Physiological Response of Two Typical Plant Species under Combined Pb and Cd Stress in Bioretention Facilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Plants and Heavy Metals
2.3. Physiological Indicators
2.4. Test of Heavy Metals and Physiological Indicators in Plants
2.5. Data Analysis
3. Results and Discussion
3.1. Changes in Chlorophyll Content
3.2. Changes in Net Photosynthetic Rate
3.3. Changes in Transpiration Rate
4. Conclusions
- (1)
- Low concentrations of Pb and Cd helped to prevent chlorophyll loss in Ginkgo biloba L. leaves, whereas high Pb and Cd concentrations may help prevent chlorophyll loss in young leaves but aggravate chlorophyll loss in mature leaves. Regardless of the concentrations, Pb and Cd reduced the CC increase in Ligustrum × vicaryi leaves. The changes in plant CC were highly correlated with the changes in plant Pb content.
- (2)
- Low concentrations of Pb and Cd slightly inhibited the Ginkgo biloba L. and Ligustrum × vicaryi NPRs, whereas excessive concentrations severely reduced the NPR.
- (3)
- Pb and cadmium increased the Ginkgo biloba L. and Ligustrum × vicaryi TRs and the effect of low Pb and Cd concentrations was more significant.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, Q.; Liu, X.; Zhang, Q.; Qiao, Y.; Su, D.; Jiang, R.; Rui, Y.; Li, H. Application of ICP-MS and AFS to detecting heavy metals in Phosphorus fertilizers. Spectrosc. Spectr. Anal. 2014, 34, 1403–1406. [Google Scholar]
- Jiao, B.; Xu, G.; Li, D.; Luo, J.; Yang, K. Hazards of heavy metals in coal. Disaster Adv. 2012, 5, 1812–1818. [Google Scholar]
- Sansalone, J.J.; Buchberger, S.G. An infiltration device as a best management practice for immobilizing heavy-metals in urban highway runoff. Water Sci. Technol. 1995, 32, 119–125. [Google Scholar] [CrossRef]
- Belluck, D.A.; Lynott, W.J.; Benjamin, S.L. Human and ecological health risks from heavy metals and other substances released to the environment from metal shredders. In Cytotoxic, Mutagenic and Carcinogenic Potential of Heavy Metals Related to Human Environment; Springer: Dordrecht, The Netherlands, 1997; pp. 363–373. [Google Scholar]
- Zhuo, H.; Fu, S.; Liu, H.; Song, H.; Ren, L. Soil heavy metal contamination and health risk assessment associated with development zones in Shandong, China. Environ. Sci. Pollut. Res. 2019, 26, 30016–30028. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.R.; Dastgheibi, S.; Cameselle, C. Removal kinetics of heavy metals and nutrients from stormwater by different filter materials. Water Air Soil Pollut. 2020, 231, 530. [Google Scholar] [CrossRef]
- Shajib, M.T.I.; Hansen, H.C.B.; Liang, T.; Holm, P.E. Metals in surface specific urban runoff in Beijing. Environ. Pollut. 2019, 248, 584–598. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; He, W.; Zhao, H.; Zhao, J.; Wu, X.; Wu, W.; Li, X.; Yin, C. Influence of Low Impact Development practices on urban diffuse pollutant transport process at catchment scale. J. Clean. Prod. 2019, 213, 357–364. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Biswal, B.K.; Adam, M.G.; Soh, S.H.; Tsen-Tieng, D.L.; Davis, A.P.; Chew, S.H.; Tan, P.Y.; Babovic, V.; Balasubramanian, R. Bioretention systems for stormwater management: Recent advances and future prospects. J. Environ. Manag. 2021, 292, 112766. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, Q.; Ding, Y.; Wu, J. A procedure to design road bioretention soil media based on runoff reduction and pollutant removal performance. J. Clean. Prod. 2021, 287, 125524. [Google Scholar] [CrossRef]
- Davis, A.P.; Hunt, W.F.; Traver, R.G.; Clar, M. Bioretention technology: Overview of current practice and future needs. J. Environ. Eng. 2009, 135, 109–117. [Google Scholar] [CrossRef]
- Hatt, B.E.; Fletcher, T.D.; Deletic, A. Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale. J. Hydrol. 2009, 365, 310–321. [Google Scholar] [CrossRef]
- Kong, Z.; Song, Y.; Shao, Z.; Chai, H. Biochar-pyrite bi-layer bioretention system for dissolved nutrient treatment and by-product generation control under various stormwater conditions. Water Res. 2021, 206, 117737. [Google Scholar] [CrossRef]
- Egemose, S.; Sonderup, M.J.; Grudinina, A.; Hansen, A.S.; Flindt, M.R. Heavy metal composition in stormwater and retention in ponds dependent on pond age, design and catchment type. Environ. Technol. 2015, 36, 959–969. [Google Scholar] [CrossRef]
- Wadzuk, B.M.; Hickman, J.M.; Traver, R.G. Understanding the role of evapotranspiration in bioretention: Mesocosm study. J. Sustain. Water Built Environ. 2015, 1. [Google Scholar] [CrossRef]
- Park, S.Y.; Oh, D.K.; Lee, S.Y.; Yeum, K.J.; Yoon, Y.H.; Ju, J.H. Combined Effects of Substrate Depth and Vegetation of Green Roofs on Runoff and Phytoremediation under Heavy Rain. Water 2022, 14, 2792. [Google Scholar] [CrossRef]
- Dagenais, D.; Brisson, J.; Fletcher, T.D. The role of plants in bioretention systems; does the science underpin current guidance? Ecol. Eng. 2018, 120, 532–545. [Google Scholar] [CrossRef]
- Mei, Y.; Zhou, H.; Gao, L.; Zuo, Y.M.; Wei, K.H.; Cui, N.Q. Accumulation of Cu, Cd, Pb, Zn and total P from synthetic stormwater in 30 bioretention plants. Environ. Sci. Pollut. Res. 2020, 27, 19888–19900. [Google Scholar] [CrossRef]
- Mohammed, A.; Babatunde, A.O. Modelling heavy metals transformation in vertical flow constructed wetlands. Ecol. Model. 2017, 354, 62–71. [Google Scholar] [CrossRef]
- Sun, X.; Davis, A.P. Heavy metal fates in laboratory bioretention systems. Chemosphere 2007, 66, 1601–1609. [Google Scholar] [CrossRef]
- Shahid, M.; Dumat, C.; Khalid, S.; Schreck, E.; Xiong, T.T.; Niazi, N.K. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 2017, 325, 36–58. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Fang, H.; Zhang, T.; Wang, X.; Liu, Y. Heavy metal in leaves of twelve plant species from seven different areas in Shanghai, China. Urban For. Urban Green. 2017, 27, 390–398. [Google Scholar] [CrossRef]
- Ceburnis, D.; Steinnes, E. Conifer needles as biomonitors of atmospheric heavy metal deposition: Comparison with mosses and precipitation, role of the canopy. Atmos. Environ. 2000, 34, 4265–4271. [Google Scholar] [CrossRef]
- Gandois, L.; Probst, A. Localisation and mobility of trace metal in silver fir needles. Chemosphere 2012, 87, 204–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alaboudi, K.A.; Ahmed, B.; Brodie, G. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Ann. Agric. Sci. 2018, 63, 123–127. [Google Scholar] [CrossRef]
- Gong, Y.; Hao, Y.; Li, J.; Li, H.; Shen, Z.; Wang, W.; Wang, S. The effects of rainfall runoff pollutants on plant physiology in a bioretention system based on pilot experiments. Sustainability 2019, 11, 6402. [Google Scholar] [CrossRef] [Green Version]
- Lou, Y.; Luo, H.; Hu, T.; Li, H.; Fu, J. Toxic effects, uptake, and translocation of Cd and Pb in perennial ryegrass. Ecotoxicology 2013, 22, 207–214. [Google Scholar] [CrossRef]
- Hatamian, M.; Nejad, A.R.; Kafi, M.; Souri, M.K.; Shahbazi, K. Nitrate improves hackberry seedling growth under cadmium application. Heliyon 2020, 6, e03247. [Google Scholar] [CrossRef] [Green Version]
- Kushwaha, A.; Hans, N.; Kumar, S.; Rani, R. A critical review on speciation, mobilization and toxicity of lead in soil microbe-plant system and bioremediation strategies. Ecotoxicol. Environ. Saf. 2018, 147, 1035–1045. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, B.; Xia, H. Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of bana grass and vetiver grass. Ecotoxicol. Environ. Saf. 2014, 106, 102–108. [Google Scholar] [CrossRef]
- Ye, Z.; Baker, A.J.M.; Wong, M.; Willis, A.J. Copper tolerance, uptake and accumulation by phragmites australis. Chemosphere 2003, 50, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Beltrame, M.O.; De Marco, S.G.; Marcovecchio, J.E. Dissolved and particulate heavy metals distribution in coastal lagoons. A case study from Mar Chiquita Lagoon, Argentina. Estuar. Coast. Shelf Sci. 2009, 85, 45–56. [Google Scholar] [CrossRef]
- Kastori, R.; Petrovic, M.; Petrovic, N. EFFECT of excess Lead, Cadmium, Copper, and Zinc on water relations in sunflower. J. Plant Nutr. 1992, 15, 2427–2439. [Google Scholar] [CrossRef]
- Puig, S.; Thiele, D.J. Molecular mechanisms of copper uptake and distribution. Curr. Opin. Chem. Biol. 2002, 6, 171–180. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, H.; Cui, Z. Evaluation and analysis of soil migration and distribution characteristics of heavy metals in iron tailings. J. Clean. Prod. 2018, 172, 475–480. [Google Scholar] [CrossRef]
- Zhao, H.; Li, X.; Wang, X.; Tian, D. Grain size distribution of road-deposited sediment and its contribution to heavy metal pollution in urban runoff in Beijing, China. J. Hazard. Mater. 2010, 183, 203–210. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Gao, B.; Li, Z.; Xia, H.; Li, H.; Li, J. Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of an energy crop, king grass (Pennisetum americanum x P. purpureum). Biomass Bioenergy 2014, 67, 179–187. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Y.L.; Liang, L.K.; Li, X.; Duan, Q.T. Short-Term Wind Power Prediction Using GA-BP Neural Network Based on DBSCAN Algorithm Outlier Identification. Processes 2020, 8, 157. [Google Scholar] [CrossRef] [Green Version]
- DalCorso, G.; Farinati, S.; Furini, A. Regulatory networks of cadmium stress in plants. Plant Signal. Behav. 2010, 5, 663–667. [Google Scholar] [CrossRef]
- Malkowski, E.; Sitko, K.; Szopinski, M.; Gieron, Z.; Pogrzeba, M.; Kalaji, H.M.; Zieleznik-Rusinowska, P. Hormesis in plants: The role of oxidative stress, auxins and photosynthesis in corn treated with Cd or Pb. Int. J. Mol. Sci. 2020, 21, 2099. [Google Scholar] [CrossRef] [Green Version]
- Mao, X.; Xu, X.; Chen, L. Effect of heavy metal Pb and Cd stress on physiological characteristics of Japanese Honeysuckle. Appl. Ecol. Environ. Res. 2019, 17, 6415–6427. [Google Scholar] [CrossRef]
- Saleh, S.R.; Kandeel, M.M.; Ghareeb, D.; Ghoneim, T.M.; Talha, N.I.; Alaoui-Sosse, B.; Aleya, L.; Abdel-Daim, M.M. Wheat biological responses to stress caused by cadmium, nickel and lead. Sci. Total Environ. 2020, 706, 136013. [Google Scholar] [CrossRef] [PubMed]
- Bahmani, R.; Modareszadeh, M.; Bihamta, M.R. Genotypic variation for cadmium tolerance in common bean (Phaseolus vulgaris L.). Ecotoxicol. Environ. Saf. 2020, 190, 110178. [Google Scholar] [CrossRef] [PubMed]
- Dobrikova, A.G.; Apostolova, E.L. Chapter 11—Damage and protection of the photosynthetic apparatus under Cadmium stress. In Cadmium Toxicity and Tolerance in Plants; Hasanuzzaman, M., Prasad, M.N.V., Fujita, M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 275–298. [Google Scholar]
- Parys, E.; Wasilewska, W.; Siedlecka, M.; Zienkiewicz, M.; Drozak, A.; Romanowska, E. Metabolic responses to Lead of metallicolous and nonmetallicolous populations of armeria maritima. Arch. Environ. Contam. Toxicol. 2014, 67, 565–577. [Google Scholar] [CrossRef]
- Zhou, Y.; Han, S. Photosynthetic response and stomatal behaviour of Pinus koraiensis during the fourth year of exposure to elevated CO2 concentration. Photosynthetica 2005, 43, 445–449. [Google Scholar] [CrossRef]
- Sheoran, I.S.; Aggarwal, N.; Singh, R. Effects of cadmium and nickel on in vivo carbon dioxide exchange rate of pigeon pea (Cajanus cajan L.). Plant Soil 1990, 129, 243–249. [Google Scholar] [CrossRef]
- Ahmad, M.S.A.; Hussain, M.; Ijaz, S.; Alvi, A.K. Photosynthetic performance of two mung bean (Vigna radiata) cultivars under lead and copper stress. Int. J. Agric. Biol. 2008, 10, 167–172. [Google Scholar]
- Sharma, P.; Dubey, R.S. Lead toxicity in plants. Braz. J. Plant Physiol. 2005, 17, 35–52. [Google Scholar] [CrossRef] [Green Version]
- White, P.J. Chapter 2—Ion uptake mechanisms of individual cells and roots: Short-distance transport. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 7–47. [Google Scholar]
- Cobbett, C.; Goldsbrough, P. Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol. 2002, 53, 159–182. [Google Scholar] [CrossRef] [Green Version]
- Bose, S.; Bhattacharyya, A.K. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere 2008, 70, 1264–1272. [Google Scholar] [CrossRef]
- Ghosh, R.; Roy, S. Cadmium Toxicity in Plants: Unveiling the Physicochemical and Molecular Aspects; Academic Press: Cambridge, MA, USA, 2019; pp. 223–246. [Google Scholar]
- Lux, A.; Martinka, M.; Vaculik, M.; White, P.J. Root responses to cadmium in the rhizosphere: A review. J. Exp. Bot. 2011, 62, 21–37. [Google Scholar] [CrossRef] [Green Version]
- Sterckeman, T.; Redjala, T.; Morel, J.L. Influence of exposure solution composition and of plant cadmium content on root cadmium short-term uptake. Environ. Exp. Bot. 2011, 74, 131–139. [Google Scholar] [CrossRef]
Classification | Inflow | Plants | Device Codes |
---|---|---|---|
Experimental groups | runoff with low concentrations of heavy metals | Ginkgo biloba L. | G. biloba-L |
Ligustrum × vicaryi | L. vicaryi-L | ||
runoff with high concentrations of heavy metals | Ginkgo biloba L. | G. biloba-H | |
Ligustrum × vicaryi | L. vicaryi-H | ||
Control group | tap water | Ginkgo biloba L. | G. biloba-T |
Ligustrum × vicaryi | L. vicaryi-T |
Month | Rainfall Frequency | Average Monthly Frequency | Rainfall Totals (mm) | Average Rainfall per Event (mm) | Rainfall Interval (Days) |
---|---|---|---|---|---|
August | 159 | 5.30 | 1547.71 | 9.73 | 5.85 |
September | 111 | 3.70 | 1174.32 | 10.58 | 8.11 |
October | 47 | 1.57 | 432.25 | 9.20 | 19.79 |
Month | Rainfall Interval (Days) | Average Rainfall per Event (mm) | Inflow Volume (L) |
---|---|---|---|
August | 6 | 9.73 | 5.45 |
September | 8 | 10.58 | 5.92 |
October | 20 | 9.20 | 5.15 |
Time | Pb | Cd | ||||||
---|---|---|---|---|---|---|---|---|
G. biloba-L | G. biloba-H | L. vicaryi-L | L. vicaryi-H | G. biloba-L | G. biloba-H | L. vicaryi-L | L. vicaryi-H | |
08/20/2020 | 0.1185 ± 0.0021 a | 0.1625 ± 0.0035 | 0.1870 ± 0.0084 | 0.1450 ± 0.0028 | -- | -- | 0.01825 ± 0.0008 | 0.0154 ± 0.0004 |
09/05/2020 | 0.1435 ± 0.0007 | 0.1405 ± 0.0035 | 0.1575 ± 0.0021 | 0.1015 ± 0.0007 | 0.0069 ± 0.0003 | 0.0069 ± 0.00002 | 0.01395 ± 0.0004 | 0.008515 ± 0.00004 |
09/21/2020 | 0.1855 ± 0.0007 | 0.1465 ± 0.0064 | 0.1030 ± 0.0014 | 0.1305 ± 0.0007 | -- | -- | 0.008175 ± 0.0001 | 0.0108 ± 0.0001 |
10/18/2020 | 0.2310 ± 0.01556 | 0.2610 ± 0.0071 | 0.2825 ± 0.0077 | 0.2895 ± 0.0148 | 0.0024 ± 0.0006 | 0.0019 ± 0.0001 | 0.003775 ± 0.0001 | 0.004795 ± 0.0003 |
11/03/2020 | 0.3095 ± 0.0007 | 0.2610 ± 0.0014 | 0.1870 ± 0.0028 | 0.1495 ± 0.0035 | 0.0036 ± 0.0005 | -- | -- | -- |
12/10/2020 | 0.2020 ± 0.0014 | 0.2180 ± 0.0014 | 0.2265 ± 0.0035 | 0.4180 ± 0.0113 | -- | 0.0072 ± 0.0004 | 0.0142 ± 0.0001 | 0.02195 ± 0.0002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Y.; Lu, X.; Zhou, Z.; Li, Z.; Li, Y. Physiological Response of Two Typical Plant Species under Combined Pb and Cd Stress in Bioretention Facilities. Water 2022, 14, 3923. https://doi.org/10.3390/w14233923
Gong Y, Lu X, Zhou Z, Li Z, Li Y. Physiological Response of Two Typical Plant Species under Combined Pb and Cd Stress in Bioretention Facilities. Water. 2022; 14(23):3923. https://doi.org/10.3390/w14233923
Chicago/Turabian StyleGong, Yongwei, Xiaoxiao Lu, Zhihua Zhou, Zhuolun Li, and Yanhong Li. 2022. "Physiological Response of Two Typical Plant Species under Combined Pb and Cd Stress in Bioretention Facilities" Water 14, no. 23: 3923. https://doi.org/10.3390/w14233923
APA StyleGong, Y., Lu, X., Zhou, Z., Li, Z., & Li, Y. (2022). Physiological Response of Two Typical Plant Species under Combined Pb and Cd Stress in Bioretention Facilities. Water, 14(23), 3923. https://doi.org/10.3390/w14233923