lakes Using Benthic Diatoms. Freshw. Sci. 2014, 33, 639–654. [Google Scholar] [CrossRef] [Green Version]
- DeNicola, D.M.; Kelly, M. Role of Periphyton in Ecological Assessment of Lakes. Freshw. Sci. 2014, 33, 619–638. [Google Scholar] [CrossRef]
- Dalu, T.; Cuthbert, R.N.; Taylor, J.C.; Magoro, M.L.; Weyl, O.L.F.; Froneman, P.W.; Wasserman, R.J. Benthic Diatom-Based Indices and Isotopic Biomonitoring of Nitrogen Pollution in a Warm Temperate Austral River System. Sci. Total Environ. 2020, 748, 142452. [Google Scholar] [CrossRef]
- Çetin, T.; Solak, C.N.; Yılmaz, E. Testing the Performance of European Diatom Indices for Evaluating the Ecological Status in the Kızılırmak Basin, Turkey: Flowing Waters. Environ. Sci. Pollut. Res. 2021, 28, 43567–43578. [Google Scholar] [CrossRef] [PubMed]
- Jakovljević, O.; Popović, S.; Živić, I.; Stojanović, K.; Krizmanić, J. Benthic Diatoms of the Vrla River (Serbia) and Their Application in the Water Ecological Status Assessment. Oceanol. Hydrobiol. Stud. 2016, 45, 304–315. [Google Scholar] [CrossRef]
- Blocksom, K.A. A Performance Comparison of Metric Scoring Methods for a Multimetric Index for Mid-Atlantic Highlands Streams. Environ. Manage. 2003, 31, 670. [Google Scholar] [CrossRef]
Site | COD | TN | TP | DAIpo | YRDAIco-COD | YRDAIco-TP | YRDAIcor |
---|---|---|---|---|---|---|---|
(mg/L) | (mg/L) | (mg/L) | |||||
1 | 41 | 5.01 | 0.09 | 39.98 | 12.42 | 9.91 | 52.83 |
2 | 15 | 5.69 | 0.3 | 49.32 | 46.02 | 49.32 | 49.32 |
3 | 4 | 12.5 | 0.04 | 48.74 | 30.96 | 30.96 | 30.96 |
4 | 34 | 6.56 | 0.14 | 41.89 | 33.99 | 40.57 | 46.38 |
5 | 84 | 4.48 | 1.13 | 77.56 | 71.71 | 73.66 | 75.61 |
6 | 8 | 5.74 | 0.04 | 82.73 | 42.58 | 49.76 | 58.39 |
7 | 6 | 2.9 | 0.03 | 55.88 | 39.21 | 50.00 | 58.75 |
8 | 40 | 3.36 | 0.09 | 60.66 | 29.27 | 41.33 | 43.09 |
9 | 6 | 3.94 | 0.03 | 62.32 | 44.95 | 38.50 | 59.04 |
10 | 14 | 7.22 | 0.06 | 52.64 | 40.77 | 52.16 | 52.16 |
11 | 37 | 17.3 | 0.61 | 11.96 | 5.26 | 11.96 | 11.96 |
12 | 48 | 3.22 | 0.21 | 52.48 | 16.58 | 46.29 | 46.29 |
13 | 28 | 8.57 | 0.17 | 66.54 | 50.12 | 50.25 | 64.44 |
14 | 29 | 5.54 | 0.48 | 57.84 | 47.35 | 36.53 | 54.64 |
15 | 25 | 6.16 | 0.34 | 61.41 | 61.41 | 28.16 | 59.80 |
16 | 2 | 10.5 | 0.01 | 79.20 | 64.11 | 70.56 | 73.72 |
17 | 7 | 4.28 | 0.05 | 66.11 | 62.32 | 66.11 | 66.11 |
18 | 2 | 4.71 | 0.01 | 80.16 | 50.46 | 52.75 | 60.78 |
19 | 2 | 2.16 | 0.01 | 59.84 | 48.76 | 49.77 | 73.19 |
20 | 2 | 3.79 | 0.005 | 52.23 | 49.63 | 64.48 | 70.05 |
21 | 2 | 3.27 | 0.01 | 70.03 | 39.80 | 50.63 | 55.79 |
22 | 4 | 5.98 | 0.04 | 52.02 | 49.76 | 54.29 | 85.36 |
23 | 2 | 4.5 | 0.01 | 51.29 | 49.53 | 49.65 | 94.85 |
24 | 10 | 9.22 | 0.01 | 75.81 | 44.01 | 50.23 | 64.52 |
25 | 13 | 6.03 | 0.36 | 52.71 | 24.17 | 16.75 | 53.07 |
26 | 16 | 8.67 | 0.43 | 65.97 | 46.99 | 34.03 | 57.18 |
27 | 2 | 3.77 | 0.09 | 87.00 | 68.56 | 86.64 | 97.52 |
28 | 2 | 4.55 | 0.01 | 53.07 | 50.00 | 53.07 | 92.38 |
29 | 2 | 4.85 | 0.01 | 67.44 | 49.27 | 49.27 | 79.88 |
30 | 2 | 4.57 | 0.02 | 66.18 | 50.42 | 50.42 | 75.63 |
31 | 2 | 15.2 | 0.02 | 69.06 | 47.40 | 52.72 | 81.68 |
32 | 6 | 7.43 | 0.02 | 56.36 | 46.09 | 70.78 | 54.28 |
Taxon | Abbreviation | Origin Group [43] | TP | COD | Correlation | |||||
---|---|---|---|---|---|---|---|---|---|---|
Order | Optima (mg/L) | Group | Order | Optima (mg/L) | Group | Group | ||||
Achnanthes atomus | AATO | saproxenous | 7 | 0.03 | indifferent | 9 | 4.73 | indifferent | ||
A. minutissima var. scotica | ASCO | saproxenous | 10 | 0.05 | indifferent | 12 | 10.27 | indifferent | non | indifferent |
Aulacoseira islandica | AISL | indifferent | non | indifferent | ||||||
Cocconeis pediculus | CPED | saproxenous | 18 | 0.31 | saprophilous | |||||
C. placentula var. euglypta | CEUG | saproxenous | 6 | 0.03 | indifferent | 5 | 2.37 | indifferent | non | indifferent |
C. placentula var. placentula | CPLA | indifferent | 8 | 0.03 | indifferent | 8 | 3.95 | indifferent | negative | saproxenous |
Ctenophora pulchella | CPUL | saproxenous | non | indifferent | ||||||
Cyclostephanos fritzii | CFRI | indifferent | 14 | 0.19 | indifferent | 15 | 23.02 | saprophilous | non | indifferent |
Cyclotella delicatula | CDEL | indifferent | 17 | 0.27 | saprophilous | non | indifferent | |||
C. stelligera var. stelligera | CSTE | indifferent | 15 | 0.20 | saprophilous | 17 | 28.14 | saprophilous | ||
Cymbella hustedtii | CHUS | saproxenous | 9 | 0.03 | indifferent | 10 | 5.32 | indifferent | non | indifferent |
Diatoma mesodon | DMES | saproxenous | 7 | 3.94 | indifferent | non | indifferent | |||
D. vulgaris | DVUL | saproxenous | 12 | 0.10 | indifferent | 13 | 14.99 | indifferent | non | indifferent |
Eunotia osoresanensis | EOSO | indifferent | non | indifferent | ||||||
Fragilaria capitellata | FCAP | saproxenous | 1 | 0.01 | saproxenous | 1 | 2.00 | saproxenous | ||
Gomphoneis heterominuta | GHET | indifferent | 11 | 0.05 | indifferent | 11 | 8.02 | indifferent | non | indifferent |
Gomphonema acuminatum | GACU | indifferent | non | indifferent | ||||||
G. lagenula | GLAG | saprophilous | 16 | 0.20 | saprophilous | |||||
G. productum | GPRO | indifferent | non | indifferent | ||||||
G. tergestinum | GTER | indifferent | 3 | 0.01 | saproxenous | 4 | 2.28 | indifferent | ||
Gyrosigma procerum | GPRO | indifferent | non | indifferent | ||||||
Hannaea arcus var. amphioxys | HAMP | saproxenous | 2 | 2.00 | saproxenous | |||||
Navicula cf. broetzii | NBRO | saprophilous | 18 | 34.84 | saprophilous | non | indifferent | |||
N. cryptotenella | NCRY | saproxenous | 2 | 0.01 | saproxenous | 3 | 2.00 | saproxenous | ||
N. decussis var. decussis | NDEC | indifferent | 19 | 0.33 | saprophilous | |||||
N. gregaria | NGRE | indifferent | 13 | 0.15 | indifferent | 14 | 21.37 | saprophilous | non | indifferent |
N. sublinearis | NSUB | indifferent | non | indifferent | ||||||
N. yuraensis | NYUR | saproxenous | 5 | 0.03 | saproxenous | 6 | 3.88 | indifferent | ||
Nitzschia paleacea | NPAL | indifferent | 16 | 23.35 | saprophilous | non | indifferent | |||
Pinnularia acidophila | PACI | indifferent | non | indifferent | ||||||
Pseudostaurosira brevistriata | PBRE | indifferent | 4 | 0.02 | saproxenous | |||||
Staurosirella lapponica | SLAP | saprophilous | non | indifferent | ||||||
Synedra lanceolata | SLAN | saprophilous | 21 | 0.61 | saprophilous | |||||
S. rumpens | SRUM | indifferent | 20 | 0.46 | saprophilous |
COD | TN | TP | DAIpo | YRDAIcor | YRDAIco-COD | YRDAIco-TP | |
---|---|---|---|---|---|---|---|
COD | 1 | ||||||
TN | 0.09 | 1 | |||||
TP | 0.58 ** | 0.35 | 1 | ||||
DAIpo | −0.49 ** | −0.28 | −0.47 ** | 1 | |||
YRDAIcor | −0.61 ** | −0.36 * | −0.54 ** | 0.55 ** | 1 | ||
YRDAIco-COD | −0.65 ** | −0.24 | −0.37 * | 0.70 ** | 0.72 ** | 1 | |
YRDAIco-TP | −0.57 ** | −0.27 | −0.58 ** | 0.61 ** | 0.62 ** | 0.73 ** | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Fang, J.; Mei, P.; Yang, S.; Zhang, B.; Lu, X. How to Create a Regional Diatom-Based Index: Demonstration from the Yuqiao Reservoir Watershed, China. Water 2022, 14, 3926. https://doi.org/10.3390/w14233926
Liu Y, Fang J, Mei P, Yang S, Zhang B, Lu X. How to Create a Regional Diatom-Based Index: Demonstration from the Yuqiao Reservoir Watershed, China. Water. 2022; 14(23):3926. https://doi.org/10.3390/w14233926
Chicago/Turabian StyleLiu, Yufei, Jing Fang, Pengyu Mei, Shuo Yang, Bo Zhang, and Xueqiang Lu. 2022. "How to Create a Regional Diatom-Based Index: Demonstration from the Yuqiao Reservoir Watershed, China" Water 14, no. 23: 3926. https://doi.org/10.3390/w14233926
APA StyleLiu, Y., Fang, J., Mei, P., Yang, S., Zhang, B., & Lu, X. (2022). How to Create a Regional Diatom-Based Index: Demonstration from the Yuqiao Reservoir Watershed, China. Water, 14(23), 3926. https://doi.org/10.3390/w14233926