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Abstract: As an important function of hydraulic engineering, power generation has made a great
contribution to the growth of national economies worldwide. Therefore, it is of practical engineering
significance to analyze and predict hydropower generation and its economic benefits. In order to
predict the amount of hydropower generation in China and calculate the corresponding economic
benefits with high precision, Ensemble Empirical Mode Decomposition (EEMD), Adaptive Moment
Estimation (ADAM) and Gated Recent Unit (GRU) neural networks are integrated. Firstly, the
monitoring data of hydropower generation is decomposed into several signals of different scales
by the EEMD method to eliminate the non-stationary components of the data. Then, the ADAM
optimization algorithm is used to optimize the parameters of the GRU neural network. The relatively
stable component signals obtained from the decomposition are sent to the optimized GRU model
for training and predicting. Finally, the hydropower generation prediction results are obtained by
accumulating the prediction results of all components. This paper selects the time series of China’s
monthly power generation as the analysis object and forecasts the economic benefits by constructing
the fusion prediction model. The RMSE EEMD-ADAM-GRU model is reduced by 16.16%, 20.55%,
12.10%, 17.97% and 7.95%, respectively, of compared with the NARNET, EEMD-LSTM, AR, ARIMA
and VAR models. The results show that the proposed model is more effective for forecasting the time
series of hydropower generation and that it can estimate the economic benefits quantitatively.

Keywords: hydraulic engineering; monitoring data; hydropower generation; forecast model;
intelligent algorithm; deep learning

1. Introduction

At present, hydropower is an important renewable energy resource in the world [1–3].
The degree of hydropower development rate (developed hydropower generation/total
hydropower generation that can be developed) in developed countries such as France
and United States has reached 88% and 67%, respectively. China is rich in hydropower
resources, but the degree of development is only 56%, which shows a certain gap with
developed countries. Therefore, China’s hydropower development will be in a growing
trend in the future. Hydropower generation is at the core of hydropower development.
The accurate prediction of hydropower generation can not only provide data support for
the government’s energy policy adjustment but also quantitatively evaluate the impact of
power generation growth on the national economy [4,5].

Hydropower projects can be divided into daily regulation projects, monthly regulation
projects and annual regulation projects according to their different regulation functions in
the power system. Therefore, the variation trend of hydropower generation has significant
periodic effects. At present, some researchers have carried out continuous research on
the prediction of hydropower generation, using a variety of time series prediction models
to simulate the change law of hydropower generation, such as regression analysis, gray
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prediction, artificial neural network prediction, support vector machine, wavelet analy-
sis prediction, etc. [6–9]. Although the above methods can predict the variation law of
hydropower generation, the prediction accuracy for periodic signals is still not high [10–12].

With the continuous development of new artificial intelligence algorithms in recent
years, a large number of studies have indicated that new artificial intelligence algorithms
can be used to replace traditional prediction methods for periodic time series data [13–16].
Deep learning is a widely used direction in new artificial intelligence algorithms and
has made remarkable achievements in search technology, data mining, machine learning
and other fields [17–20]. The GRU neural network is an optimization model of the Long-
Short Term Memory (LSTM) network and has proved its effectiveness and high accuracy
in the field of water conservancy project prediction. GRU has proved that, compared
with traditional machine learning algorithms, it has significant advantages in time series
prediction, but the prediction accuracy of the single GRU neural network is greatly affected
by the nonlinearity of the signal and the model parameters [21–23].

Aiming at solving the above problems in predicting the time series data with high-
precision, combined prediction models are developed. Through the combination of different
single forecasting models, the advantages of each model are complementary, to improve
the prediction accuracy. Nath [24] combined the Ensemble Empirical Mode Decomposition
(EEMD) with the LSTM model for groundwater radon precursor anomalies identification.
The results indicated that the prediction accuracy of the EEMD-LSTM model was much
higher than that of the LSTM model. EEMD is an improved empirical mode decomposition
method, which can effectively mine different frequency components of signals. The combi-
nation with deep learning can improve the accuracy of deep learning prediction [25–29].
It can be indicated that the fusion method can be used for high-precision prediction of
hydropower generation.

Therefore, aiming at the high-precision prediction of the time series of hydropower
generation, this study proposes an intelligent fusion prediction model of hydropower
generation based on EEMD-ADAM-GRU. The fusion model solves the problem that GRU
model prediction is affected by signal nonlinearity and model parameters. Firstly, the
EEMD decomposition method is used to reduce the nonlinearity of the original signal. Then,
the ADAM optimization algorithm is used to optimize GRU model parameters. Finally,
the optimized GRU model is used to simulate the time series variation of hydropower
generation, and the validity and accuracy of the model are verified by comparing with
multiple time series models. The data selects China’s monthly hydropower generation
from the years 2000 to 2022. Based on the national average electricity price, the power
generation is converted into economic output value, and the impact of power generation
on the national economic growth is calculated.

2. Methods
2.1. EEMD Model

The Ensemble Empirical Mode Decomposition (EEMD) is an improved method based
on Empirical Mode Decomposition (EMD) [30–32]. The essence of the algorithm is to
smooth the signal and decompose the change trend of different scales. EMD can accurately
reflect the distribution law of the signal in time and frequency by deriving a series of
intrinsic mode functions (IMF). At present, it is widely used for signal decomposition and
denoising of nonlinear time series. It can effectively improve the prediction accuracy by
combining it with the prediction model. The specific steps of EMD decomposition are
as follows:

(1) Find out all local maximum values and minimum values contained in the original
hydropower generation time series y(t);

(2) Interpolate the local maximum values and minimum values to obtain the upper
and lower envelopes u(t) and d(t);
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(3) Calculate the average value m(t) of the upper and lower envelope lines:

m(t) =
u(t) + d(t)

2
(1)

(4) Get the new time series h(t) that defines the difference between the original series
y(t) and the average series m(t):

h(t) = y(t)−m(t) (2)

(5) For different data sequences, it needs to be judged whether h(t) is an intrinsic
modulus function (IMF) or not. If the number of extreme points in h(t) is equal to the
number of zero crossing points, and the value of m(t) is zero in any time, then h(t) is an
intrinsic modulus function. Otherwise, take h(t) as the original sequence and repeat the
above steps until the definition of intrinsic modulus function is satisfied.

(6) After calculating the first intrinsic modulus function I1(t), subtract I1(t) from the
original sequence to obtain the residual value sequence r1(t):

r1(t) = y(t)− I1(t) (3)

(7) The extraction process of the first intrinsic modulus function is completed. Then
take r1(t) as a new original sequence and extract the intrinsic modulus function In(t) in turn
according to the above method. When rn(t) becomes a monotone sequence, its intrinsic
modulus function cannot be extracted and the decomposition ends.

(8) The decomposition result of the original sequence is obtained by accumulating the
decomposed components, which express as:

y(t) =
n

∑
i=1

In(t) + rn(t) (4)

The EMD decomposition method performs well in non-stationary data processing,
but there is the problem of mode mixing. It is found that adding noise to the original signal
can solve the problem of mode mixing by taking advantage of the characteristics of the
noise itself; thus, the EEMD method was proposed [33]. The improvement of the EEMD
method is to put white Gaussian noise (selected for its randomness and uniform spectrum
distribution) into the original signal, and then use the EMD method to decompose new
signals. The EEMD method has good time-frequency resolution characteristics and can
suppress mode mixing and solve mode splitting. In addition, the EEMD can accurately
capture the local characteristics of the sequence and highlight the variation law of the
subdivision frequency band. The decomposition process of the EEMD method is as follows.

(1) Add the white noise sequence n(t) to the original hydropower generation time
series y(t), and get a new signal sequence y′(t):

y′(t) = y(t) + n(t) (5)

(2) The new signal sequence y′(t) is decomposed by EMD to obtain the decomposition
results as:

y′(t) =
n

∑
i=1

I′n(t) + r′n(t) (6)

(3) Add different white noises to the original signal, repeat the above steps for N times,
obtain N groups of IMF components and residual components after EMD decomposition,
and calculate the average value of N groups of IMF and residual components which are the
EEMD decomposition results. The relevant expressions are shown in Equations (7) and (8).

IMFi =
1
N

N

∑
j=1

I′ij(t) (7)



Water 2022, 14, 3896 4 of 13

r(t) =
1
N

N

∑
j=1

r′j(t) (8)

where I′ij is the i-th IMF modal component obtained by the j-th decomposition, j = 1, 2 · · ·N.r′j
is the residual component obtained by the j-th decomposition.

2.2. GRU Model

GRU is a kind of Recurrent Neural Network (RNN) [34,35]. RNN is mainly used to
process and predict time series data, and it is effective for solving the relationship between
time series values at different times. Figure 1 shows a typical RNN network unit. The RNN
network consists of three layers: input layer, hidden layer and output layer. There are two
ways to describe the unit: folding structure (left in Figure 1) and expanding structure (right
in Figure 1).
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Figure 1. The typical RNN network unit.

At each time, RNN will give a current output information ht and update the network
state based on the current input information xt and the current model state A. The input of
RNN is not only from the input xt, but also from a loop unit to provide the output of the
hidden layer at the previous time.

The RNN neural network model is a kind of supervision model. The model needs to
be trained with observed data. In the training process, the parameters of each neuron in the
model are solved through the back propagation algorithm. The optimal model obtained by
training retains the characteristic information of the data in the connection weight value,
and the subsequent input of unlabeled data can derive the prediction results.

In recent years, with the continuous development of RNN neural networks, the
structure of RNN neural networks has also undergone many changes, among which the
long-short term memory (LSTM) network model has been widely used. LSTM adds three
“gate structures” on the basis of RNN. It relies on these “gate structures” to selectively add
past information to the current moment.

LSTM solves the problem of RNN gradient disappearance and has been widely used
in the field of time series prediction. Some other variants have also been produced on
the basis of LSTM “gate structure”. GRU is one of the most recognized variants of LSTM.
Compared with LSTM, GRU has fewer training parameters, while it outperforms LSTM on
all tasks except for language modelling [36]. GRU is more effective and has only two gate
units (update gate and reset gate).The internal unit structure of a GRU neural network is
shown in Figure 2.

The calculation formula of GRU neural network is as follows:
zt = σ(W(z)xt + U(z)ht−1)

rt = σ(W(r)xt + U(r)ht−1)
ut = tanh(rtUht−1 + Wxt)

ht = (1− zt)ut + ztht−1

(9)

where zt, rt are update gate and reset gate, xt is input information, ht is the output informa-
tion, ut is the summary of the input xt and the previous hidden layer ht−1, W(z), U(z), W(r),
U(r), U, W are the training parameter matrix, σ and tanh are sigmoid functions and hyper-
bolic tangent functions.
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Figure 2. GRU internal unit structure diagram.

2.3. ADAM Optimization Algorithm

The conventional GRU neural network uses the random gradient descent algorithm to
update the parameters of the neural network. The convergence speed of this model
algorithm is slow in the early stage, and the problem of precision decline easily oc-
curs. In order to improve the prediction accuracy and accelerate the convergence speed
of the model, ADAM optimization algorithms are used to optimize the GRU neural
network model [37,38].

The GRU model generally selects mean square error (MSE) as the loss function which
can well express the error between the predicted value and the actual output value. ADAM
designs independent adaptive learning rates for different parameters by calculating the
first-order and second-order moment estimations of the gradient of loss function which are
shown as follows:

mt = β1 ×mt−1 + (1− β1)× dx (10)

vt = β2 × vt−1 + (1− β2)× (dx)2 (11)

where mt, vt are the first-order and second-order moment estimation at time t,β1, β2 are ex-
ponential decay rate of first-order moment estimation and second-order moment estimation
(generally β1 = 0.9, β2 = 0.999), and dx is the gradient of loss function.

The second step is to correct the loss function, which corrects the first and second
moment estimates by the following equation:

m′t =
mt

1− β1
(12)

v′t =
vt

1− β2
(13)

GRU neural network parameters are updated as follows:

xt+1 = xt −
α×m′t√

v′t + ε
(14)

where xt+1, xt are the parameter vectors at times t + 1 and t, ε is a positive number close to
zero, which can prevent the denominator from being zero, and α is the learning rate.

2.4. Construction of Fusion Prediction Model

Hydropower generation sequence usually presents an unstable state and is affected
by the impact of power system regulation. In order to overcome the problem of the low
prediction accuracy of a single model, this paper uses a fusion model of three methods to
predict hydropower generation. The fusion model is composed of the EEMD, ADAM and
GRU methods. Firstly, the EEMD method is used to split the original signal into signals
of different scales, thus greatly reducing the non-stationary property of the hydropower
signal. Secondly, the ADAM optimization algorithm is used to optimize the model parame-
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ters of the GRU neural network, and the decomposed component signals are sent to the
optimized GRU model for training to obtain their respective prediction results. Finally, the
hydropower prediction results are obtained by accumulating all component results.

For the prediction of hydropower generation in China, the EEMD-ADAM-GRU time
series model is introduced to predict its change law. The EEMD-ADAM-GRU model can
simulate the input-output relationship between power generation and time and quantita-
tively analyze the time-varying law of hydropower generation. The construction of the
prediction model includes four steps: data input, data normalization, data decomposi-
tion, model parameter selection, model prediction, and model accuracy evaluation. The
flow chart of the prediction model is shown in Figure 3. The specific modeling steps are
as follows:
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(1) Data input: Obtain the historical data of China’s hydropower generation, and
divide the data into training set and test set.

(2) Data normalization: Normalization can improve the convergence speed and accu-
racy of the model. Linear function normalization is used to scale the data into the range of
[0, 1]. The normalization formula is as follows:

xnorm =
x− xmin

xmax − xmin
(15)

where x is the original data, xmax and xmin are the maximum and minimum values of the
data, respectively.

(3) Data decomposition: As EEMD is an adaptive decomposition method, it does not
need to set decomposition parameters in advance, so the EEMD method is used to split the
results of the above steps to obtain IMF components of different scales and the residual
component R.

(4) Model parameter selection: The prediction accuracy of the GRU model is related to
three important parameters: the number of hidden layer neurons, the maximum number
of iterations, and the learning rate. Therefore, it is necessary to constantly adjust the
parameters through the ADAM optimization algorithm to obtain the model parameters
corresponding to the highest prediction accuracy.
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(5) Model prediction output: The data obtained in step3 are sent to GRU network for
training, and all the predicted results are summed up to get the final prediction result of
hydropower generation.

(6) Model precision evaluation: The prediction model evaluation index is used to
measure the difference between the original data and the model prediction data. Two
common indexes are introduced: Root Mean Square Error (RMSE) and Standard Deviation
(SD). The specific formula is as follows:

RMSE =

√√√√√ N
∑

i=1
(xi − x̂i)

2

N
(16)

SD =

√√√√√ N
∑

i=1
(xi − x)2

N − 1
(17)

3. Case Study

The number of water conservancy projects and the total amount of water resources
that can be developed in China are ranked first in the world. For the content of this
study, China’s research data is relatively easy to obtain. Therefore, China’s water resources
for power generation are selected as the research sample to quantitatively analyze the
effectiveness and prediction accuracy of the proposed method. According to the data
released by China’s National Bureau of Statistics, China’s power generation in total reached
8112.18 billion kWh in 2021. Of that total, the thermal power generation capacity is
5770.27 billion kWh, accounting for 71.13% of the total power generation capacity in China.
The hydropower generation capacity is 1184.02 billion kWh, which is about 14.6% of the
total national power generation capacity. With the rapid development of hydropower
construction and hydropower technology, China’s hydropower industry has made con-
siderable progress. The hydropower generation capacity is growing gradually, and its
proportion in the total power generation capacity is increasing.

This study selects the national hydropower generation amount from February 2000
to July 2022 (the data is from the National Bureau of Statistics, http://data.stats.gov.cn,
15 September 2022). The hydropower generation data is shown in Figure 4. The data is
divided into training set and test set. The training set selects the data from October 2000 to
May 2020, and the test set selects the data from June 2020 to July 2022. The training set and
test set data are normalized by Equation (2).
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The original hydropower generation data series has high non-stationary and nonlinear
characteristics, so it is difficult to directly predict the data series. Therefore, the EEMD
method is used to process the original data to fully extract the characteristics of the original
data. Figure 5 shows four IMF components and one residual component obtained from
the original data after EEMD decomposition. The data decomposition can convert the
original data into high- and low-frequency components with good stability and strong
regularity. By replacing the original signal with components as the prediction input of GRU
neural network model, the model can fully learn the information in the data during the
training process.
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The selected data sequence is from February 2000 to July 2022. There are 248 groups
of data. The first 80% of the data are selected as the training set, the last 10% as the
validation set, to verify the optimal parameters of the model and estimate the training
effect of the model, and the last 10% as the test set, to evaluate the prediction accuracy and
generalization of the model. Based on the decomposition results of the training set, the
different components of hydropower generation are dynamically simulated by the GRU
neural network. In order to obtain the optimal model parameters and ensure the prediction
accuracy, the ADAM optimizer is selected to optimize the GRU model parameters. The
optimized GRU model parameters are shown in Table 1. Model parameters are important
factors affecting the prediction accuracy of each time series model. Using the ADAM
optimization algorithm, the model parameter values of each comparison model are obtained
and shown in Table 2.

Table 1. GRU model parameters.

Parameter Value Parameter Value

Max epochs 250 Learn rate schedule ‘piecewise’
Gradient threshold 1 Learn rate drop period 125

Initial learn rate 0.0005 Learn rate drop factor 0.2
Number of hidden layers 1 Number of neurons 128

Active function Sigmoid Dropout 0.2

Table 2. The parameter value of comparison models.

Comparison Model Parameter Title Value

NARNET

Number of neurons 30

Feedback mode ‘Open’

Train function ‘trainlm’

LSTM

Max epochs 250

Gradient threshold 1

Initial learn rate 0.0005

Learn rate schedule ‘piecewise’

Learn rate drop period 125

Learn rate drop factor 0.2

AR

Compound AR polynomial degree 15

Compound MA polynomial degree 0

Degree of nonseasonal integration 0

Degree of seasonal differencing polynomial 0

ARIMA

Compound AR polynomial degree 4

Compound MA polynomial degree 8

Degree of nonseasonal integration 1

Degree of seasonal differencing polynomial 0

VAR Multivariate autoregressive polynomial order 10

In order to verify the effectiveness of the EEMD-ADAM-GRU prediction model, the
commonly used time series prediction models Nonlinear Autoregressive Neural Network
(NARNET), Autoregression (AR), Autoregressive Integrated Moving Average (ARIMA),
Vector Autoregression (VAR) are selected as comparison models. Also, EEMD-LSTM model
is selected as comparison model to verify the prediction accuracy of EEMD combined
with different depth learning algorithms. The Taylor plot of different models are shown in
Figure 6, and the prediction evaluation indexes values of test set are shown in Table 3.
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Table 3. Comparison of prediction performance in test set.

Model RSME/Billion
kWh Decline Ratio SD/billion kWh Decline Ratio

NARNET 179.34 16.16% 324.32 15.69%
EEMD-LSTM 189.24 20.55% 338.32 19.18%

EEMD-ADAM-
GRU 150.35 / 273.42 /

AR 171.04 12.10% 310.43 11.92%
ARIMA 183.28 17.97% 323.56 15.50%

VAR 163.33 7.95% 298.21 8.31%

It can be seen from Figure 6 and Table 3 that the RMSE and SD of EEMD-ADAM-GRU
model are the smallest; the RMSE of EEMD-ADAM-GRU model is reduced by 16.16%,
20.55%, 12.10%, 17.97% and 7.95%, respectively, compared with the NARNET, EEMD-
LSTM, AR, ARIMA and VAR models; and the SD of EEMD-ADAM-GRU model is reduced
by 15.69%, 19.18%, 11.92%, 15.50% and 7.95%, which shows that the EEMD-ADAM-GRU
model has the highest prediction accuracy for the time series of hydropower generation.
The GRU model is the representative of RNN and can predict the time series with high
accuracy, especially for the time series with periodic non-stationary fluctuations such as
hydropower generation. Therefore, the proposed prediction model can provide reliable
data support for the analysis of the hydropower industry.

In order to study the change law of economic benefits brought by hydropower genera-
tion, the definition of economic benefits of hydropower generation needs to be clarified. The
economic benefits brought by hydropower generation mainly include two kinds: 1© Direct
economic benefits: the economic benefits obtained from the sale of power generation are the
most basic benefits of hydropower and the key to evaluating the project benefits. 2© Indirect
economic benefits: economic benefits from irrigation, water supply, shipping, etc. As the
direct economic benefit is the key to evaluating the project benefit and is easy to calculate
directly, this paper selects it as the object for evaluating the economic benefit of hydropower
generation. The total benefits can be obtained by multiplying the generating capacity by
the unit price. Since the hydropower unit price is differentiated in different provinces,
and there is no direct statistical data on the sales price of different hydropower stations, it
takes 0.36 yuan/kWh, which is the average unit price in China as hydropower unit price.
Therefore, based on the EEMD-ADAM-GRU prediction model, the direct economic benefits
of hydropower generation in the year from August 2022 to August 2023 are predicted. The
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results are shown in Figure 7, which lists the output results of economic benefits from June
2020 to August 2023.

Water 2022, 14, x FOR PEER REVIEW 12 of 14 

 

 

ing the generating capacity by the unit price. Since the hydropower unit price is differen-

tiated in different provinces, and there is no direct statistical data on the sales price of 

different hydropower stations, it takes 0.36 yuan/kWh, which is the average unit price in 

China as hydropower unit price. Therefore, based on the EEMD-ADAM-GRU prediction 

model, the direct economic benefits of hydropower generation in the year from August 

2022 to August 2023 are predicted. The results are shown in Figure 7, which lists the out-

put results of economic benefits from June 2020 to August 2023. 

 

Figure 7. Predicted values of economic benefits of hydropower generation in China. 

It can be seen from Figure 7 that the economic benefit curve of hydropower genera-

tion has obvious periodicity, which is mainly due to the seasonal effect of hydropower 

generation. In summer, there is more rainfall and large hydropower generation capacity, 

resulting in significant economic benefits. In the dry season in winter, the hydropower 

generation is small and the economic benefit is low. With the continuous increase of the 

total installed capacity of hydropower stations in China, the overall hydropower genera-

tion capacity shows a trend of periodic and gradual increase. The minimum and maxi-

mum value of annual power generation benefits are increasing year by year, and the 

monthly economic benefits of hydropower generation fluctuate between 20 billion yuan 

and 60 billion yuan. The economic benefits of hydropower generation in China are pre-

dicted to reach 40.458 billion yuan in August 2023, and the cumulative economic benefits 

for the year from August 2022 to August 2023 will reach 482.525 billion yuan. It indicates 

that hydropower generation has brought significant economic benefits in China. 

4. Conclusions 

As an important function of water conservancy projects, quantitative analysis of the 

future trend of hydropower generation and evaluation of its economic benefits have im-

portant engineering significance. Aiming at this practical problem, this paper proposes a 

high-precision prediction model of hydropower generation based on an EEMD-ADAM-

GRU neural network. This fusion model makes full use of the GRU neural network’s ad-

vantages in predicting periodic time series and excavates in depth the different compo-

nents of hydropower generation by the EEMD decomposition method to improve the pre-

diction accuracy of the GRU model. Through case analysis, the prediction performance of 

the proposed model is compared with that of several common time series models, and the 

following conclusions are derived: 

(1) As an improved RNN neural network, the GRU model can conduct deep mining on 

the change rule of time series and derive high-precision prediction accuracy on the 

time series of hydropower generation. EEMD signal decomposition and ADAM 

model parameter optimization can further improve the prediction accuracy of the 

GRU model. Compared with the conventional time series prediction model, the av-

erage prediction error is reduced by more than 10%. 

Figure 7. Predicted values of economic benefits of hydropower generation in China.

It can be seen from Figure 7 that the economic benefit curve of hydropower gener-
ation has obvious periodicity, which is mainly due to the seasonal effect of hydropower
generation. In summer, there is more rainfall and large hydropower generation capacity,
resulting in significant economic benefits. In the dry season in winter, the hydropower
generation is small and the economic benefit is low. With the continuous increase of the
total installed capacity of hydropower stations in China, the overall hydropower gen-
eration capacity shows a trend of periodic and gradual increase. The minimum and
maximum value of annual power generation benefits are increasing year by year, and the
monthly economic benefits of hydropower generation fluctuate between 20 billion yuan
and 60 billion yuan. The economic benefits of hydropower generation in China are pre-
dicted to reach 40.458 billion yuan in August 2023, and the cumulative economic benefits
for the year from August 2022 to August 2023 will reach 482.525 billion yuan. It indicates
that hydropower generation has brought significant economic benefits in China.

4. Conclusions

As an important function of water conservancy projects, quantitative analysis of the
future trend of hydropower generation and evaluation of its economic benefits have im-
portant engineering significance. Aiming at this practical problem, this paper proposes a
high-precision prediction model of hydropower generation based on an EEMD-ADAM-
GRU neural network. This fusion model makes full use of the GRU neural network’s
advantages in predicting periodic time series and excavates in depth the different com-
ponents of hydropower generation by the EEMD decomposition method to improve the
prediction accuracy of the GRU model. Through case analysis, the prediction performance
of the proposed model is compared with that of several common time series models, and
the following conclusions are derived:

(1) As an improved RNN neural network, the GRU model can conduct deep mining
on the change rule of time series and derive high-precision prediction accuracy on
the time series of hydropower generation. EEMD signal decomposition and ADAM
model parameter optimization can further improve the prediction accuracy of the
GRU model. Compared with the conventional time series prediction model, the
average prediction error is reduced by more than 10%.

(2) The economic benefits of hydropower generation measure only the direct economic
benefits. In addition, the hydropower price is replaced by the national average hy-
dropower unit price, which does not reflect the fluctuation of hydropower prices with
months. It should study the pricing mechanism and fluctuation law of hydropower
prices in all provinces of the country in the future, so as to accurately measure the
economic benefits of hydropower generation.
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(3) The proposed prediction model is based on the concept of the “signal decomposi-
tion +parameter optimization+ prediction model”. There are many types of signal
decomposition methods and prediction models in existing research results. This paper
only selects representative methods to combine and analyze. In future research, it
is necessary to expand the model selection and analyze the prediction accuracy of
different model combinations to propose a more universal prediction method.

Author Contributions: Conceptualization, J.W. and Z.G.; methodology, J.W. and Y.M.; software,
J.W.; validation, J.W. and Z.G.; formal analysis, J.W.; investigation, J.W.; resources, J.W. and Y.M;
data curation, J.W.; writing—original draft preparation, J.W.; writing—review and editing, J.W.;
visualization, J.W.; supervision, J.W.; project administration, J.W. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data openly available in a public repository.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lu, X.; Li, C.; Liu, D.; Zhu, Z.; Tan, X. Influence of water diversion system topologies and operation scenarios on the damping

characteristics of hydropower units under ultra-low frequency oscillations. Energy 2022, 239, 122679. [CrossRef]
2. Zhang, S.; Chen, S.-J.; Ma, G.-W.; Huang, W.-B.; Li, B. Generation hybrid forecasting for frequency-modulation hydropower

station based on improved EEMD and ANN adaptive switching. Electr. Eng. 2022, 104, 2949–2966. [CrossRef]
3. Ding, W.; Yu, B.; Peng, Y.; Han, G. Evaluating the Marginal Utility of Two-Stage Hydropower Scheduling. J. Water Resour. Plan.

Manag. 2022, 148. [CrossRef]
4. Li, C.; Lin, T.; Xu, Z. Impact of Hydropower on Air Pollution and Economic Growth in China. Energies 2021, 14, 2812. [CrossRef]
5. Bello, M.O.; Solarin, S.A.; Yen, Y.Y. Modelling the economic role of hydropower: Evidence from bootstrap autoregressive

distributed lag approach. Renew. Energy 2021, 168, 76–84. [CrossRef]
6. Zhong, W.; Guo, J.; Chen, L.; Zhou, J.; Zhang, J.; Wang, D. Future hydropower generation prediction of large-scale reservoirs in

the upper Yangtze River Basin under climate change. J. Hydrol. 2020, 588, 125013. [CrossRef]
7. Dehghani, M.; Riahi-Madvar, H.; Hooshyaripor, F.; Mosavi, A.; Shamshirband, S.; Zavadskas, E.K.; Chau, K.-w. Prediction

of Hydropower Generation Using Grey Wolf Optimization Adaptive Neuro-Fuzzy Inference System. Energies 2019, 12, 289.
[CrossRef]

8. Huangpeng, Q.; Huang, W.; Gholinia, F. Forecast of the hydropower generation under influence of climate change based on RCPs
and Developed Crow Search Optimization Algorithm. Energy Rep. 2021, 7, 385–397. [CrossRef]

9. Yang, S.; Wei, H.; Zhang, L.; Qin, S. Daily Power Generation Forecasting Method for a Group of Small Hydropower Stations
Considering the Spatial and Temporal Distribution of Precipitation—South China Case Study. Energies 2021, 14, 4387. [CrossRef]

10. Lin, B.; Shi, L. New understanding of power generation structure transformation, based on a machine learning predictive model.
Sustain. Energy Technol. Assess. 2022, 51, 101962. [CrossRef]

11. Ikram, R.M.A.; Dai, H.; Ewees, A.A.; Shiri, J.; Kisi, O.; Zounemat-Kermani, M. Application of improved version of multi verse
optimizer algorithm for modeling solar radiation. Energy Rep. 2022, 8, 12063–12080. [CrossRef]

12. Zhang, D.; Wang, D.; Peng, Q.; Lin, J.; Jin, T.; Yang, T.; Sorooshian, S.; Liu, Y. Prediction of the outflow temperature of large-scale
hydropower using theory-guided machine learning surrogate models of a high-fidelity hydrodynamics model. J. Hydrol. 2022,
606, 127427. [CrossRef]

13. Yu, H.; Dai, Q. DWE-IL: A new incremental learning algorithm for non-stationary time series prediction via dynamically
weighting ensemble learning. Appl. Intell. 2021, 52, 174–194. [CrossRef]

14. Mir, A.A.; Celebi, F.V.; Rafique, M.; Faruque, M.R.I.; Khandaker, M.U.; Kearfott, K.J.; Ahmad, P. Anomaly Classification for
Earthquake Prediction in Radon Time Series Data Using Stacking and Automatic Anomaly Indication Function. Pure Appl.
Geophys. 2021, 178, 1593–1607. [CrossRef]

15. Yang, H.; Roshan, T.; Zhu, Y.; Kumar, V.; Melton, G.B.; Steinbach, M.; Simon, G. Strategies for building robust prediction models
using data unavailable at prediction time. J. Am. Med. Inform. Assoc. 2021, 29, 72–79. [CrossRef] [PubMed]

16. Zhang, X.; Zhang, Q.; Zhang, G.; Nie, Z.; Gui, Z. A Hybrid Model for Annual Runoff Time Series Forecasting Using Elman Neural
Network with Ensemble Empirical Mode Decomposition. Water 2018, 10, 416. [CrossRef]

17. Li, L.; Yang, Y.; Yuan, Z.; Chen, Z. A spatial-temporal approach for traffic status analysis and prediction based on Bi-LSTM
structure. Mod. Phys. Lett. B 2021, 35, 2150481. [CrossRef]

http://doi.org/10.1016/j.energy.2021.122679
http://doi.org/10.1007/s00202-022-01526-3
http://doi.org/10.1061/(ASCE)WR.1943-5452.0001556
http://doi.org/10.3390/en14102812
http://doi.org/10.1016/j.renene.2020.12.031
http://doi.org/10.1016/j.jhydrol.2020.125013
http://doi.org/10.3390/en12020289
http://doi.org/10.1016/j.egyr.2021.01.006
http://doi.org/10.3390/en14154387
http://doi.org/10.1016/j.seta.2022.101962
http://doi.org/10.1016/j.egyr.2022.09.015
http://doi.org/10.1016/j.jhydrol.2022.127427
http://doi.org/10.1007/s10489-021-02385-4
http://doi.org/10.1007/s00024-021-02736-9
http://doi.org/10.1093/jamia/ocab229
http://www.ncbi.nlm.nih.gov/pubmed/34963141
http://doi.org/10.3390/w10040416
http://doi.org/10.1142/S0217984921504819


Water 2022, 14, 3896 13 of 13

18. Ma, C.; Dai, G.; Zhou, J. Short-Term Traffic Flow Prediction for Urban Road Sections Based on Time Series Analysis and
LSTM_BILSTM Method. IEEE Trans. Intell. Transp. Syst. 2021, 23, 5615–5624. [CrossRef]

19. Wen, S.C.; Yang, C.H. Time Series Analysis and Prediction of Nonlinear Systems with Ensemble Learning Framework Applied to
Deep Learning Neural Networks. Inf. Sci. 2021, 572, 167–181. [CrossRef]

20. Li, Z.; Kang, L.; Zhou, L.; Zhu, M. Deep Learning Framework with Time Series Analysis Methods for Runoff Prediction. Water
2021, 13, 575. [CrossRef]

21. Rahman, A.; Srikumar, V.; Smith, A.D. Predicting Electricity Consumption for Commercial and Residential Buildings Using Deep
Recurrent Neural Networks. Appl. Energy 2018, 212, 372–385. [CrossRef]

22. Kang Ke Sun, H.B.; Zhang, C.; Brown, C. Short-term Electrical Load Forecasting Method Based on Stacked Auto-encoding and
GRU Neural Network. Evol. Intell. 2019, 12, 385–394.

23. Kumar, J.; Goomer, R.; Singh, A.K. Long Short Term Memory Recurrent Neural Network Based Workload Forecasting Model for
Cloud Datacenters. Procedia Comput. Sci. 2018, 125, 676–682. [CrossRef]

24. Nath, S.; Chetia, B.; Kalita, S. Ionospheric TEC Prediction using Hybrid Method based on Ensemble Empirical Mode Decom-
position (EEMD) and Long Short-Term Memory (LSTM) Deep Learning Model over India. Adv. Space Res. 2022; in press.
[CrossRef]

25. Chen, Y.; Dong, Z.; Wang, Y.; Su, J.; Han, Z.; Zhou, D.; Zhang, K.; Zhao, Y.; Bao, Y. Short-term wind speed predicting framework
based on EEMD-GA-LSTM method under large scaled wind history. Energy Convers. Manag. 2021, 227, 113559. [CrossRef]

26. Yan, Y.; Wang, X.; Ren, F.; Shao, Z.; Tian, C. Wind speed prediction using a hybrid model of EEMD and LSTM considering
seasonal features. Energy Rep. 2022, 8, 8965–8980. [CrossRef]

27. Nguyen TH, T.; Phan, Q.B. Hourly day ahead wind speed forecasting based on a hybrid model of EEMD, CNN-Bi-LSTM
embedded with GA optimization. Energy Rep. 2022, 8, 53–60. [CrossRef]

28. Samani, S.; Vadiati, M.; Azizi, F.; Zamani, E.; Kisi, O. Groundwater Level Simulation Using Soft Computing Methods with
Emphasis on Major Meteorological Components. Water Resour. Manag. 2022, 36, 3627–3647. [CrossRef]

29. Vadiati, M.; Rajabi Yami, Z.; Eskandari, E.; Nakhaei, M.; Kisi, O. Application of artificial intelligence models for prediction of
groundwater level fluctuations: Case study (Tehran-Karaj alluvial aquifer). Environ. Monit. Assess. 2020, 194, 619. [CrossRef]

30. Lin, C.S.; Chiu, S.; Lin, T.Y. Empirical mode decomposition-based least squares support vector regression for foreign exchange
rate forecasting. Econ. Model. 2012, 29, 2583–2590. [CrossRef]

31. Ren, Y.; Suganthan, P.; Srikanth, N. A comparative study of empirical mode decomposition-based short-term wind speed
forecasting methods. IEEE Trans. Sustain. Energy 2017, 6, 236–244. [CrossRef]

32. Wu, Z.; Huang, N.E. Ensemble Empirical Mode Decomposition: A Noise-assisted Data Analysis Method. Adv. Adapt. Data Anal.
2009, 1, 32–41.

33. Song, Z.; Niu, D.; Qiu, J.; Xiao, X.; Ma, T. Improved Short-term Load Forecasting Based on EEMD, Guassian Disturbance Firefly
Algorithm and Support Vector Machine. J. Intell. Fuzzy Syst. 2016, 31, 1709–1719. [CrossRef]

34. He, W.; Xiong, T.; Wang, H.; He, J.; Ren, X.; Yan, Y.; Tan, L. Radar Echo Spatiotemporal Sequence Prediction Using an Improved
ConvGRU Deep Learning Model. Atmosphere 2022, 13, 88. [CrossRef]

35. Ji, S.P.; Meng, Y.L.; Yan, L. GRU-corr Neural Network Optimized by Improved PSO Algorithm for Time Series Prediction. Int. J.
Artif. Intell. Tools 2020, 29, 2040010. [CrossRef]

36. Jozefowicz, R.; Zaremba, W.; Sutskever, I. An Empirical Exploration of Recurrent Network Architectures. 2015. Available online:
https://proceedings.mlr.press/v37/jozefowicz15.pdf (accessed on 30 October 2021).

37. Shao, H.; Wang, L.T.; Ji, Y.F. Link Prediction Algorithms for Social Networks Based on Machine Learning and HARP. IEEE Access
2019, 7, 122722–122729. [CrossRef]

38. Shankar, M.G.; Babu, C.G.; Rajaguru, H. Classification of cardiac diseases from ECG signals through bio inspired classifiers with
Adam and R-Adam approaches for hyperparameters updation. Measurement 2022, 1, 103–113. [CrossRef]

http://doi.org/10.1109/TITS.2021.3055258
http://doi.org/10.1016/j.ins.2021.04.094
http://doi.org/10.3390/w13040575
http://doi.org/10.1016/j.apenergy.2017.12.051
http://doi.org/10.1016/j.procs.2017.12.087
http://doi.org/10.1016/j.asr.2022.10.067
http://doi.org/10.1016/j.enconman.2020.113559
http://doi.org/10.1016/j.egyr.2022.07.007
http://doi.org/10.1016/j.egyr.2022.05.110
http://doi.org/10.1007/s11269-022-03217-x
http://doi.org/10.1007/s10661-022-10277-4
http://doi.org/10.1016/j.econmod.2012.07.018
http://doi.org/10.1109/TSTE.2014.2365580
http://doi.org/10.3233/JIFS-152081
http://doi.org/10.3390/atmos13010088
http://doi.org/10.1142/S0218213020400102
https://proceedings.mlr.press/v37/jozefowicz15.pdf
http://doi.org/10.1109/ACCESS.2019.2938202
http://doi.org/10.1016/j.measurement.2022.111048

	Introduction 
	Methods 
	EEMD Model 
	GRU Model 
	ADAM Optimization Algorithm 
	Construction of Fusion Prediction Model 

	Case Study 
	Conclusions 
	References

