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Abstract: Associating anthropogenic effects with variations in biodiversity is key to understanding
how anthropogenic impacts are extrapolated in public supply micro-watersheds. The structure and
dynamics of metacommunities in aquatic environments depend not only on the river network itself,
but on a multitude of factors. Therefore, we associate the density and species richness of diatoms,
assessed in a micro-watershed, with the following driver factors: local environmental variables,
spatial variables, landscape characteristics, and the historical community, comparing their possible
dispersal routes. Variance partitioning was performed using partial RDA models, with prior selection
of predictor variables, to estimate the relative role of each predictor in the diatom community. The
small scale of the micro-watershed resulted in a small spatial gradient, reflecting in the low variation
in community richness across sampling stations. However, temporal heterogeneity associated with
fluctuating precipitation throughout the year may cause temporal variation in the relative abundance
of species. This pattern is a result of the supply of resources that increases biodiversity over time, as
it allows the coexistence of species that alternate between dominance and persistence. Thus, even on
a small scale and during one year of sampling, we demonstrated that predictors of different natures
act together to explain diatom communities in micro-watersheds.

Keywords: lotic environments; macro and microscale; metacommunity; dispersal routes; diatoms

1. Introduction

Water resources have been considered the most important of all natural resources [1].
Despite being essential for human survival, whether for consumption or other applica-
tions, drinking water is poorly distributed across the planet [2,3]. In addition, territories
with high water availability such as Brazil are facing a generalized water crisis, with an
imminent reduction in the level of water resources [4]. In the Brazilian scenario, these
consequences are maximized by population expansion, affecting the generation of electric-
ity and, above all, the potability of water, especially in rivers used for public supply [5].
By providing environmental and ecosystem services central to human society, natural
resources are indispensable in maintaining the communities present in lotic environments
and all biodiversity [6]. However, anthropic activities are modifying natural characteristics
and threatening ecosystems associated with water bodies [7]. Some important discus-
sions in ecological studies aim to understand which factors explain species variation in
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aquatic communities [8,9]. Possible dispersal routes, environmental characteristics, and
landscape configuration are often considered predictors of metacommunity distribution
patterns [10,11].

Although it is agreed that the aforementioned factors act at different spatial scales [12],
the relative importance of these factors is likely to change [13]. On a regional scale, the
landscape tends to become homogenized as a consequence of the history of this territorial
cutout [14]. At finer scales, local environmental factors (abiotic variables and biological in-
teractions) are probably more important in explaining environmental filtering over smaller
territorial extents [15]. In addition, the smaller the territorial extent, the greater the cumula-
tive anthropic pressure on aquatic ecosystems due to the significant portion of land use
that mixes agricultural and urban purposes, which contribute to reduced biodiversity [16].
High population densities imply the entry of domestic, industrial, and agricultural effluents
into streams, loss of riparian vegetation, conversion of forested areas to agricultural use,
and increases in impermeable areas in urban settlements [17]. The sum of these factors
not only simplify the landscape, but also affect aquatic communities, altering limnological
characteristics and impairing water quality [18]. With this in mind, linking anthropogenic
effects to biodiversity variation is critical to understanding how anthropogenic impacts are
extrapolated in public supply micro-watersheds (see [19]).

Among aquatic communities, periphytic diatoms are commonly used to assess the
effects of environmental and spatial predictors [20], since they are algae that easily adhere
to some substrate through mucilage production, which can restrict their dispersal and
maximize the influence of these factors [21]. Furthermore, these microorganisms respond
efficiently to changes in water characteristics, as well as in climate, geology, and land use in
micro-watersheds [22,23]. Despite this, few studies use periphytic diatoms as a model of
metacommunities in lotic environments [24].

The development of computational tools and increased data availability allows for
better comparisons of the relative role of different predictors in structuring metacommuni-
ties. Nevertheless, studies comparing landscape descriptors, local descriptors, and spatial
configuration for diatoms are rare [25–27]. Spatial configuration is commonly used as an
indicator of dispersal routes [28]. However, dispersal of microalgae can occur via multiple
vectors: by air [29], by flow-independent water (e.g., [30]), and by flow-dependent water
(e.g., [31]). Considering each of these different dispersal hypotheses may more clearly
reveal the relative role of predictors of metacommunities [32].

In Brazil, research involving dispersal routes of diatoms related to environmental and
spatial filtering are usually developed in reservoirs addressing phytoplankton communi-
ties. Bortolini et al. [33] demonstrated that connectivity and dispersal by water flow in a
reservoirs–river–floodplain gradient maximize dispersal rates of phytoplankton communi-
ties, contributing to increased biomass and homogenization of neighboring communities.
Zorzal-Almeida et al. [34] observed that environmental and spatial factors together have
a strong influence on variation between planktonic and surface sediment diatom com-
munities in tropical reservoirs, indicating mass effects as a strong structuring predictor.
Oliveira et al. [35] also evaluated the relative importance of local and spatial environmen-
tal processes on planktonic diatoms in streams in central Brazil, indicating that both act
together in affecting metacommunity structuring. Medeiros et al. [36], however, evaluated
the response of the periphytic diatom community through environmental predictors along
a linear gradient using a distance-by-watercourse matrix. There is greater interest in the
study of reservoirs due to their applicability; however, it is also crucial to understand
the dynamics of river metacommunities belonging to micro-watersheds. Although these
ecosystems are heavily impacted by human actions, they are still essential for public supply,
and biomonitoring them provides information on water quality, consequently helping to
maintain social health.

Indeed, it is agreed that the structure and dynamics of metacommunities in aquatic
environments depend not only on the river network itself, but on a multitude of factors [37].
Understanding how these factors reflect on diatom community structure can help to un-
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derstand ecological processes in river systems, which are important for the maintenance
of the entire ecosystem, but suffer severe threats [38]. Our aim was to compare possible
determinants of the periphytic diatom community in a micro-watershed: (i) determinants
generated to represent different dispersal routes, (ii) determinants referring to local micro-
habitat filtering, and (iii) determinants related to landscape-scale environmental filtering.
Thus, diatom community structure was explained both by considering the relative density
of species (representing dominance and rarity relationships), and by the simple presence
and absence of species (representing local occurrence capacity). Finally, we also considered
the community composition from a previous period to explain the diatom community of
the following period, thereby considering previous colonization as one of the determinants
of the metacommunity (see [39]).

2. Materials and Methods
2.1. Study Area

Cascavel city (24◦57′21′′ S and 53◦27′19′′ W) is located in the western region of the
State of Paraná, a subtropical area with a mean annual temperature of 21 ◦C [40]. The
Cascavel River (24◦32′ and 25◦17′ S; 53◦05′ and 53◦50′ W) has a drainage area of 17.50 km2

divided in similar percentages between agricultural/urban areas and reserve or forest
areas [41] (Figure 1). The main riverbed is 17.85 km long, with the main headwaters located
in urban areas [42].
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Figure 1. Location of sampling stations (S) in Cascavel River micro-watershed, Cascavel City—PR, Brazil.

2.2. Sampling Design

Eight sampling stations were selected in the micro-watershed of the Cascavel River
(Table 1), considering the land use and occupation for agricultural, industrial, extractive
activities, and urban settlements, following the head–mouth direction. Samplings were
performed quarterly (one per season) during 2018, totaling four samplings for each com-
munity, with communities 1, 2, 3, and 4 being associated with March, June, August, and
December, respectively.
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Table 1. Location with geographic coordinates of the collection points along the Cascavel—PR river, Brazil.

Sampling Sites
Geographic Coordinates

Latitude Longitude

S1 24◦57′32.93′′ S 53◦26′33.32′′ W
S2 24◦58′35.81′′ S 53◦26′6.85′′ W
S3 25◦0′13.36′′ S 53◦26′19.12′′ W
S4 24◦58′17.29′′ S 53◦24′24.75′′ W
S5 24◦59′5.99′′ S 53◦25′23.83′′ W
S6 24◦59′18.90′′ S 53◦25′32.20′′ W
S7 24◦59′48.82′′ S 53◦26′42.08′′ W
S8 25◦0′13.36′′ S 53◦26′19.12′′ W

2.3. Landscape and Climate Variables

The land use and occupation measurements were performed by manual classification
in QG is software (available in open licensing), using images obtained from the Sentinel
2A satellite with a spatial resolution of 10 m. The study area was classified according to
five main classes: Forest, Mining, Water, Rural, and Urban. The divisions were based on
the Land Use Technical Manual [43], which provides information about the types of land
use included in each class (Figure 2). Climatological variables such as temperature, air
humidity, wind speed and direction, solar radiation, and rainfall were provided by the
Paraná Meteorological Institute (SIMEPAR).
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2.4. Local Environmental Variables

The physical and chemical variables such as temperature, electrical conductivity,
dissolved oxygen, pH, and turbidity were measured in situ by a HORIBA multiparameter
probe, model U-5000.

We collected water samples for physical–chemical analysis by filling 5 L polyethylene
gallons, and also 100 ml of water using dark glass bottles for microbiological analysis,
both cooled and kept in the dark until their use in the laboratory. The oxygen consump-
tion due to chemical oxidation (COD) and organic matter (BOD), concentrations of total
Kjeidahl nitrogen (NT), total dissolved phosphorus (TDS), orthophosphate (PO4

−), nitrate
(N-NO3), ammonium (N-NH4) and chlorophyll a were analyzed by the Environmental and
Agronomic Analyses Laboratory (ACQUASOLLUS-Campo Mourão), following Standard
Methods [44].

The superficial sediment was collected following the protocol of the Environmental
Company of the State of São Paulo and the National Water Agency [45]. Samples with
approximately 500 g of superficial sediment (0–5 cm depth) were collected utilizing plastic
bags. Three sediment samples were collected at each sampling station and mixed to consti-
tute a composite sample. In the laboratory, the samples were dried at room temperature
in a closed place, protected from sunlight, wind, and excessive light. Then, the sediments
were sieved using a 63 µm mesh to perform metal analyses. The sediment processing and
analyses were performed in the laboratory of Unioeste—Cascavel campus. Aluminum (Al),
barium (Ba), cadmium (Cd), calcium (Ca), chromium (Cr), cobalt (Co), copper (Cu), iron
(Fe), lead (Pb), magnesium (Mg), manganese (Mn), nickel (Ni), potassium (K), sodium (Na),
and zinc (Zn) were read, according to U.S. Environmental Protection Agency method
USEPA 3050B [46], analyzing the silt/clay fraction of the soils using atomic absorption spec-
trometry (AAF) or inductively coupled plasma atomic emission spectrometry (ICP-AES).

2.5. Dispersal Route Indicators

Possible dispersal routes were generated considering the following methodologies:

(1) To test “overland”, we considered the Euclidean distances resulting from the Principal
Coordinate of Neighbor Matrices (PCNM, [47]), an ordination matrix generated using
the coordinates of the sampling stations, creating a spatial connection network with
links at all evaluated sites without directionality (i.e., the sampling stations were
connected by two directions, upstream–downstream and downstream–upstream).

(2) To test asymmetric eigenvector mapping “AEM”, the latitude and longitude of the
sites were used to relate the points, considering whether the sites had connectivity or
not [48].

(3) To test “watercourse”, the distance matrix was generated by drawing a dendritic
system over a real river map with Quantum GIS software. Thus, we modeled a spatial
network with directional links over the watercourse (considering that the sites were
connected only as a function of the river water flow).

2.6. Periphytic Community

Three substrates (stones), three meters apart from each other, were collected at all
sampling stations, making a composite sample in order to evaluate the periphytic diatom
community. The biofilm containing the diatoms was scraped from all the rocks using a tooth-
brush and distilled water. The density and relative abundance of taxa were estimated based
on standard scraping of the stones (area equal to 9 cm2), considering the down-stream
face of each substrate. Samples were preserved in 1% Lugol’s acetic solution (Bicudo
and Menezes 2017) and stored at the Herbário da Universidade Estadual do Oeste do
Paraná (UNOPA). Permanent slides were prepared with oxidized subsamples according to
Simonsen’s [49] technique, modified by Moreira-Filho & Valente-Moreira [50], with known
volume (1.0 mL) and Naphrax® resin (refractive index = 1.74) as the mounting medium.
Quantitative analyses were performed in light microscopy (LM) at 1000× magnification
using an Olympus B × 34 microscope equipped with a DP 71 capture and phase contrast
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camera. Individuals were identified and counted according to Kobayasi & Mayama [51],
(1982), ensuring a minimum efficiency of 90% [52]. Diatom valves were counted in an opti-
cal microscope (1000×), as oxidation tended to separate frustules (Moro and Bicudo, 2002),
including at least 50% of the full-size broken ones. Cells in pleural view were identified
when possible. We followed the recommendations of Battarbee [53] and Lobo et al. [54] for
counting under light microscopy, calculating densities per cm2. Abundant (valve density
exceeds the average density for the sample) and dominant species (valve density is over
50% of the total density) were determined according to Lobo and Leighton (1986).

2.7. Data Analysis

Environmental variables that were not collinear and previously standardized by
standard deviation were subjected to Principal Component Analysis (PCA) (see [55]) in
order to characterize the sampling sites. Spatial (between sampling sites) and temporal
(between periods) variation in species density and occurrence, as well as in environmen-
tal variables, were assessed using non-parametric permutational multivariate analysis
(PERMANOVA, [56]). A Bray–Curtis matrix was used for species density after Hellinger
transformation, a Sorensen matrix for occurrence, and a Euclidean distance matrix with
environmental data previously standardized by standard deviation (see [55]).

The diatom community matrix was related to matrices with the following factors: local
environmental variables, spatial variables (connectivity by dispersal routes), landscape
characteristics, and the community from the previous period. The effect of previous
community colonization was considered in the explanation by using matrices summarized
in a principal coordinate analysis applied to the Bray–Curtis or Sorensen matrix (abundance
or occurrence, Principal co-ordinates analysis (PCoA)), [57], with the diatom community
from the previous period considered as a predictor of diatoms from the following period
(except for the first collection period, see also [39]).

In PCoA analysis, data are divided into components to maximize the linear correlation
between data points in a dissimilarity matrix. Through a “coordinate transform”, the
observed values in the sample stations are replaced with newly derived coordinates. Thus,
we reduce the dimensionality of a dataset by discarding coordinates that may not capture a
threshold of variance in the community data. This technique preserves the global structure
of the data while projecting it in low dimension. The predictor variables, i.e., environmental
and landscape variables (standardized by standard deviation), were also previously scaled
using a PCoA applied to the Euclidean distance matrices. The PCoA was used in order to
improve the correlations of the predictor matrices with the community matrices [55,58].

Variance partitions were then performed using partial RDA models (pRDA, [55]), with
prior selection of predictor variables (i.e., environmental, landscape, dispersal hypotheses,
and previous community) through a stepwise approach [48,59], seeking to estimate the
relative role of each predictor in the diatom community. Models were generated separately
for each period, considering relative densities or presence and absence.

All analyses were performed using the R Development Core Team language [60] and
its environment for computational statistics, along with the vegan [61], adespatial [62] and
spdep [63] packages.

3. Results

The characterization of the sampling stations regarding the landscape variables
pointed out the differences between these environments and the dominance of urban
and agricultural areas in the Cascavel River micro-watershed. Sampling stations 2, 3, 4 and
7 are predominantly urban, stations 5 and 6 are predominantly used for agriculture and
livestock, and stations 1 and 8 have a larger area of forest than the others (Figure 2). The
urban influence area strongly influenced the sampling stations in the headwaters of the
micro-watershed, although they have natural vegetation, which was also observed for
points under the rural extension influence area (Figure 2).



Water 2022, 14, 3913 7 of 22

Throughout 2018, the Cascavel River micro-watershed suffered great interference from
seasonal variation, showing high accumulated precipitation in the first sampling period
when compared to the others (Figure 3).
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Figure 3. Daily precipitation (mm) in Cascavel city—PR throughout the year 2018. Data provided
by SIMEPAR.

The environmental variables’ spatial variation (F = 2.07; R2 = 0.38; p = 0.001) and
temporal variation (F = 3.21; R2 = 0.26; p = 0.001). The Principal Component Analysis
(PCA) summarized 31.91% of the total variability of the sampled data in the first two
axes (Figure 4). The scores showed the separation of the environments according to the
sampling period and the land use at the sampling points. We highlight the interference
of the macroscale in the March sampling period (the highest accumulated precipitation
among the evaluated periods—557.2 mm in 30 days). This period was associated with
higher values of Al, Cu, Nitrate and Chlorophyll a. In contrast, June had a lower association
with metals in the surface sediment, as well as higher COD and total phosphorus values.
Additionally, the analysis grouped stations 1, 4, and 7 (all first-order streams, and heavily
impacted by urbanization) with higher values of Na, Zn, Cr, and Pb.

We found 118 infrageneric taxa, distributed in 37 genera. Eunotia Ehrenberg, Pinnularia
Ehrenberg (11 spp. each), Gomphonema Ehrenberg and Navicula Bory (9 spp. each) showed
high representative taxa richness among all sampling stations (see the means of relative
abundance for each species according to sampling stations in Appendix A). The variation
in species density for the four samplings showed spatial variation (F = 1.82; R2 = 0.35;
p = 0.001), but not temporal variation (F = 1.17; R2 = 0.11; p = 0.168). In contrast, there was
no spatial variation in species occurrence (F = 1.02; R2 = 0.23; p = 0.4), but occurrences varied
in time (F = 1.98; R2 = 0.18; p = 0.001). However, some species differentiate the sampling
stations: Achnanthidium modestiforme (Lange-Bertalot) Van de Vijver (S1, S2, S4, S6, and S8,
with the greatest relative abundance at S4), Cymbopleura naviculiformis (Auerswald) Kram-
mer (S3), Eunotia yberai Frenguelli (S4), Navicula cryptocephala Kützing (S1, S2, S3, S6, and S8,
with the greatest relative abundance at S2 and S8), Navicula cryptotenella Lange-Bertalot (S1,
S2, S3, S5, and S7, with the greatest relative abundance at S5), Navicula salinicola Hustedt
(rare at S1, common at S2), and Spicaticribra kingstonii Johansen, Kociolek & Lowe (S3 and
S8). We also observed the dominance of Eunotia botulitropica Wetzel & Costa (June, S7),
Eunotia veneris (Kützing) De Toni (December, S1, with relative abundance higher than 50%,),
and Gomphonema parvulum (Kützing) Kützing (December, S3). Species variation between
sampling stations is described in the Appendix A. The explanatory power of the selected
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predictor variables was relatively low, and most of the variability in diatom community
structure remained unexplained in pRDA (see fraction containing residues [U] in Figure 5).
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Figure 4. Principal Component Analysis (PCA) for the data evaluated at the sampling stations (S)
of the Cascavel River, Cascavel city—PR, Brazil. Limnological data (Ec: electrical conductivity, DO:
dissolved oxygen, Turb: turbidity, Fl: flow, COD: chemical oxidation demand, BOD: biochemical
oxygen demand, NO3: nitrate, TP: total dissolved phosphorus, CLa: chlorophyll a, TS: total solids,
CT: total coliforms), metals measured in the surface sediment (Cu: copper; Al: aluminum; Ni: nickel;
Zn: zinc; Na: sodium; Mn: manganese; Pb: lead; Cr: chrome).

Figure 5 illustrates the importance of considering different dispersal hypotheses in
explaining the structure of the periphytic diatom metacommunity in the Cascavel River.
Overall, the predictors generated by AEM had the greatest ability to explain the metacom-
munity (Figure 5).

In general, the species density matrix was better explained than the abundance matrix.
The June community was best explained by the predictors, with 18% of the variance
explained by the AEM spatial filters (Figure 5). Overland explained the March community
best, with 8% explaining species occurrence and 7% explaining species density. Watercourse
was best able to explain the dispersal of the community in December 2018 (2%), also
associated with the environmental filters and the historical community (Figure 5). Finally,
the historical community becomes influential in explaining species dispersal starting in
August, with the June community being influenced by the other factors, but not by the
historical community (March community), which was impacted by the high accumulated
precipitation (Figure 5).
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Figure 5. Results of the Partial Redundancy Analysis (pRDA). Relative contributions (% explanation)
of environmental (E), spatial (S), historical community (HC) and landscape (L) that explain the
variation in relative abundance (A) and Occurrence (O) of periphytic diatom metacommunities. We
used possible dispersal routes “overland”, “AEM”, and “Watercourse” as spatial predictors (see
methods). U = unexplained component. Values <0.5% were not shown. Explanation percentages
significantly different from a null model (p < 0.05) are represented by “*”.
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4. Discussion

In this study, we showed that the structure of the diatom metacommunity of a micro-
watershed is partially dependent on variables related to local environmental variables,
landscape variables, dispersal hypothesis, and historical community. More importantly,
we show that the relative importance of these factors varies temporally and depending on
how the dispersal hypothesis is generated (see also [19,32,39]). The micro-watershed is
located in a predominantly agricultural region of Brazil. The much of the city is structured
around open, flat fields or fields with some barriers, mainly characterized by areas used
for soybean and corn monocultures [64,65]. In addition, our characterization of land use
and occupation of the micro-watershed area showed that the headwaters are surrounded
by the urban center of the city. This combination of macro influence with direct influence
at the sampling stations summarized the impacts along the micro-watershed, especially
in the rainy season, when greater leaching occurs [16,66]. This may be associated with
the community not having variation in richness between sampling stations, since diffuse
pollution causes homogeneity in the spatial structuring of niches.

The landscape transition between urban and agricultural areas is reflected in different
levels of anthropic interference on lotic systems [67]. When comparing micro-watersheds
in Paraná State, Peres et al. [68] found that the Cascavel River micro-watershed has high
environmental fragility, which refers to the sensitivity and resilience of an ecosystem. This
high fragility occurs due to the effect of urban and agricultural effluents present in the
river fluvial network in urban areas, which alter the limnological characteristics and pro-
mote environmental degradation, reducing forest areas and riparian vegetation [24,69,70].
Medeiros et al. [36], when evaluating the driving factors of the metacommunity in a linear
design in the same micro-watershed, recorded the real effect of the continuous river theory,
highlighting the effects of urbanization and agriculture on environmental variables, which
had the greatest effect on the community.

Our results pointed to several interesting pieces of information about the spatial
variability of the diatom community along the micro-watershed. Overall, no single spatial
factor explained most of the variation in species density or occurrence in this model.
Instead, we highlight the complexity to describe the variability of the metacommunity, as
the variance partition did not show a significant percentage of association (see also [71]).
The spatial autocorrelation structure without flow connection (overland) can be useful for
modeling community abundance, which can actively move both upstream and downstream,
overcoming dispersal not only by the lotic environment of connected rivers, but also by
other means such as ectozoochory, involving adherence to fish and bird feathers, for
instance [29,72].

The size of the spatial extents also interferes with the influence of local and land-
scape variables on community assembly, based on environmental heterogeneity (see more
in [19,36,73–75]). The small scale of the micro-watershed probably results in a small spatial
gradient that is reflected in the low variation in community richness depending on the sam-
pling station. In fact, spatial and temporal variation in communities have not always been
observed (i.e., see results for occurrence matrices), but the relative role of predictors was
quite different between periods. This indicates that even with relative temporal stability in
the communities, ecological relationships are poorly predicted (see in [76]). Spatial extent
is proportional to the importance of niche selection, and the strength of these scale effects
depends on the configuration of the environment, dispersal capacity, and niche breadth [74].
However, temporal heterogeneity associated with fluctuating precipitation throughout the
year may cause temporal variation in the relative abundance of species. Passy et al. [71]
associate this pattern with competition theory, which posits that temporal heterogeneity
in resource supply increases biodiversity because it allows species that alternate between
dominance and persistence to coexist.

Spatial variables generated using AEM resulted in better estimates, especially when
spatial factors were the main drivers of metacommunities. Studies have already shown
that it is necessary to consider the connectivity of river networks to model the dispersal
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routes of metacommunities, as they are important in explaining their effect on community
formation [32,48]. However, when considering predictors of hydrologic connectivity across
the watercourse, the percentages of total variation explained by spatial and shared effects
were reduced, likely reflecting the small spatial gradient [77].

Studies show that environmental gradients may be poorly evident at small scales due
to the mass effect [19,20]. This may reflect the high connectivity between sampling stations,
which promotes facilitated community dispersal, interfering with the filtering of predic-
tors [77,78]. The influence of metacommunity predictors is more difficult to distinguish
at small scales due to the likely effects of niche versus neutral processes on community
composition [79]. Possible causes of the complexity to explain these models could be
stochastic colonization, ecological drift, and biological interactions or the homogenization
of landscape effects itself [19,21,32,73].

Although landscape characteristics, especially the presence of riparian vegetation, are
important in providing a favorable environment for community species richness, the results
suggest that factors other than land cover may contribute to community restructuring. Pre-
vious studies point out that in urban streams, increased surface and subsurface connectivity
to drainage networks can lead to water quality impacts, and the presence of forested areas
can mitigate these stress pathways [80,81]. Landscape variables end up being suitable
driver factors in small-scale models, helping to structure a multidimensional model.

The historical community as a predictor of the metacommunity became significant
from the August community onwards. This may be related to the strong influence of
precipitation on the March community, which may have needed a period to stabilize again.
Foets et al. [82] pointed out that communities took one to two months to re-establish them-
selves after a significant change in the environment. However, even if the community
responds to this temporal variation, in our study, the predominance of both the richness
and density of Eunotia specimens is a consequence of the spatial homogeneity, which
highlights environmental conditions that favor the occurrence of this genus (acidic and olig-
otrophic waters) [83,84]. Diatom species such as Eunotia rhomboidea Hustedt, E. botulitropica,
Fragilaria pectinalis (Müller) Lyngbye, Gomphonema parvulum, Achnanthidium macrocephalum
(Hustedt) Round & Bukhtiyarova, and Sellaphora nigri (De Notaris) Wetzel & Ector did not
have specific environmental filtering, occurring throughout the entire micro-watershed;
these are species commonly reported in polluted urban environments with high concentra-
tions of solids and nutrients [85–88].

The deterioration of forested areas, which support the conservation of micro-watersheds
within large agricultural extensions, is reflected in the increased concentration of nutri-
ents and metals associated with fertilizers and pesticides. In addition, the sparse riparian
vegetation increases siltation and turbidity in the riverbeds. These changes tend to favor
medium to large species with cosmopolitan characteristics and competitive advantage,
such as Gomphonema lagenula Kützing, Gomphonema exilissimum (Grunow) Lange-Bertalot &
Reichardt, and Gomphonema parvulum [85,87,89–93]. These taxa are commonly registered
as tolerant to pollution, occurring in conditions of elevated nutrient and light availabil-
ity [94–96]. This environmental filtering supports the homogenizing effect of agriculture,
which has been highlighted in other studies [93,97].

Another important factor is that the micro-watershed belongs to a region with soil
classified as distropheric red latosol, predominated by Fe and Al ions, and acidic condi-
tions [98]. These and other metals are carried to the aquatic environments, especially in
the absence of riparian vegetation, situations in which silting facilitates the accumulation
of sediments [99]. These conditions may be harmful to diatoms (see references in [100]),
leading to changes in the community structure [101,102]. Thus, the streams studied here are
characterized by an acidic pH and high conductivity [103], contributing to the occurrence
of species belonging to the genus Eunotia [104].

Some of the effects of urbanization could be observed in stations with sparse and
degraded riparian vegetation, such as S2, S4, and S7, reflecting higher concentrations of
metals in the surface sediment (Figure 4), especially in March when high accumulated
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precipitation was observed. The representativeness of some species also helped differenti-
ate these environments, such as Navicula salinicola on S2, Achnanthidium modestiforme and
Eunotia yberai on S4 (also see the previously described Nupela semifasciata Amaral, T.Ludwig
et Bueno species in [105]), and Eunotia botulitropica on S7 (dominant). These conditions
also likely contributed significantly to higher leaching of metals into the surface sediment
(Figure 4), reflecting intensified human activities [106,107]. These sampling stations were
represented by species such as Navicula salinicola (S2) and Navicula cryptocephala (S2). There-
fore, diatom communities are being affected directly or indirectly by a point or diffuse
source of pollution. We suggest that other factors need to be considered in future studies,
such as the bioavailability of these metals, as well as changes in diatom morphology. On a
regional scale, spatial factors can be significant in the distribution of diatoms [108,109], con-
sidering land use throughout the micro-watershed [110]. In micro-watersheds, branching
rivers contribute significantly to the dispersal dynamics of populations, especially when
tributaries are not directly connected to the main river course [31,38]. In these cases, the
contribution of the connection can be drastically limited in regions where native vegetation
is suppressed, mainly due to anthropic actions [111]. Thus, the temporal maintenance of
biodiversity is mainly due to asynchrony, that is, ideal conditions for different species,
alternated by the seasonality of climatic events [71,112].

The diatom communities assessed along the micro-watershed presented a variety of
growth forms, due to macroinfluence and to the evolutionary process itself, providing dom-
inant profile characteristics of the benthic periphyton biomass [113,114]. The evolutionary
aspect of growth may have influence on the comparison results of the methods evaluated,
since its dispersal on a small scale (such as the studied micro-watershed), has reached an
equilibrium that surpasses the dispersal only by the lotic environment of connected rivers,
causing a mass effect [115]. However, it is agreed that time-replicated metacommunity
studies are scarce; and that long-term standardized data are essential to clarify the determi-
nants of ecological metacommunities with complex models [116]. Thus, it is necessary that
monitoring of ecological communities, such as the one in this study, be continued. Even on
a small scale and during one year of sampling, we demonstrated that predictors of different
natures act together to explain diatom communities in micro-watersheds.

Due to the limitations of our study, we suggest that future works include a moni-
toring of the Cascavel River, increasing the number of sampling sites and including data
from a larger historical series. It is also suggested to compare these results with other
regional micro-watersheds to identify a pattern of anthropic behavior and its influence on
lotic environments.
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Appendix A

Epilithic diatom species identified from Cascavel River microbasin.
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Table A1. Analysis of variance (Anova) to compare the means of relative abundance of each diatom
species according to the sampling stations. Species that had significantly different means across
sampling stations, p < 0.05, have p-value highlighted in bold.

Sampling Station S1 S2 S3 S4 S5 S6 S7 S8 R2 F p-Value

Achnanthidium catenatum (J. Bily
& Marvan) Lange-Bertalot

mean - - - 7.5% 0.9% - - - 0.220 0.966 0.478
standard
deviation - - - 14.9% 1.8% - - -

Achnanthidium exiguum
(Grunow) D.B.Czarnecki

mean - - - - - - - 1.1% 0,.26 1.000 0.455
standard
deviation - - - - - - - 2.2%

Achnanthidium macrocephalum
(Hustedt) Round &

Bukhtiyarova

mean 1.1% - 3.2% 2.7% - - - 2.8% 0.259 1.198 0.341
standard
deviation 2.2% - 3.2% 5.3% - - - 3.3%

Achnanthidium minutissimum
(Kützing) Czarnecki

mean 5.8% 3.6% 3.0% 5.5% - 7.8% 5.0% 9.1% 0.172 0.714 0.661
standard
deviation 8.7% 4.4% 3.7% 7.1% - 9.1% 6.0% 9.0%

Achnanthidium modestiforme
(Lange-Bertalot) Van de Vijver

mean 1.9% 1.4% - 11.1% - 1.4% - 2.2% 0.477 3.130 0.017
standard
deviation 2.6% 2.9% - 9.9% - 2.8% - 4.3%

Achnanthidium tropicocatenatum
G.C.Marquardt,

C.E.Wetzel & Ector

mean 0.4% 0.7% 3.6% - - - - - 0.274 1.291 0.297
standard
deviation 0.7% 1.5% 6.0% - - - - -

Actinella hermes-moreirae Ruwer,
Ludwig & Rodrigues

mean - 0.2% - - - - - - 0.226 1.000 0.455
standard
deviation - 0.5% - - - - - -

Aulacoseira ambigua
(Grunow) Simonsen

mean - 0.5% 4.4% - 0.3% - - 2.8% 0.379 2.089 0.085
standard
deviation - 1.0% 3.2% - 0.6% - - 5.6%

Aulacoseira granulata
(Ehrenberg) Simonsen

mean - 2.0% - - - - - - 0.226 1.000 0.455
standard
deviation - 3.9% - - - - - -

Aulacoseira pusilla (Meister)
Tuji & Houki

mean 2.1% - 1.3% - - - - - 0.230 1.026 0.439
standard
deviation 4.3% - 1.6% - - - - -

Aulacoseira tenella
(Nygaard) Simonsen

mean - - 1.4% - 0.8% - - 0.8% 0.179 0.747 0.635
standard
deviation - - 2.8% - 1.6% - - 1.5%

Brachysira brebissonii Ross mean - 0.2% - - - - - - 0.226 1.000 0.455
standard
deviation - 0.5% - - - - - -

Brachysira microcephala
(Grunow) Compère

mean - - 1.4% - - - - - 0.226 1.000 0.455
standard
deviation - - 2.9% - - - - -

Caloneis hyalina Hustedt
mean - - - 1.0% 0.9% - - - 0.200 0.858 0.552

standard
deviation - - - 2.1% 1.8% - - -

Caloneis westii (Smith) Hendey
mean - - - - - - 0.7% - 0.226 1.000 0.455

standard
deviation - - - - - - 1.4% -

Craticula riparia (Hustedt)
Lange-Bertalot

mean - 0.2% - - - - - - 0.226 1.000 0.455
standard
deviation - 0.5% - - - - - -

Craticula submolesta (Hustedt)
Lange-Bertalot

mean - - - 2.6% - - - - 0.226 1.000 0.455
standard
deviation - - - 5.2% - - - -

Cymbopleura naviculiformis
(Auerswald) Krammer

mean - - 0.7% - - - - - 0.465 2.979 0.021
standard
deviation - - 0.9% - - - - -

Discostella stelligera (Cleve &
Grunow) Houk & Klee

mean 3.5% 0.2% 13.7% 1.9% - 1.0% 1.6% 7.2% 0.356 1.897 0.115
standard
deviation 7.0% 0.5% 17.1% 3.7% - 1.9% 3.1% 0.8%

Encyonema minutiforme Krammer
mean - - - - - 2.1% - - 0.226 1.000 0.455

standard
deviation - - - - - 4.2% - -
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Table A1. Cont.

Sampling Station S1 S2 S3 S4 S5 S6 S7 S8 R2 F p-Value

Encyonema
neomesianum Krammer

mean - - 0.5% - - 0.7% - - 0.202 0.867 0.546
standard
deviation - - 1.0% - - 1.4% - -

Encyonema perpusillum
(Cleve-Euler) Mann

mean 0.4% - - - - - - - 0.226 1.000 0.455
standard
deviation 0.7% - - - - - - -

Encyonema silesiacum
(Bleisch) Mann

mean - 0.2% - 0.5% - 0.6% - 2.0% 0.259 1.199 0.341
standard
deviation - 0.5% - 1.0% - 1.1% - 3.2%

Eunotia bilunaris
(Ehrenberg) Schaarschmidt

mean 3.4% - 7.0% - 0.3% 5.8% 4.2% 0.3% 0.330 1.686 0.160
standard
deviation 6.8% - 4.0% - 0.6% 7.2% 6.4% 0.5%

Eunotia botulitropica Wetzel
& Costa

mean 11.3% 2.0% 4.9% 0.5% 11.9% 6.3% 16.8% 0.5% 0.231 1.029 0.437
standard
deviation 16.6% 2.9% 7.3% 1.1% 9.6% 11.4% 23.6% 1,1%

Eunotia georgii
Metzeltin & Lange-Bertalot

mean - - - - 1.4% - - - 0.226 1.000 0.455
standard
deviation - - - - 2.7% - - -

Eunotia intricans Lange-Bertalot
& Metzeltin

mean - - - - - 0.4% - - 0.226 1.000 0.455
standard
deviation - - - - - 0.9% - -

Eunotia kruegeri Lange-Bertalot mean 0.7% 0.8% - 1.6% 2,4% - - - 0.168 0.693 0.677
standard
deviation 1.4% 1.5% - 3.2% 4.8% - - -

Eunotia meridiana Metzeltin &
Lange-Bertalot

mean 3.5% 5.6% 6.8% 2.0% 6.1% 3.5% 0.8% 2.2% 0.135 0.535 0.799
standard
deviation 4.2% 4.9% 9.2% 2.3% 10.4% 4.2% 1.6% 4.3%

Eunotia rhomboidea Hustedt
mean 7.0% 5.6% 2.8% 1.9% 15.8% 3.1% 5.8% 4.8% 0.333 1.716 0.153

standard
deviation 5.2% 4.4% 4.1% 3.7% 14.7% 3.6% 3.9% 6.0%

Eunotia subarcuatoides Alles,
Nörpel & Lange-Bertalot

mean - - - - - 0.7% - - 0.226 1.000 0.455
standard
deviation - - - - - 1.4% - -

Eunotia tropico-arcus Metzeltin &
Lange-Bertalot

mean - - - - - 0.3% 0.2% - 0.201 0.860 0.551
standard
deviation - - - - - 0.6% 0.5% -

Eunotia veneris (Kützing) De Toni mean 19.6% - 1.6% - 1.4% - 0.2% 0.7% 0.239 1.075 0.409
standard
deviation 36.7% - 3.1% - 2.7% - 0.5% 1.4%

Eunotia yberai Frenguelli mean - - - 2.0% - - - - 0.465 2.983 0.021
standard
deviation - - - 2.3% - - - -

Fragilaria gracilis Østrup mean - - 2.4% - 0.3% 0.9% - - 0.362 1.943 0.107
standard
deviation - - 2.9% - 0.6% 1.8% - -

Fragilaria pectinalis
(Müller) Lyngbye

mean - 1.2% 1.3% - - 2.7% 0.8% 1.0% 0.152 0.614 0.739
standard
deviation - 2.4% 1.5% - - 5.4% 1.6% 2.0%

Fragilaria tenera var. tenera
(Smith) Lange-Bertalot

mean - - - - - 2.0% - 1.4% 0.202 0.866 0.547
standard
deviation - - - - - 3.9% - 2.8%

Fragilaria sp. mean - - 0.5% - - 3.1% - - 0.218 0.957 0.483
standard
deviation - - 1.0% - - 6.3% - -

Fragilariforma javanica (Hustedt)
Wetzel, Morales & Ector

mean - - - - 1.0% - - - 0.226 1.000 0.455
standard
deviation - - - - 2.0% - - -

Frustulia acidophilissima
Wydrzycka & Lange-Bertalot

mean 1.4% - - 0.5% 1.0% 1.5% 1.7% 0.5% 0.107 0.410 0.887
standard
deviation 2.7% - - 1.1% 2.0% 2.9% 3.4% 1.1%

Frustulia crassinervia (Brébisson
ex W.Smith) Lange-Bertalot

& Krammer

mean 1.2% - - 1.5% 5.4% - - 0.7% 0.331 1.698 0.157
standard
deviation 0.9% - - 3.1% 7.2% - - 1.4%
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Table A1. Cont.

Sampling Station S1 S2 S3 S4 S5 S6 S7 S8 R2 F p-Value

Frustulia guayanensis Metzeltin &
Lange Bertalot

mean - 0.8% 0.4% - 0.7% 1.7% - - 0.171 0.706 0.667
standard
deviation - 1.5% 0.8% - 1.4% 3.4% - -

Frustulia neomundana
Lange-Bertalot & Rumrich

mean - - - - - - 0.8% - 0.226 1.000 0.455
standard
deviation - - - - - - 1.6% -

Frustulia saxonica Rabenhorst
mean - - - - - 0.5% - 0.5% 0.200 0.858 0.552

standard
deviation - - - - - 1.0% - 1.1%

Frustulia undosa Metzeltin &
Lange-Bertalot

mean 0.2% - - - - - - - 0.226 1.000 0.455
standard
deviation 0.4% - - - - - - -

Frustulia vulgaris (Thwaites)
De Toni

mean - - - - 0.5% 1.0% - - 0.206 0.890 0.530
standard
deviation - - - - 1.0% 2.1% - -

Frustulia weinholdii Hustedt
mean 0.4% - - - - - - 0.9% 0.368 1.993 0.098

standard
deviation 0.7% - - - - - - 1.1%

Geissleria punctifera (Hustedt)
Metzeltin, Lange-Bertalot e

García-Rodríguez

mean - 0.2% - - 0.5% - - 1.1% 0.195 0.830 0.573
standard
deviation - 0.5% - - 1.0% - - 2.3%

Gogorevia exilis(Kütz.)
Kulikovskiy and Kociolek

mean - - - - - - - 1.4% 0.226 1.000 0.455
standard
deviation - - - - - - - 2.8%

Gomphonema angustatum
(Kützing) Rabenhorst

mean - - - - - - - 1.6% 0.226 1.000 0.455
standard
deviation - - - - - - - 3.3%

Gomphonema exilissimum
(Grunow) Lange-Bertalot

& Reichardt

mean - - 0.6% - - 6.3% - 1.5% 0.209 0.904 0.520
standard
deviation - - 1.1% - - 12.5% - 3.1%

Gomphonema guaraniarum
Metzeltin & Lange-Bertalot

mean - - - - - 1.1% - 0.8% 0.201 0.864 0.548
standard
deviation - - - - - 2.1% - 1.5%

Gomphonema
graciledictum Reichardt

mean - - 0.8% - - - - 0.3% 0.207 0.894 0.527
standard
deviation - - 1.6% - - - - 0.7%

Gomphonema lagenula Kützing mean 3.3% 7.0% 3.8% 1.0% - 2.7% 0.8% 4.5% 0.202 0.869 0.544
standard
deviation 4.1% 7.4% 6.7% 2.1% - 4.2% 1.6% 7.3%

Gomphonema naviculoides Smith mean 0.4% - 0.5% - - 1.3% - - 0.195 0.829 0.574
standard
deviation 0.7% - 1.0% - - 2.7% - -

Gomphonema obtusatum
(Kützing) Grunow

mean - - 0.4% 1.1% - - - - 0.209 0.908 0.517
standard
deviation - - 0.8% 2.1% - - - -

Gomphonema parvulum
(Kützing) Kützing

mean 5.9% 13.0% 19.7% 2.8% 9.6% 22.7% 3.1% 10.3% 0.236 1.060 0.418
standard
deviation 5.8% 9.4% 33.2% 3.2% 8.0% 11.7% 6.3% 11.4%

Gomphonema pumilum (Grunow)
Reichardt & Lange-Bertalot

mean - 2.2% 0.7% - - 0.9% 2.7% - 0.208 0.900 0.522
standard
deviation - 2.9% 0.8% - - 1.8% 5.4% -

Halamphora montana
(Krasske) Levkov

mean - 0.7% - 1.0% - 0.3% 3.9% 0.7% 0.185 0.781 0.610
standard
deviation - 1.5% - 2.1% - 0.6% 7.8% 1.4%

Hantzschia amphioxys
(Ehrenberg) Grunow

mean - 0.2% - - - 0.3% - - 0.200 0.859 0.552
standard
deviation - 0.5% - - - 0.6% - -

Humidophila contenta (Grunow)
Lowe et al.

mean 0.4% 4.8% - 1.5% - - 7.4% - 0.309 1.533 0.204
standard
deviation 0.9% 8.9% - 3.1% - - 8.5% -

Humidophila subtropica (Metzeltin,
Lange-Bertalot &

García-Rodríguez) Lowe et al.

mean - 1.5% - - - - - - 0.226 1.000 0.455
standard
deviation - 2.9% - - - - - -
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Table A1. Cont.

Sampling Station S1 S2 S3 S4 S5 S6 S7 S8 R2 F p-Value

Iconella tenuissima (Hustedt)
D.Kapustin & Kulikovskiy

mean - - - 1.6% - 0.5% - 0.3% 0.342 1.779 0.138
standard
deviation - - - 2.0% - 1.0% - 0.7%

Luticola acidoclinata
Lange-Bertalot

mean - 0.2% - - 2.8% 1.9% - 0.9% 0.262 1.214 0.333
standard
deviation - 0.5% - - 3.8% 3.9% - 1.1%

Luticola goeppertiana
(Bleisch) Mann

mean - - 0.4% - 1.5% - - 2.5% 0.194 0.826 0.576
standard
deviation - - 0.8% - 2.9% - - 5.0%

Luticola hustedtii Levkov,
Metzeltin & Pavlov

mean 0.2% - - - - - - - 0.226 1.000 0.455
standard
deviation 0.4% - - - - - - -

Luticola permuticoides Metzeltin e
Lange-Bertalot

mean - 0.7% - - - 1.0% - - 0.202 0.866 0.546
standard
deviation - 1.4% - - - 1.9% - -

Navicula angusta Grunow mean - 0.2% - - 1.1% - - - 0.215 0.938 0.496
standard
deviation - 0.5% - - 2.1% - - -

Navicula cryptocephala Kützing mean 1.5% 7.5% 2.3% - - 0.7% - 4.3% 0.475 3.102 0.018
standard
deviation 1.5% 6.8% 2.8% - - 1.4% - 3.7%

Navicula cryptotenella
Lange-Bertalot

mean 1.3% 0.2% 1.5% - 10.0% - 1.2% - 0.472 3.063 0.019
standard
deviation 2.0% 0.5% 2.2% - 10.4% - 1.5% -

Navicula eichhorniaephila
Manguin ex Kociolek & Reviers

mean - - - 0.5% - - - - 0.226 1.000 0.455
standard
deviation - - - 1.1% - - - -

Navicula leptostriata
E.G.Jørgensen

mean - - 0.4% - - - - - 0.226 1.000 0.455
standard
deviation - - 0.8% - - - - -

Navicula radiosa Kützing mean - 2.0% 0.3% - 0.5% 0.6% - - 0.186 0.783 0.608
standard
deviation - 4.1% 0.7% - 1.0% 1.3% - -

Navicula rostellata Kützing mean - - - - - 1.1% - 0.3% 0.215 0.939 0.496
standard
deviation - - - - - 2.3% - 0.5%

Navicula salinicola Hustedt
mean 0.2% 3.6% - - - - - - 0.431 2.596 0.038

standard
deviation 0.4% 4.4% - - - - - -

Navicula symmetrica Patrick mean - 1.7% - - - - - 1.4% 0.201 0.860 0.551
standard
deviation - 3.4% - - - - - 2.8%

Neidium essequiboanum
Metzeltin & Krammer

mean - - - - - 0.5% - 0.8% 0.203 0.876 0.540
standard
deviation - - - - - 1.0% - 1.7%

Neidium gracile f. aequale Hustedt mean 0.4% - - - - - - - 0.226 1.000 0.455
standard
deviation 0.7% - - - - - - -

Neidium iridis (Ehrenberg) Cleve mean - - - - 0.5% - - - 0.226 1.000 0.455
standard
deviation - - - - 1.0% - - -

Neidium tenuissimum Hustedt
mean 0.7% - - - - - 1.4% - 0.205 0.886 0.533

standard
deviation 1.4% - - - - - 2.7% -

Nitzschia amphibia Grunow mean 0.7% - - - - - - - 0.226 1.000 0.455
standard
deviation 1.4% - - - - - - -

Nitzschia brevissima Grunow
mean - - - 0.5% - - - - 0.226 1.000 0.455

standard
deviation - - - 1.0% - - - -

Nitzschia palea (Kützing) Smith mean 1.6% 4.5% 0.9% 2.1% 1.0% 0.6% - 1.3% 0.268 1.255 0.313
standard
deviation 2.6% 3.7% 1.0% 4.1% 2.0% 1.1% - 2.1%
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Sampling Station S1 S2 S3 S4 S5 S6 S7 S8 R2 F p-Value

Nitzschia perminuta Grunow in
Van Heurck

mean 0.4% - - - - - - - 0.226 1.000 0.455
standard
deviation 0.7% - - - - - - -

Nupela pardinhoensis Bes, Torgan
& Ector in Bes et al.

mean 2.4% 2.6% - 3.9% 2.4% 2.1% 8.3% 2.1% 0.223 0.982 0.467
standard
deviation 2.8% 3.6% - 3.5% 4.8% 4.2% 10.1% 3.1%

Nupela praecipuoides
Tremarin & Ludwig

mean 1.1% - - 2.0% 4.3% 1.9% 5.4% 7.3% 0.284 1.363 0.266
standard
deviation 2.1% - - 2.9% 6.5% 3.9% 4.5% 8.7%

Nupela semifasciata Amaral,
T.Ludwig et Bueno

mean 2.7% 2.7% - 2.4% 1.5% 2.6% 8.3% 2.4% 0.141 0.564 0.777
standard
deviation 5.4% 5.4% - 3.5% 2.9% 3.9% 14.4% 4.9%

Nupela wellneri (Lange-Bertalot)
Lange-Bertalot

mean - - - - - - 1.1% - 0.226 1.000 0.455
standard
deviation - - - - - - 2.3% -

Orthoseira roeseana
(Rabenhorst) Pfitzer

mean - - - - 2.0% - - - 0.226 1.000 0.455
standard
deviation - - - - 4.1% - - -

Pinnularia brauniana
(Grunow) Studnicka

mean - - 0.4% - - - - - 0.226 1.000 0.455
standard
deviation - - 0.8% - - - - -

Pinnularia divergens W.Smith mean 0.4% - 1.4% 0.5% - - - - 0.195 0.832 0.572
standard
deviation 0.7% - 2.9% 1.1% - - - -

Pinnularia graciloides var.
latecapitata Metzeltin & Krammer

mean - - - - - 0.6% - - 0.226 1.000 0.455
standard
deviation - - - - - 1.1% - -

Pinnularia laucensis
Lange-Bertalot

mean 0.4% - - - 0.7% 1.5% - 0.5% 0.172 0.712 0.662
standard
deviation 0.7% - - - 1.4% 3.0% - 1.1%

Pinnularia microstauron var.
rostrata Krammer

mean 0.4% - - - - - - - 0.226 1.000 0.455
standard
deviation 0.7% - - - - - - -

Pinnularia obscura Krasske
mean - - - - 2.0% - - - 0.226 1.000 0.455

standard
deviation - - - - 4.1% - - -

Pinnularia subanglica Krammer mean - 0.8% - - - - - - 0.226 1.000 0.455
standard
deviation - 1.5% - - - - - -

Pinnularia subgibba Krammer mean - - - 0.5% - - - - 0.226 1.000 0.455
standard
deviation - - - 1.0% - - - -

Pinnularia subinterrupta
Krammer & Schroeter

mean - - - - 0.3% - - - 0.226 1.000 0.455
standard
deviation - - - - 0.6% - - -

Pinnularia sp. mean 1.4% 0.2% - - - - - - 0.217 0.951 0.488
standard
deviation 2.7% 0.5% - - - - - -

Pinnularia sp.2 mean 0.2% - - - - - - - 0.226 1.000 0.455
standard
deviation 0.4% - - - - - - -

Pinnularia tabellaria Ehrenberg mean 1.1% - - - - - - - 0.226 1.000 0.455
standard
deviation 2.1% - - - - - - -

Placogeia kriegeri
(K.Krasske) Bukhtiyarova

mean - - - 0.5% - 0.3% - - 0.204 0.880 0.537
standard
deviation - - - 1.0% - 0.6% - -

Placoneis elginensis (W.Gregory)
E.J.Cox

mean - - - - 0.7% - - - 0.226 1.000 0.455
standard
deviation - - - - 1.4% - - -

Placoneis hambergii (Hustedt)
K.Bruder

mean - - - - - - - 1.1% 0.226 1.000 0.455
standard
deviation - - - - - - - 2.2%

Planothidium frequentissimum
(Lange-Bertalot) Lange-Bertalot

mean - - - - 0.7% - - - 0.226 1.000 0.455
standard
deviation - - - - 1.4% - - -
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Sampling Station S1 S2 S3 S4 S5 S6 S7 S8 R2 F p-Value

Psammothidium hustedtii
(Krasske) Mayama

mean - - - - - - 0.2% - 0.226 1.000 0.455
standard
deviation - - - - - - 0.5% -

Rhopalodia gibberula var.
vanheurckii O. Müller

mean - - 0.4% - - - - - 0.226 1.000 0.455
standard
deviation - - 0.8% - - - - -

Sellaphora laevissima (Kützing)
D.G.Mann

mean - - - - 0.5% - - - 0.226 1.000 0.455
standard
deviation - - - - 1.0% - - -

Sellaphora nigri (De Notaris)
Wetzel & Ector

mean 9.1% 9.3% - 18.8% 6.0% 1.0% 14.5% 4.4% 0.324 1.641 0.172
standard
deviation 8.0% 10.7% - 20.9% 5.6% 1.9% 11.5% 5.4%

Sellaphora sassiana (Metzeltin &
Lange-Bertalot)

mean - - 2.4% 1.5% - - - - 0.202 0.870 0.544
standard
deviation - - 4.8% 3.1% - - - -

Sellaphora saugerresii
(Desmazières) Wetzel & Mann

mean - 7.9% 1.2% 10.1% 0.3% - 3.0% 3.7% 0.159 0.649 0.712
standard
deviation - 15.9% 1.8% 20.2% 0.6% - 6.0% 5.1%

Sellaphora sp. mean - - - 1.8% - - - - 0.226 1.000 0.455
standard
deviation - - - 3.6% - - - -

Sellaphora sp.2 mean - 0.1% - - - - - - 0.226 1.000 0.455
standard
deviation - 0.2% - - - - - -

Spicaticribra kingstonii Johansen,
Kociolek & Lowe

mean - - 1.0% - - - - 0.3% 0.616 5.509 0.001
standard
deviation - - 0.7% - - - - 0.5%

Stauroneis gracilis Ehrenberg mean - - - - - 0.6% - - 0.226 1.000 0.455
standard
deviation - - - - - 1.1% - -

Surirella angusta Kützing mean 0.2% - - 1.5% - - - - 0.219 0.961 0.481
standard
deviation 0.4% - - 3.1% - - - -

Surirella roba Leclercq mean - 0.4% - - 0.3% - - - 0.200 0.859 0.551
standard
deviation - 0.7% - - 0.6% - - -

Ulnaria ulna (Nitzsch) Compère mean 0.2% 0.2% 0.1% 1.5% - - - 2.1% 0.247 1.126 0.380
standard
deviation 0.4% 0.5% 0.3% 3.1% - - - 3.1%
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