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Abstract: Converting floodwater into power without increasing flood risk is critical for energy-

stressed regions. Over the past decades, numerous methods have been proposed to solve this prob-

lem. However, few studies have investigated the theoretical explanation of the trade-offs between 

power generation and flood risk. This study establishes an analytical framework to derive optimal 

hedging rules (OHR) and explains the economic insights into flood risk reduction and power gen-

eration improvement. A two-stage model based on the concept of dynamic control of carryover 

storage (DCCS) was developed as part of the framework, considering forecast uncertainty and risk 

tolerance. The results illustrated that hedging and trade-offs between power generation and flood 

risk during DCCS only occurs when the forecasted inflow and forecast uncertainty are within cer-

tain ranges, beyond which there is no hedging and trade-offs analysis; either power generation or 

flood risk becomes the dominant objective. The OHR was divided into three cases under different 

levels of forecast uncertainty and risk tolerance. Compared to forecast uncertainty, downstream risk 

tolerance plays a more important role in determining which case of the OHR is adopted in real-

world operations. The analysis revealed what and how intense trade-offs are between power gen-

eration and flood risk under different scenarios of forecasted inflow, forecast uncertainty, and risk 

tolerance. The framework serves as a guideline for less abundant water resources or energy-stressed 

areas of operational policy. Nierji Reservoir (located in northeast China) was taken as a case study 

to illustrate the analysis, and the application results showed that OHR increases the average annual 

power generation by 4.09% without extra flood risk compared to current operation rules. 

Keywords: optimal hedging rules; two-stage model; trade-offs; flood risk; power generation 

 

1. Introduction 

The energy crisis and climate change catalyze the demand for renewable energy 

sources [1]. Optimal hydropower reservoir operation is highly valued because it effec-

tively promotes renewable power generation, which has great environmental advantages 

for reducing the emissions of fossil fuel combustion [2–4]. Reservoir operation is a deci-

sion-making process that seeks the optimal storage volume for multiple objectives [5–7]. 

For the operation during flood season, flood control is the prime concern and requires a 

reduction in storage to accommodate the incoming floods and minimize downstream 

damage caused by excess flow, which conflicts with power generation [8,9]. To solve this 

problem, significant effort has been expended to elevate storage volume to increase power 

generation [10–13], in which the dynamic control of carryover storage (DCCS) is proven 

an effective method [14–16]. For instance, Jiang et al. [17] proposed a credibility-based 

fuzzy chance-constrained model, and fuzzy simulation technology was used to optimize 

the dynamic control bound. Liu et al. [18] focused on the multi-objective optimal 
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scheduling of the dynamic control of the flood-limited water level for cascade reservoirs 

based on a multi-objective evolutionary algorithm to obtain the trade-offs between flood 

control and power generation. 

It is clear from the studies mentioned above that DCCS research is primarily focused 

on two concepts: first, taking forecast uncertainty into account and hence optimizing the 

upper storage bound of DCCS; second, utilizing normal storage as the upper limit of 

DCCS but using the optimization algorithm and identifying the optimal carryover storage 

to balance power generation and flood risk. However, these studies contribute to the tech-

nology and applications of DCCS and lack systematic physical and economic insights into 

the relationship between power generation and flood risk. 

A critical issue for trade-offs between power generation and flood risk is quantifying 

the effects of inflow forecast uncertainty [19,20]. Although the forecasting technology has 

recently been significantly improved, the forecast uncertainty still cannot be avoided and 

should be considered in reservoir operations [21,22]. The forecast uncertainty might cause 

the release to exceed the downstream threshold and the probability of that event resulting 

in flood risk [23]. Risk tolerance is set to control the flood risk within a certain level, which 

is a chance constraint [24,25]. The reduction of a chance constraint to a deterministic equiv-

alent yield is widely used in multipurpose reservoir operations [26]. This paper introduces 

the minimum flood-safety margin constraint proposed by Ding et al. [27] to consider the 

effects of forecast uncertainty and to meet downstream flood protection standards. 

Another problem for the trade-off analysis is the explanation of what and how two 

objectives conflict under different scenarios of inflow. Deriving hedging rules based on 

the marginal utility principle is an effective method to describe the relationship between 

conflicting objectives; however, it relies on the analysis of the marginal utilities of the ob-

jectives. Draper and Lund [28] proved that the two-stage water-supply operation obeys 

the marginal utility principle, which elaborates the marginal utilities of storage and re-

lease, and derived the optimal hedging rules to obtain optimal carryover storage and to 

reduce future water-shortage risks. Following this principle, You and Cai [29,30] formu-

lated future inflow uncertainty with Taylor expansions to inspect the water-supply prin-

ciple. Zhao et al. [6] proved two-stage flood operations that considered forecast uncer-

tainty following the marginal utility principle under expected floods. Ding et al. [27,31] 

came up with the marginal utility principle of a flood control-water conservation opera-

tion by evaluating the utility functions of carryover storage and future safety margin. For 

power generation and flood risk, evaluating the marginal utility of power generation is 

needed to explore whether the marginal utility principle can be applied. Zhao et al. [32] 

used the water balance, expressed the release by carrying over storage, and showed the 

marginal utility of power generation (MUPG) increasing with carryover storage during 

the dry season. To explore the MUPG over the whole year of operation, Tan et al. [33] 

proposed a successive iteration method to use the approximate MUPG instead of analyt-

ical functions. However, they did not evaluate the MUPG during the flood season under 

different scenarios of forecasted inflow, which results in different relationships with flood 

risk. 

This study addresses these two problems in the complicated optimization problem 

that maximizes power generation and minimizes flood risk. Deriving the relationships 

between forecasted inflow and decision operations offers a better understanding of the 

optimal solutions. This research focused on three aspects: (1) a two-stage model based on 

the concept of DCCS was developed to mathematically express the actual needs of power 

generation and flood risk during the flood season; (2) the economic characteristics of 

power generation, forecasted inflow, and forecast uncertainty were considered compre-

hensively to applicable conditions for DCCS; (3) the OHR under different levels of forecast 

uncertainty and risk tolerance was derived, which revealed the trade-off between power 

generation and flood risk under different scenarios of forecasted inflow. This research 

provides an analytical framework to reveal trade-offs between power generation and 
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flood risk under different forecasted inflow, forecast uncertainties, and risk tolerance, 

which serves as a guideline for reservoir operational policy. 

This paper is organized as follows: the study area is written in Section 2; the concept 

of DCCS, model formulation, and trade-off analysis are in Section 3; then, the case study 

is used to prove the theoretical derivation in the next section, and the conclusion is sum-

marized in the last section. 

2. Study Area 

The Nierji basin in Northeast China (123° E~127.33° E, 48.42° N~51.68° N) is located 

on the Nen River across Heilongjiang Province and the Inner Mongolia Autonomous Re-

gion, as shown in Figure 1. 

 

Figure 1. The location of the Nierji basin in China. 

Nierji Reservoir is a large-scale, comprehensive water conservancy project with 

multi-year regulation performance that was designed to avoid flood damage in Qiqihaer 

City, water supply, power generation, shipping, and ecology. The normal water level of 

Nierji Reservoir is 216 m, the normal storage volume is 6.456 × 109 m3, the flood-limited 

water level is 213.37 m, the flood-limited storage volume is 5.220 × 108 m3, the total in-

stalled capacity is 250 MW, the total overflow capacity of the turbine unit is 1270 m3/s, and 

the minimum downstream water demand (including industry, agriculture, urban life, 

ecology, etc.) is 200 m3/s. 

Nierji Basin has a cold-temperate continental monsoon climate, with windy and 

sandy conditions in the spring, warm and rainy conditions in the summer, cool conditions 

in the autumn, and cold and dry conditions in the winter. According to the statistics of the 

Nierji meteorological station, the average annual precipitation is 475 mm, decreasing from 

north to south, and the distribution is uneven within the year. The annual precipitation is 

mainly concentrated in the flood season; the total rainfall from June to September is 392.9 

mm, accounting for about 70% of the total annual precipitation; winter precipitation is 

low, accounting for about 5% of the annual runoff; spring runoff is slightly increased, ac-

counting for about 15% of the annual runoff; and autumn runoff accounts for about 10%. 

Currently, the operation rules were designed based on two static storage volumes: 

(1) flood-limited storage volume (5.220 × 109 m3) during the main stage of flood season 

(from 21 June to 25 August) and (2) normal storage volume (6.456 × 109 m3) during the 

early stage of flood season (from 1 June to 20 June) and the late stage of flood season (from 
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26 August to 30 September). Although the operation is easy, unnecessary spills during the 

flood season and energy reduction in both flood and non-flood seasons may be caused. 

Consequently, it is necessary to increase the storage volume of the main flood season for 

power generation improvement without adding extra flood risk. 

3. Methods 

3.1. The Dynamic Control of Carryover Storage (DCCS) 

With the improvement of hydrological and meteorological forecasting techniques, 

DCCS is operated by the related administration, implying that the storage volume can 

fluctuate within dynamic control bounds based on forecast information [14,16]. During 

DCCS, three operation modules correspond to the three stages of the flooding process, 

respectively [18]. The rising flood stage needs to pre-release floodwater stored above the 

lower bound of dynamic control. Regular flood control operations at the major flood stage 

are carried out in accordance with existing operating standards. Refilling at the flood re-

cession stage can improve the floodwater storage benefits, which was the motivation of 

this study. 

3.1.1. Two-Stage Model 

In practice, which module of DCCS is triggered depends heavily on the forecasted 

information. If there is not a large, forecasted inflow in the future, the refill operation is 

active and power generation is improved by utilizing the receding floodwater to increase 

the storage volume. If there is a large, forecasted inflow in the future, the pre-release mod-

ule is activated to lower the storage volume to the flood-limited storage volume (FLSV), 

and then regular flood control operation is adopted to protect downstream safety from a 

flood event. Therefore, DCCS should consider the forecasted inflow in both the current 

and future stages. For the refill operation, the increased storage volume using floodwater 

should be reasonably determined. Though power generation grows when more floodwa-

ter is held, it may lead to spilling and increasing flood risk. On the contrary, if less flood-

water is stored, the flood risk is relatively small, but power generation does not increase 

significantly. 

To sum up, the DCCS procedure balances power generation and flood risk by con-

sidering the forecasted inflow of two stages (present and future stages) and determining 

the storage capacity reasonably. The decision should be revised as the forecasted inflow 

updates in the following operation period. As a result, the DCCS procedure follows a two-

stage dynamic rolling-horizon operation scheme as shown in Figure 2. At time t, a rolling 

horizon includes T periods and is divided into two stages: Stage 1 (present stage) called 

the decision-making stage (including one period Δt), and Stage 2 (future stage) known as 

the residual stage of the flood forecast horizon (including (T−1) ·Δt periods), where T is 

the forecast horizon. The initial and final storage volumes (S0 and S2) and the inflow fore-

casting in two stages (i.e., I1 and I2) are known in DCCS, while the release volume in two 

stages (i.e., R1 and R2) and the carryover storage (S1) between the two stages are decision 

variables [34,35]. Only the release in Stage 1 (R1) and carryover storage (S1) is determined, 

and the window rolls over to the next period until the final scheduling period 

[28,29,36,37]. 
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Figure 2. Illustration of the dynamic rolling-horizon operation scheme. 

Due to the short forecast horizon and the large storage capacity, evaporation and 

leakage can be ignored [38], and the water-balance equations in the two stages are as fol-

lows: 

0 1 1 0 1 1 1
1S I r t S I R S      (1) 

1 2 2 1 22 2
=( 1)TS I r t S I R S         (2) 

where rk, Ik, and Rk are the release (in rate), inflow, and release in Stage k (k = 1, 2), 

respectively. S2 is assumed to be equal to FLSV (SL) to avoid additional flood risk [27]. 

That is, all the excess storage above the primary FLSV should be released in Stage 2, 

namely, 

2
= LS S  (3) 

It is worth mentioning that S2 does not have to be equal to SL in practice, because the 

decision is updated when the model rolls over to the next period. 

3.1.2. Forecast Errors and Flood Risk 

In the real world, typical flood control systems feature an upstream reservoir for 

flood storage to protect the levee area downstream. In this study, flood risk represents the 

possibility of levee collapse caused by forecasted error rather than the dam failing [39]. 

Inflow forecasting error, characterized as the difference between actual and expected 

inflow, which includes the error of model inputs, structure, and parameters, might induce 

flood risk [40]. The flood risk in Stage 1 is assumed to be zero since the forecast error on a 

short horizon is small, and the inflow in Stage 1 is assumed to be deterministic, which is 

elaborated on by Ding et al. [27]. The inflow forecasting error (ε) and flood risk in Stage 2 

are expressed as follows: 

2 22 2
=I I R R     (4) 

22
( ) ( = ) ( )

thres thres
Q Q R h dR


     



      (5) 

where I2 and I
_

2 represent actual and forecasted inflows. R
_

2 denotes the expected release 

in Stage 2; τ (·) is the downstream flood risk, which indicates the probability of the actual 

release exceeding the downstream safety threshold Qthres. δ is the flood-safety margin, 
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which is the difference between downstream safety threshold Qthres and expected release 

R
_

2. H (·) is the probability density function of ε. 

3.1.3. Power Generation in Two Stages 

The power generation E in two stages is the total power generation of Stage 1 (E1) and 

Stage 2 (E2), 

1 2
E E E   (6) 

The power generation at Stage k (k = 1, 2) Ek is calculated as the product of hydro-

turbine efficiency η, water head [(SSR(Sk−1) + SSR(Sk))/2 − SDR], and reservoir release Rk 

[32,40]. When the release in two stages is replaced by carryover storage according to the 

water balance in Equations (1) and (2), power generation Ek is the function of carryover 

storage S1, as expressed by Equation (7): 

2

1

0 1
1 0 1 1

1
22 1

( ) ( )
( )

2

( ) ( )
( )

2





  
       

 


        
 










L

R

L

R

SSR S SSR S
E SDR S I S

SSR S SSR S
E SDR S I S

 (7) 

where SSR () is the stage-storage relationship of the reservoir, SSR (S0) and SSR (S1) 

represent the initial and ending water level of Stage 1, respectively, and SSR (SL) is the 

water level of SL. SDR is the downstream water level and can be simplified as a constant 

[32]. 

3.2. Model Formulation 

3.2.1. Objective Function 

A two-stage model is used to maximize power generation and minimize flood risk. 

In order to solve the problem of two conflicting objectives, the weighting factor ω (0 ≤ ω ≤ 

1) is employed as a compromise after normalizing the two objectives, resulting in the fol-

lowing objective function: 

1 2

1 max

2

m

(1 )

(1

n

) )

i

(

G G

E
G

E

G h d




  



  


   






 (8) 

where G1 and G2 are power generation and flood risk objectives, respectively. Emax is the 

maximum power generation in two stages without spilling and is equal to the product of 

installed capacity Nmax and two stages’ duration, i.e., Emax = Nmax × T·Δt. 

The marginal contributions of S1 to G1 and δ to G2 are given by 

1
1 1 2 1 1max max

1

2

2 22

( )
( ) ( )

2

1 ( )
(1 ) ( ) (1 ) exp ( )

22

SSR SdE
G I I f S

dSE E

G h f

 



   

 


           




                  

 (9) 

dE/dS1 has been proven to be positive if there is no spilled water, i.e., increasing car-

ryover storage generates a net gain in power generation in the two-period hydropower 

scheduling under no spilled water [32]. SSR′ (S1) is the first-order derivative of SSR (S1) 

and is positive, i.e., SSR′ (S1) > 0 [37,41]. The forecast error series (ε) is assumed to follow 

an unbiased Gaussian distribution, and the marginal contribution of δ to G2 can be ex-

pressed as the second function of Equation (9) [27]. 
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3.2.2. Constraints 

Regular constraints for reservoir management problems, including water balance, 

downstream minimum water demand, storage capacity, and tolerable risk, are converted 

into the constraints for decision variables, i.e., S1 and δ, shown as follows: 

2

mi

1

1 1

1

min

n

0 1 1
=

(

+

)= 

. .

L

thres

C

L

I R

S I Q S

S S S
s t

S S



 

   




 








 (10) 

where Qthres − δ denotes the expected volume of release in Stage 2, i.e., Qthres − δ = R
_

2. S
C 

1  is 

the carryover storage that Stage 1 releases water at the minimum downstream water de-

mand, i.e., R1 = R
min 

1 . It is worth noting that the downstream water demand in Stage 2 (R
min 

2

) is regarded to be satisfied since all carryover storage should be released in Stage 2. The 

carryover storage should not be lower than SL to guarantee water supply. In the meantime, 

the thresholds for the tolerance of flood risk (τ ≤ τr) should be met to guarantee down-

stream flood control [6,42]. That is, δ should be greater than the minimum safety margin 

δmin, and δmin is expressed as follows when the forecast error follows an unbiased Gaussian 

distribution [27]: 

 min 1 1
r

     (11) 

where Φ−1(·) is the inverse of the cumulative probability function with a standard normal 

distribution. 

Furthermore, the carryover storage constraints for maximum power generation in 

two stages should be met and written in Equation (12) because they are carryover storage 

thresholds for their MUPG not to be zero [32]. If they are not met, there will be abandoned 

water, resulting in extra flood risk without power generation improvement. 

1 1 1

A BS S S   (12) 

where S
A 

1  stands for the minimum carryover storage and enables power generation in 

Stage 1 to reach its maximum value (E1 = E
max 

1 ) without spilling as dE1/dS1 < 0, and S
B 

1  is the 

maximum carryover storage that leads to the maximum power generation in Stage 2 

without spilling (E2 = E
max 

2 ) as dE2/dS1 > 0. When the initial storage capacity, inflow in two 

stages, the installed capacity of a reservoir Nmax, and the length of two stages are given, 

then S
A 

1  and S
B 

1  can be calculated as: 

max max 0 1
1 0 1 1

max m x 1
2

a

2 1

( ) ( )
= ( )

2

( ) ( )
( 1) = ( )

2

A

L
L

B
B

ASSR S SSR S
E N t SDR S I S

SSR S SSR S
E N T t SDR S I S





  
        

   


 
         

  

 (13) 

All these conversions are because the generation target is related to S1, while the flood 

risk target is only related to δ according to Equation (9). 

3.2.3. Optimal Conditions 

For convex programming, the Karush Kuhn Tucker (KKT) condition is the sufficient 

and necessary condition [43]. The solution of the model must be the extreme value point 

and the global optimal when it satisfies the KKT conditions [44,45]. According to the der-

ivation above, the objective function is concave and all constraint functions are convex; 

thus, the problem is a convex programming problem, and KKT conditions for the two-

stage model are written as: 
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


 (14) 

where λ, μ
su 

1 , μ
sl 

1 , and μ
δ 

2  are shadow prices that quantify the additional value resulting 

from changing the constraints by one unit and satisfying that λ ≠ 0, μ
su 

1 , μ
sl 

1 , μ
δ 

2  ≥ 0. The 

optimal KKT conditions are obtained from Equation (14): 

1 2 1 2

1 1 1 1 1 2 2

sl sl su suG G                (15) 

When all inequality constraints in Equation (14) are unbound, that is, μ
s1l 

1 = μ
s12 

1 = μ
su1 

1 = 

μ
su2 

1 = μ
δ 

2 = 0, then Equation (15) transforms: 

* *

1 21
( ) ( )f S f     (16) 

Equation (16) indicates that the optimal condition obeys the marginal utility principle 

[28]. 

3.3. Trade-Offs between Power Generation and Flood Risk 

The optimal conditions of the model demonstrate that trade-offs between power gen-

eration and flood risk are allocated carryover capacity (S1) and flood-safety margin (δ), 

which is determined by the relationships between the marginal utility of power genera-

tion (MUPG, f1) and that of flood risk (MUFR, f2). Therefore, in this section, the MUPG 

under various forecasted inflow and carryover storage is evaluated to obtain the allowable 

inflow range for hedging and trade-offs during DCCS. Besides, the effects of forecast un-

certainty and risk tolerance on trade-offs and operation decisions are analyzed. 

3.3.1. Evaluation of the Marginal Utility of Power Generation 

According to Equation (9), MUPG varies with inflows of two stages (i.e., I1 and I
_

2) 

and the carryover storage (S1). To evaluate the MUPG, the three influencing factors should 

be discussed separately, where MUPG was proven to increase with S1 by Zhao et al. [32], 

as shown by the solid blue line in Figure 3. The influence of I1 is analyzed through two 

scenarios, that is, a relatively large I1 resulting in S
A 

1  ≥ SL and a small I1 leading to S
A 

1 < SL. 

Then, this part focuses on the impacts of I
_

2 under each scenario since I
_

2 is directly engaged 

in the allocation of S1 and δ. 
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Figure 3. The variation of MUPG under different lower bounds as carryover storage increases when 

the forecasted inflow ranges from I
_

F 

2  to I
_

G 

2 : (a) lower bound is S
A 

1  (S
A 

1  ≥ SL); (b) lower bound is SL (S
A 

1 < SL). 

When the given I1 is relatively large and triggers the maximum power generation in 

the Stage 1 constraint, i.e., S
A 

1  ≥ SL, the lower bound of carryover storage is S
A 

1 , as shown 

in Figure 3a. The bottom solid curve depicts the variation of MUPG with S1 under the 

forecasting inflow I
_

F 

2 , which equals downstream water demand (i.e., I
_

F 

2 = R
min 

1 ) and is the 

minimum allowable inflow for trade-offs. The small forecasting inflow in Stage 2 causes 

the larger S
B 

1 , i.e., S
B 

1 > S
C 

1 , where the solid gray curve indicates the infeasibility domain of 

MUPG. When I
_

2 increases from I
_

F 

2  to I
_

D 

2 , the curve of MUPG moves upward, S
B 

1  de-

creases, and the upper bound of the carryover storage is S
C 

1 . When Stage 1 releases avail-

able water to meet downstream water demand, the forecasting inflow I
_

D 

2  causes power 

generation in Stage 2 to peak, i.e., S
B 

1 = S
C 

1 . When I
_

2 exceeds I
_

D 

2 , the upper bound of carryo-

ver storage is S
B 

1 , and the MUPG curve shortens with increasing I
_

2. When I
_

2 = I
_

G 

2 , power 

generation in two stages reaches its maximum, i.e., S
B 

1  = S
A 

1 , and the MUPG curve becomes 

a point. As a result, I
_

G 

2  is the maximum forecasting inflow allowed for trade-offs during 

DCCS, and the forecasting inflow in the Stage 2 within [I
_

F 

2 , I
_

G 

2 ] allows for trade-offs under 

relatively large I1. 

However, when the given I1 is relatively small, leading to S
A 

1  < SL, the lower bound 

of carryover storage is SL, as shown in Figure 3b. I
_

H 

2  is the forecasted inflow trigger of the 

maximum power generation of Stage 2 and FLSV constraints at the same time (i.e., S
B 

1 = 

SL). Then, the forecasting inflow in Stage 2 within [I
_

F 

2 , I
_

H 

2 ] is allowed for trade-offs under a 

relatively small I1. 

3.3.2. The Starting and Ending Points of Hedging 

The starting and ending conditions (SWA and EWA) of hedging are important to 

characterize the range of hedging Figure 4 shows the SWA and EWA at the lower bound 

of carryover storage (S
A 

1 ). 

As illustrated in Figure 4, I
_

SWA 

2  and δSWA represent the forecasted inflow and flood-

safety margin at the starting point (SWA) of hedging, causing the MUPG (f1(S
A 

1 )) at the 
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lower bound of carryover storage (S
A 

1 ) to equal the marginal utility of flood risk (MUFR, 

f2(δSWA)), i.e., f1(S
A 

1 ) = f2(δSWA). Equation (17) can be used to calculate I
_

SWA 

2  and δSWA. 

2
1

1max 2

1

2

2

( ) 1 ( )
( ) exp

2 22

SWASWA

SWA
SW

A

L A

thre

A

s

SSR S
I I

E

I Q S S

  


 



    

 


        

  


 

  (17) 

When the lower bound is SL, the S
A 

1  in Equation (17) needs to be replaced by SL. I
_

SWA 

2  

and δSWA under the lower bound of carryover storage SL are written as follows, illustrating 

that I
_

SWA 

2  and δSWA vary with the inflow of Stage 1. 

2

1max 2
2

2

( ) 1 ( )
( ) exp

2 22

L SWASWA

SW

thre

A
SWA

s

SSR S
I I

E

I Q

  


 



     
        

 








  (18) 

I
_

EWA 

2  and δEWA are the forecasted inflow and flood-safety margin at the ending point 

of hedging, which make the MUPG (f1(S
C 

1 )) at the upper bound of carryover storage (S
C 

1 ) 

equal the marginal utility of flood risk (MUFR, f2(δEWA)), i.e., f1(S
C 

1 ) = f2(δEWA), and they are 

obtained by Equation (19), 

2
1

1max 2

1

2

2

( ) 1 ( )
( ) exp

2 22

EWAEWA

EWA
EW

C

L C

thre

A

s

SSR S
I I

E

I Q S S

  


 



    

 


        

  


 

  (19) 

However, the MUPG and MUFR cannot be equal when the upper bound of carryover 

is S
B 

1  in real-world operation because of the forecast uncertainty. When S1 = S
B 

1 , the power 

generation of Stage 2 has its maximum value without abandoned water. If the forecasted 

inflow is smaller than the actual inflow, the reservoir fails to increase power generation, 

which is accompanied by abandoned water and increasing flood risk. Thus, the MUFR is 

larger than the MUPG in this situation. SWA and EWA points, as shown in Figure 3, di-

vide the relationship between MUPG and MUFR into three categories: R.1, R.2, and R.3. 

R.1: When the forecasted inflow (I
_

2) ranges from I
_

G 

2  to I
_

SWA 

2 or from I
_

H 

2  to I
_

SWA 

2 , the rela-

tively large inflow illustrates a large flood risk, and the MUFR exceeds MUPG under 

optimal conditions in Appendix B1, i.e., f2(δ*) > f2(δSWA) = f1(S
A 

1 ) or f2(δ*) > f2(δSWA) = 

f1(SL). As a result, carryover storage should be kept at its lowest level in order to ac-

commodate a large, forecasted inflow and to reduce the potential flood risk in Stage 

2. Under the lower bound S
A 

1 , the optimal carryover storage and flood-safety margin 

are S
* 

1  = S
A 

1 , δ* = Qthres + SL − I
_

2 − S
A 

1 . When the lower bound is SL, they are written as S
* 

1  = SL, δ* = Qthres − I
_

2. 

R.2: When I
_

2 ranges from I
_

SWA 

2  to I
_

EWA 

2 , more carryover storage brings more power 

generation but also higher flood risk. The optimal carryover storage and flood-safety 

margin are to equalize the marginal utility, i.e., f2(δ*) = f1(S
* 

1 ). 

R.3: When I
_

2 ranges from I
_

EWA 

2  to I
_

F 

2 , the relatively small inflow shows that floodwater 

can be carried over to the next stage as much as possible, and the MUPG is always 

greater than MUFR based on Equation (A9), i.e., f1(S
C 

1 ) > f2(δEWA) = f2(δ*). Therefore, the 

carryover storage should be kept at the upper bound of carryover storage, namely, 

Stage 1 releases the downstream water demand Rmin 1, and the remaining available 

water from Stage 1 is carried over to Stage 2 to increase power generation due to the 

relatively small forecasted inflow, i.e., S
* 

1  = S
C 

1 , δ* = Qthres + SL − I
_

2 − S
C 

1 . 
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Figure 4. The relationship between MUFR (left, f2) and MUPG (right, f1) when the inflow is relatively 

large and the lower bound is S
A 

1  without considering minimum flood-safety margin constraint. 

3.3.3. Effects of Forecast Uncertainty and Risk Tolerance 

The forecasted inflows and flood-safety margins at SWA and EWA (i.e., δSWA and 

δEWA) are related to the forecast uncertainty of inflow (σ) based on Equations (17)–(19), 

illustrating that the hedging range (the difference between δEWA and δSWA) varies with σ. 

However, extremely tiny or very big forecast uncertainties result in little or huge flood 

risk, and the specific target is power generation or flood risk. This section first derives the 

minimum and maximum forecast uncertainties to identify the forecast uncertainty range 

permitted for hedging during DCCS and then investigates the effects of forecast uncer-

tainty and risk tolerance on the hedging range. 

1. The allowable forecast uncertainty 

According to the analysis in Section 3.1, G is a special point for DCCS application 

under the lower bound S
A 

1 . When point G is the starting point of hedging, we have S
* 

1 = S
A 

1

, δG = Qthres + SL − I
_

G 

2  − S
A 

1 , f1(S
A 

1 ) = f2(δG) (equal marginal utility principle), and the forecast 

uncertainty at point G is deduced from Equation (16), denoted by σmin, 

2 max
min

min 2

1
1 2

( ) (1 ) 2
( )

2( ) ( )
( )

2

G

A
G

E
Ln Ln

SSR S
I I

  



 

 
   
  

 
    

 

 (20) 

σmin, causing little flood risk, is the minimum forecast uncertainty for hedging, and 

power generation plays the dominant role within the allowable inflow range for DCCS 

application. There is no hedging between the two objectives until the forecasted inflow 

equals I
_

G 

2 , and the power generation in two stages both reaches its maximum values (i.e., 

S
A 

1 = S
B 

1 , I
_

2 = I
_

G 

2 ). According to Equation (15), the unique hedging point G is as shown in 

Figure 5a, and the optimal carryover storage is always equal to the upper bounds because 

MUPG is greater than MUFR (i.e., f1 > f2). 

The other extreme case of hedging is when point F is the starting point of hedging 

and we have S
* 

1 = S
A 

1 , δF = Qthres + SL − I
_

F 

2  − S
A 

1 , f1(S
A 

1 ) = f2(δF) (equal marginal utility principle), 

and the forecast uncertainty at point F is expressed as σmax, 



Water 2022, 14, 3841 12 of 30 
 

 

2 max
max

max 2

1
1 2

( ) (1 ) 2
( )

2( ) ( )
( )

2

F

A
F

E
Ln Ln

SSR S
I I

  



 

 
   
  

 
    

 

  (21) 

σmax represents the maximum forecast uncertainty allowed for hedging, illustrating a 

relatively high flood risk, and the carryover storage remains at the lower bound (i.e., S
* 

1 = 

S
A 

1 ) to reduce the flood risk. There is no hedging between two objectives until the fore-

casted inflow is as small as the downstream water demand (I
_

2 = I
_

F 

2 ). Because MUPG is less 

than MUFR (i.e., f1 < f2), when I
_

2 > I
_

F 

2 , there is only one hedging point F, as shown in Figure 

5b. 

 

Figure 5. Relationship between MUFR (left, f2) and MUPG (right, f1) under minimum and maximum 

forecast uncertainties when the lower bound is S
A 

1 : (a) σ = σmin; (b) σ = σmax. 

However, H and E are critical points for hedging when the lower bound changes to 

SL, as shown in Figure 6, and they are similar to the points G and F, respectively. When 

point H is the starting point of hedging, we have S
* 

1  = SL, δH= Qthres − I
_

H 

2 , f1(SL) = f2(δH), and 

S
A 

1  and I
_

G 

2  in Equation (20) for solving σmin are replaced by SL and I
_

H 

2 , respectively. If point 

E is the starting point of hedging, we have S
* 

1  = SL, δE = Qthres − I
_

F 

2 , f1(SL) = f2(δE), and S
A 

1  in 

Equation (21) for σmax becomes SL. Equation (22) expresses σmin and σmax under the lower 

bound SL: 
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2 max
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min 2
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 (22) 

 

Figure 6. The relationship between MUFR (left, f2) and MUPG (right, f1) under minimum and max-

imum forecast uncertainties when the lower bound is SL: (a) σ = σmin; (b) σ = σmax. 

To summarize, trade-offs and hedging between power generation and flood risk oc-

cur only when the forecast uncertainty falls within the range defined by Equations (20)–

(22), i.e., σmin ≤ σ≤σmax. If σ < σmin, causing too little flood risk, the power generation objective 

takes precedence over the flood risk objective during DCCS, which requires carryover 

storage as high as its upper bounds, and the optimal carryover storage under different 

forecasted inflows is represented by black solid curves in Figure 5a and Figure 6a, S
* 

1 = 

min{S
B 

1 , S
C 

1 }; if σ > σmax, resulting in a very large flood risk, then the reduced flood risk 

always dominates over the increasing power generation during DCCS, which calls for 

carryover storage as low as its lower bounds, and optimal solutions are represented by 

black solid curves in Figure 5b and Figure 6b, S
* 

1 = max{S
A 

1 , SL}. 
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2. Combined impacts of forecast uncertainty and risk tolerance 

In order to assess the effects of forecast uncertainty and risk tolerance, the minimal 

flood-safety margin (δmin) was introduced by Ding et al. [23]. According to Equation (11), 

δmin decreases as the risk tolerance (τr) increases and the forecast uncertainty (σ) decreases. 

ΔSWA and δEWA, defined in Section 3.2, are the flood-safety margins at the start and end 

points of hedging, respectively, when the minimum flood-safety margin (δmin) constraint 

is unbinding. However, the flood-safety margin range for hedging may be altered when 

δmin is considered. 

Choosing a σ from the allowable forecast uncertainty range for hedging, there are 

three possible cases under various τr: Case 1 (δmin < δSWA), Case 2 (δSWA ≤ δmin ≤ δEWA), and 

Case 3 (δmin > δEWA), because τr is only related to δmin but is not relevant to δSWA and δEWA. 

The flood-safety margin range for hedging in Case 1 is the same as the unbinding δmin; that 

range is from δmin to δEWA in Case 2, and there is no hedging in Case 3. That is, as risk 

tolerance decreases, there are fewer opportunities for hedging between power generation 

and flood risk, and the flood risk objective becomes more important for reservoirs. 

Forecast uncertainty complicates the connections among δmin, δSWA, and δEWA for a 

given τr. To evaluate the influence of σ, the trends of increasing δmin, δSWA, and δEWA as σ 

increases are deduced in Appendix A, i.e., dδmin/dσ = Փ−1(1-τr) > 0, dδEWA/dσ > dδSWA/dσ > 0, 

and the increase rates of dδEWA/dσ and dδSWA/dσ as σ increase are derived to be small ac-

cording to Equations (A3) and (A5). They are assumed to be zero here for simplicity (i.e., 

d2δSWA/dσ2≈0, d2δEWA/dσ2≈0). As a result, when the given τr is very small (i.e., Փ−1(1 − τr) > 

dδEWA/dσ) or very large (i.e., Փ−1(1 − τr) < dδSWA/dσ), forecast uncertainty does not influence 

the relationships among δmin, δSWA, and δEWA within its allowable range [σmin, σmax], as illus-

trated in Figure 7a,b. That is, only Case 1 (i.e., δmin < δSWA) exists under a large risk toler-

ance, whereas only Case 3 (δmin > δEWA) occurs with a small risk tolerance. Furthermore, as 

seen in Figure 7c, increasing forecast uncertainty affects the starting of hedging when the 

risk tolerance is medium and satisfies dδSWA/dσ ≤ Փ−1(1 − τr) ≤ dδEWA/dσ, and the range for 

hedging may be narrowed. 

 

Figure 7. The minimum flood-safety margin (δmin) changes with forecast uncertainty (σ) and risk 

tolerance (τr), and flood-safety margins the at start and end of hedging (δSWA and δEWA) vary with 

different σ. 
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In conclusion, various risk tolerances have an independent effect on the flood-safety 

range for hedging, but the effects of forecast uncertainty on the hedging range are heavily 

dependent on the risk tolerance. However, the effects of risk tolerances and forecast un-

certainty can still be generalized into three cases, namely, Case 1 (δmin < δSWA), Case 2 (δSWA 

≤ δmin ≤ δEWA), and Case 3 (δmin > δEWA). 

3.3.4. The Optimal Hedging Rules (OHR) 

The optimal hedging rules (OHR) for three cases are derived based on the optimal 

conditions of the model and are given in Appendix B. Figure 8 and Figure 9 show the 

relationship between MUFR (f2) and MUPG (f1) for the three cases under different lower 

bounds of carryover storage, where the left panel shows the variation of MUFR (f2) with 

the increasing δmin, and the right panel shows the variation of MUPG (f1) with the decreas-

ing I
_

2. 

 

Figure 8. The relationship between marginal utilities of (left) flood risk (f2) and (right) power gener-

ation (f1) with under three values of δmin when the lower bound of carryover storage is S
A 

1 : (a) Case 

1: δmin < δSWA, (b) Case 2: δSWA ≤ δmin ≤ δEWA, (c) Case 3: δEWA < δmin. 
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Figure 9. The relationship between marginal utilities of (left) flood risk (f2) and (right) power gener-

ation (f1) under three values of δmin when the lower bound of carryover storage is SL: (a) Case 1: δmin 

< δSWA, (b) Case 2: δSWA ≤ δmin ≤ δEWA, (c) Case 3: δmin > δEWA. 

1. Case 1: δmin < δSWA 

As demonstrated in Figure 8a, when the minimum flood-safety margin is smaller 

than the flood margin at the starting point of hedging, δmin < δSWA, which has no influence 

on the start and end points of hedging. As a result, the optimal hedging rule under this 

case is the same as unbinding δmin. There are three relationships between MUPG and 

MUFR denoted as Case 1-R.1, Case 1-R.2, and Case 1-R.3 under different inflow condi-

tions, which are the same as R.1, R.2, and R.2 in Section 3.2, respectively. The optimal 

solutions under different inflow conditions can be summarized as follows when the lower 

bound is S
A 

1 : 
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 (23) 
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When the lower bound is SL, as shown in Figure 9a, the maximum allowable inflow 

changes from I
_

G 

2  to I
_

H 

2 , and the optimal carryover storage in the first subfunction in Equa-

tion (23) is SL, which is written as follows: 

2 2 2

2 2 2

2 2

21

1 1 2
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  (24) 

2. Case 2: δSWA ≤ δmin ≤ δEWA 

Figure 8b and Figure 9b show the relationships between MUPG and MUFR under 

the medium safety margin, i.e., δSWA ≤ δmin ≤ δEWA. Point M is the new beginning point for 

hedging, where the flood-safety margin is δmin. The range for hedging is narrowed since 

δmin is greater than δSWA, illustrating that much more flood-safety margin is required to 

reduce flood risk if the risk tolerance declines or the forecast uncertainty under a medium 

risk tolerance increase. The corresponding carryover storage S
M 

1  and forecasted inflow I
_

M 

2  to point M are acquired by the marginal utility principle, i.e., f1(S
M 

1 ) = f2(δmin), 

2
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1
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mi
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 (25) 

Similar to Case 1, the start and end points of hedging continue to categorize the rela-

tionship between marginal utilities of power generation and flood risk into three types, 

denoted by Case 2-R.1, Case 2-R.2, and Case 2-R.3. 

Case 2-R.1: When the inflow in Stage 2 meets I
_

M 

2  < I
_

2 ≤ I
_

G 

2 , according to Equation 

(A10), the marginal utility of power generation exceeds the maximum marginal utility of 

flood risk f2(δmin), i.e., f1(S1) > f1(S
M 

1 ) = f2(δmin), indicating that allocating available water after 

meeting the minimum safety margin requirement for carryover storage will increase 

power generation, i.e., δ* = δmin, S
* 

1= Qthres + SL − I
_

2 − δmin. 

Case 2-R.2: When the forecasted inflow ranges from I
_

M 

2  to I
_

EWA 

2 , the optimal carryo-

ver storage and flood-safety margin satisfy the marginal utility principle, i.e., f1(S
* 

1) = f2(δ*). 

The optimal solutions for Case 2-R.3 are the same as for Case 1-R.3. 

Then, the optimal solutions of Case 2 under different lower bounds can be general-

ized as follows: 
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 (26) 

3. Case 3: δmin > δEWA 

As shown in Figure 8c and Figure 9c, there is no hedging between power generation 

and flood risk since the flood-safety margin for hedging is less than the feasible region of 

flood-safety margin for flood control, i.e., δ* ≥ δmin > δEWA. I
_

CM 

2  is a special inflow that raises 

the carryover capacity to its upper bound while decreasing the optimal flood-safety mar-

gin to its lowest value, i.e., S
C 

1 + δmin = Qthres + SL − I
_

CM 

2 . 

Case 3-R.1: The marginal utility of power generation always exceeds that of flood risk 

when the forecasted inflow ranges from I
_

G 

2  to I
_

CM 

2  according to the KKT conditions in 

Equation (A10). 
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Case 3-R.2: When I
_

2 < I
_

CM 

2 , the carryover storage can be kept at its upper bounds due 

to the small forecasted inflow, and the optimal solutions are S
* 

1 = S
C 

1 , δ* = Qthres + SL − I
_

2 − S
C 

1 . 

The optimal solutions under different lower bounds are the same except for the max-

imum allowable inflow for trade-offs and can be summarized as Equation (27): 

1 2 2 2 2

1 1

min
2 2 2

2 1 2 2 2

       

 

,

,  

CM
L min CM G

thres

C L C F CM

thres

H

S Q S I I I I I I I

S S Q S I S I I

or

I

  











         


      

 (27) 

The operation operation rules under different levels of inflow forecast uncertainty 

and risk tolerance can be summarized in Table 1. 

Table 1. The OHR for different inflows under various forecast uncertainty and risk tolerance. 

Cases 

The Forecasted 

Inflow in Stage 2 

for DCCS 

The Optimal Solutions 

Case 1: δmin < 

δSWA  

R.1: I
_

SWA 

2  < I
_

 

2 ≤ I
_

G 

2 or 

I
_

SWA 

2  < I
_

 

2 ≤ I
_

H 

2 . 

Little water or no water is stored, and carryover 

storage is kept at the lower bound of DCCS (S
* 

1 = S
A 

1 or S
* 

1 = SL).  

R.2: I
_

EWA 

2  < I
_

 

2 ≤ I
_

SWA 

2 . 
Hydropower generation and flood risk are 

balanced (f1(S
* 

1) = f2(δ*)). 

R.3: I
_

F 

2  < I
_

 

2 ≤ I
_

EWA 

2 . 
Carryover storage volume remains at the upper 

bound of DCCS (S
* 

1 = S
C 

1 ). 

Case 2: δSWA ≤ 

δmin ≤ δEWA  

R.1: I
_

M 

2  < I
_

 

2 ≤ I
_

G 

2 or I
_

CM 

2  < I
_

 

2 ≤ I
_

H 

2 . 

After meeting δmin, the inflow from Stage 1 is 

carried over to Stage 2 (S
* 

1  = Qthres + SL − I
_

2 − δmin). 

R.2: I
_

C 

2  < I
_

 

2 ≤ I
_

M 

2 . 
The optimal solutions are the same as in Case 1-

R.2. 

R.3: I
_

F 

2  < I
_

 

2 ≤ I
_

C 

2 . 
The optimal solutions are the same as in Case 1-

R.3. 

Case3: δmin > δEWA 

R.1: I
_

CM 

2  < I
_

 

2 ≤ I
_

G 

2  or 

I
_

CM 

2  < I
_

 

2 ≤ I
_

H 

2 . 

The optimal solutions are the same as in Case 2-

R.1. 

R.2: I
_

F 

2  < I
_

 

2 ≤ I
_

CM 

2 . 
The optimal solutions are the same as in Case 1-

R.3. 

4. Application Results 

4.1. Inputs of Model 

In the two-stage model, we assumed that the weight ω for power generation is 0.2 

and the preference for flood risk is 0.8. The reason for such an assumption is that the lower 

weight for power generation restricts the rise in optimal carryover storage to ensure the 

relatively small flood risk to guarantee downstream flood safety. However, ω is not a fixed 

value that can be determined by decision-makers. If decision-makers prefer to increase 

storage volume for improved power generation but with higher flood risk, the weight can 

be assigned a higher value. 

SSR(S) is the stage-storage relationship that fits well with a function of 0.00325 × 

abs(S-3913450)0.407 + 184.10. The efficiency coefficient of the turbine η equaled 8.5, and the 

stage downstream water level SDR was 184.5 m based on the Nierji Reservoir Operation 

Manual issued in 2014. 

The forecast horizon included three days (T = 3), where one day was for Stage 1 (de-

cision stage, Δt = 24 h) and two days were for Stage 2 (future stage, (T−1)·Δt = 48 h). To 

guarantee the safety of the downstream levee, the reservoir safety discharge Qthres was 1600 
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m3/s according to the historical data. The downstream water demand, including munici-

pal, industrial, agricultural, and environmental flow, was 200 m3/s. 

4.2. Optimal Hedging Rules Experiment 

This section applies the derivation from Chapter 3 to obtain the allowable forecast 

uncertainty range for hedging during DCCS, as well as the range of forecast uncertainty 

and risk tolerance under three cases. As the carryover storage is stored at the flood reces-

sion stage, the inflow in Stage 1 should be slightly larger than that in Stage 2. To be rea-

sonable, we used the series of inflows in stages 1 and 2 ranging from 1.036 × 108 to 1.728 × 

107 m3 and 1.728 × 108 to 3.456 × 107 m3, respectively. 

Figure 10 shows that the bounds of carryover storage vary with different inflows, in 

which the bounds of carryover storage (S
A 

1 , S
C 

1 ) increase as the inflow in Stage 1 (I1) in-

creases, while S
B 

1  falls as the forecasted inflow in Stage 2 (I
_

2) rises. For I1 ≤ 8.788 × 107 m3, 

the lower bound is SL (5.220 × 109 m3), and the maximum power generation of Stage 1 (S
A 

1

) limits the lower bound when I1 > 8.788 × 107 m3. The critical forecasted inflow (I
_

D 

2 ) for the 

upper bound is 1.160 × 108 m3 when I1 = 7.540 × 107 m3. That is, S
 C 

1 is the upper bound 

(ranging from 5.237 × 109 to 5.279 × 109 m3) when 3.456 × 107 ≤ I1 ≤ 7.540 × 107 m3 and 3.456 

× 107 ≤ I
_

2 ≤ 1.160 × 108 m3 because of S
B 

1  ≥ S
C 

1 . That bound shifts to S
B 

1 , which increases from 

5.279 × 109 to 5.361 × 109 m3 when 7.540 × 107 < I1 ≤ 9.957 × 107 m3 and 1.160 × 108 < I
_

2 ≤ 1.642 

× 108 m3. In particular, S
A 

1 = S
B 

1 = 5.231 × 109 m3 when I1 = 9.957 × 107 m3 and I
_

2 = 1.642 × 108 

m3, illustrating that the maximum forecasted inflow for hedging (I
_

G 

2 ) is 1.642 × 108 m3. Be-

sides, the minimum forecasted inflow is equivalent to 3.456 × 107 m3 according to the 

downstream water demand. 

 

Figure 10. The bounds of carryover storage under different inflows: (a) S
A 

1  and S
C 

1 vary with increas-

ing I1 (left); (b) S
B 

1  varies with increasing I
—

2 (right). 
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According to the feasible domain of the carryover storage and the allowable inflow 

range obtained above, the forecast uncertainty range allowed for hedging during DCCS 

can be derived, using Equations (20) and (21), which is within [2.309 × 107, 5.450 × 107]. 

Based on historical data, the estimated forecast error of inflows followed the normal 

distribution, i.e., ε~N (μ = −3.11 × 106, (σ = 2.368 × 107)2). Then, the flood-safety margins at 

the starting and ending points of hedging were calculated via Equations (17)–(19), i.e., 

δSWA = 1.037 × 108 m3 and δEWA = 1.054 × 108 m3. The ranges of risk tolerance τr corresponding 

to three cases (i.e., δmin < δSWA, δSWA ≤ δmin ≤ δEWA, and δmin > δEWA) were derived by δmin = μ + 

σ∙Φ−1(1 − τr) and are listed in Table 2. 

Furthermore, three different risk tolerances (5 × 10‒3, 4.50 × 10‒6, 7.93 × 10‒7) were cho-

sen from its range obtained above to derive the forecast uncertainty ranges corresponding 

to three cases, and the results are shown in Table 2. When τr = 5 × 10‒3, δmin is always smaller 

than δSWA at any forecast uncertainty within its allowable range for hedging. For example, 

if μ = 0, σ = 3.456 × 107, then δmin < δSWA can be known since δmin = 9.210 × 107 m3 and δSWA = 

1.501 × 108 m3. When τr = 4.50 × 10‒6, Case 2 (δSWA ≤ δmin ≤ δEWA) occurs under forecast uncer-

tainty ranging from 2.309 × 107 to 3.456 × 107 or within [3.974 × 107, 5.450 × 107], while Case 

3 (δmin > δEWA) happens at a relatively small range of forecast uncertainty, i.e., (3.456 × 107, 

3.974 × 107). When τr is 7.93 × 10‒7, there is no hedging between power generation and 

flood risk within the allowable forecast uncertainty range. 

In summary, all three cases exist when risk tolerance decreases under a given forecast 

uncertainty and all three cases exist. However, whether one or two of the three cases exist 

depends on the values of the given risk tolerance, which is consistent with the theoretical 

derivation. 

Table 2. The range of forecast uncertainty and risk tolerance corresponds to three cases. 

Cases 
Range of τr σ = 2.368 

× 107 

Range of σ (×107) 

τr = 5 × 10‒3 τr = 4.50 × 10‒6 
τr = 7.93 × 

10‒7 

Case 1: δmin < 

δSWA 
(5.410 × 10‒6, 0.500) 

[2.309, 

5.450] 
-- -- 

Case 2: δSWA ≤ 

δmin ≤δEWA 

[3.730 × 10‒6, 5.410 × 

10‒6] 
-- 

[2.309, 3.456], [3.974, 

5.450] 

-- 

 

Case 3: δmin > 

δEWA 
(0.000, 5.410 × 10‒6) -- (3.456, 3.974) 

[2.309, 

5.450] 

Following that, the optimal solutions for three cases are calculated to quantify the 

effects of various minimum flood-safety margins on the operation decisions. The solid 

blue curves, red dotted curves, and black dashed curves in Figure 11 represent τr = 5 × 10−3, 

4.50 × 10‒6, and 7.93 × 10‒7, corresponding to Case 1, 2, and 3, respectively, and δmin takes 

the values of 6.000 × 107 m3, 1.047 × 108 m3, 1.082 × 108 m3 for the three cases under current 

forecast level (σ = 2.368 × 107). As τr decreases in Figure 11, the hedging range is narrowed 

down, and there is no hedging when τr is small enough. 

As shown in Figure 11a, the optimal carryover storage (S
* 

1 ) for three cases declines 

slightly with the increasing δmin under the same I
_

2 within [1.613 × 108 m3 to 1.401 × 108 m3], 

where they represent the inflows at the starting points of hedging for cases 1 and 2, re-

spectively, namely, I
_

SWA 

2 = 1.613 × 108 m3 and I
_

M 

2 = 1.401 × 108 m3. For example, when I
_

2 = 

1.613 × 108 m3, S
* 

1  corresponds to three cases: 5.229 × 109 m3, 5.228 × 109 m3, and 5.224 × 109 

m3, respectively. Under the same I
_

2 ranging from 1.401 × 108 m3 (I
_

M 

2 ) to 1.140 × 108 m3 (I
_

EWA 

2

), S
* 

1  is the same for Cases 1 and 2 because hedging exists within the inflow range, and S
* 

1  

for Case 3 is less than for Cases 1 and 2. When I
_

2 ranges from 1.140 × 108 m3 (I
_

EWA 

2 ) to 1.122 

× 108 m3 (I
_

CM 

2 ), S
* 

1  equals the upper bound of carryover storage for Cases 1 and 2, while S
* 

1  
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for Case 3 is the carryover storage net of δmin and less than its upper bound. If the fore-

casted inflow is within [3.456 × 107 m3, 1.122 × 108 m3], then 3.456 × 107 m3, representing the 

minimum allowable inflow for hedging, i.e., I
_

F 

2 , the three curves overlapping indicate that 

S
* 

1  for three cases is equal. The tendency of optimal flood-safety margins (δ*) in three cases 

is the opposite to that of carryover storage, as shown in Figure 11b. 

 

Figure 11. The OHR for three cases caused by three risk tolerances τr when confronting different 

inflows: (a) the optimal carryover storage (S
* 

1) and (b) the optimal flood-safety margin (δ*). 

4.3. Comparison with the Current Operation Rules 

In this section, the OHR is used in continuous scheduling from 1981 to 2010, based 

on the forecasted inflow data from historical records. The operation period in flood and 

non-flood seasons lasts three days and ten days, respectively. Nierji’s risk tolerance is 

0.005 and δmin = 6.023 × 107, thus, the optimal solutions are the same as in Case 1. The per-

formance of OHR is compared to that of current operating rules (COR) in flood risk and 

power generation, as shown in Figure 12 and Table 3, respectively. 

 

Figure 12. The maximum flood risk using COR and OHR from 1981 to 2010. 
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Figure 12 illustrates the maximum flood risk under two operation rules from 1981 to 

2010. The maximum flood risk in each year for OHR is the maximum value chosen from 

the flood risk sets when OHR was applied, compared with the maximum flood risk se-

lected from the flood risk sets when COR was used at the same period. The results show 

that the maximum flood risk can be reduced during OHR application, especially in 1981, 

1983, 1986, 1999, 2006, 2009, and 2010. In fact, the maximum risk of other years was also 

lower, but the risk reductions are difficult to show in the graph because both the flood risk 

and the reduction were very small and close to 0. In addition, the maximum flood risk in 

extra wet years (1989 and 1998) and extra dry years (2002, 2003, 2007, and 2008) was not 

estimated since OHR was inapplicable. For extra wet years, the excessive inflows resulted 

in spills, and controlling flood risk was the unique objective, whereas in extra dry years, 

the inflow was insufficient to fulfill downstream water demand, and the storage volume 

was lower than the FLSV to satisfy downstream water demand. 

Table 3. Comparison of the power generation between COR and OHR (108 kWh). 

Methods 
Annual 

Average 

Flood 

Season 

Non-Flood 

Season 
Wet Year Normal Year Dry Year 

COR 6.36 3.23 3.13 7.93 6.57 4.63 

OHR 6.62 3.34 3.28 8.15 6.74 4.99 

Change 0.26 0.11 0.15 0.22 0.17 0.33 

Rate 4.09% 4.02% 4.79% 2.77% 2.59% 7.13% 

Table 3 shows that, in comparison to the COR, the OHR outperformed in terms of 

increasing power generation on an annual average in flood and non-flood seasons, as well 

as in wet, normal, and dry years. Although both flood and non-flood seasons benefitted 

from the elevated storage volume for improving power generation, the non-flood season 

saw more increases than the flood season. For wet, normal, and dry years, the OHR had 

the best performance in dry years. 

Furthermore, the scheduling processes for three hydrological years were demon-

strated in order to investigate storage volume under OHR, with 1985, 1994, and 2005 rep-

resenting wet, normal, and dry years, respectively. As shown in Figure 13, the storage 

volume increased from 1 July to 11 August and remained at 5.220 × 109 m3 at the end of 

the main flood season in 1985, despite being at the flood recession stage, because the fore-

casted inflow at the end of the main flood season continued to exceed its maximum allow-

able inflow for DCCS. The storage volume in 1994 and 2005 was raised using OHR almost 

the whole main flood season, but the raised storage volume at the end of the main flood 

season in 1994 was greater than that in 2005 (5.282 × 109 m3 versus 5.265 × 109 m3) since the 

inflow at the end of the main flood season in 2005 was less than the downstream water 

demand. Over these three years, OHR performance was beneficial in increasing storage 

capacity and limiting energy losses due to inflow constraints. 
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Figure 13. Comparison of storage volume for OHR and COR under a: (a) wet year; (b) normal year; 

(c) dry year. 
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5. Conclusions 

This study focused on hydro-economic and mathematical analysis and derived the 

OHR to reveal trade-offs between power generation and flood risk under different fore-

casted inflows, forecast uncertainties, and risk tolerance. The conclusions are summarized 

as follows: 

(1) Hedging and trade-offs between power generation and flood risk exist during DCCS 

only when the forecasted inflow is greater than the minimum downstream water de-

mand and less than the inflow that allows power generation in two stages to reach 

its peak without spilling. 

(2) We identified the forecast uncertainty range that allows for hedging between two 

objectives by calculating the minimum and maximum forecast uncertainties. If the 

forecast uncertainty is greater than its maximum, reducing flood risk is the unique 

objective considered by decision-makers. If the forecast uncertainty is less than its 

minimum, the carryover storage keeping at its upper bounds meets the current flood 

control standard. 

(3) Compared to forecast uncertainty, downstream risk tolerance plays a more important 

role in determining which case of the OHR is adopted in real-world operations. 

(4) In the real-world application, compared with COR, OHR had an excellent perfor-

mance in power generation improvement in dry years, indicating that OHR can alle-

viate the energy crisis during dry years. 

It should be noted that this method is suitable for areas with less abundant water 

resources, and extra wet or extra dry regions cannot be applied. Furthermore, some sim-

plifications and assumptions, such as the given weight and forecast errors following a 

Gaussian distribution and the adaptation to climate change, should be studied in the fu-

ture. 
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Nomenclature 

OHR The optimal hedging rules. 

DCCS Dynamic control of carryover storage. 

FLSV(SL) Flood-limited storage volume. 

Δt One period of two-stage operation. 

T Forecast horizon. 

S0, Sk Initial storage volume of Stage 1 and storage at the end of Stage k (k = 1, 2). 

Ik, Rk Actual inflow and release volume in Stage k (k = 1, 2). 

I
_

2, R
_

2 Forecasted inflow and release volume in Stage 2. 

ε Inflow forecasting error in Stage 2. 
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Qthres The threshold discharge capacity for the downstream safety. 

δ Forecasted flood-safety margin. 

σ Forecast uncertainty of inflow in Stage 2. 

Ek Power generation in stage k (k = 1, 2). 

SSR(S0), 

SSR(Sk) 

The initial stage-storage relationship water level in Stage 1 and stage-storage 

relationship at the end of Stage k (k = 1, 2). 

SDR Downstream water level. 

G1, G2 Power generation and flood risk objectives, respectively. 

G
’ 

1 , G
’ 

2  Marginal utilities of power generation and flood risk, respectively. 

ω The weight is designed for power generation. 

δmin Minimum flood-safety margin required for flood risk in Stage 2. 

E
max 

k  Maximum power capacity in Stage k (k = 1, 2). 

S
A 

1  
The lower bound of carryover storage originated from maximum power 

generation of Stage 1. 

S
B 

1   
The upper bound of carryover storage originated from maximum power 

generation of Stage 2. 

R
min 

1  Minimum downstream water demand. 

S
C 

1  
The upper bound of carryover storage originated from downstream water 

demand of Stage 2. 

τr Risk tolerance. 

I
_

G 

2  

A specific forecasted inflow that triggers the maximum power generation in 

two stages without spilling when the lower bound of carryover storage is S
A 

1 . 

I
_

H 

2  

A specific forecasted inflow that triggers the maximum power generation in 

two stages without spilling when the lower bound of carryover storage is SL. 

I
_

D 

2  

A specific forecasted inflow that triggers the maximum power generation in 

Stage 2 and downstream water demand constraints at the same time. 

I
_

F 

2  

The minimum allowable inflow for DCCS application, which is equal to the 

minimum downstream water demand. 

δSWA, I
_

SWA 

2  

Flood-safety margin and forecasted inflow at the starting hedging point that 

marginal utility of power generation equals marginal utility of flood risk, i.e., 

f1(S
A 

1 ) = f2(δSWA). 

δEWA, I
_

EWA 

2  

Flood-safety margin and forecasted inflow at the ending hedging point that 

marginal utility of flood risk equals marginal utility of power generation (S
C 

1 ), 

i.e., f1(S
C 

1 ) = f2(δEWA). 

MUPG(f1(S1)) Marginal utility of power generation in Stage 1. 

MUFR (f2(δ)) Marginal utility of flood risk in Stage 2. 

σmin, σmax  
Minimum and maximum allowed forecast uncertainty for hedging, 

respectively.  

dδSWA/dσ The trend of δSWA as σ increases. 

dδEWA/dσ The trend of δEWA as σ increases. 

d2δSWA/dσ2 The trend of dδSWA/ dσ as σ increases. 

d2δEWA/dσ2 The trend of dδEWA/ dσ as σ increases. 
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S
* 

1  Optimal carryover storage from Stage 1 to Stage 2. 

δ* Optimal flood-safety margin in Stage 2. 

S
M 

1  
The carryover storage makes the marginal utility of power generation equal 

minimum marginal utility of flood risk, i.e., f2(δmin) = f1(S
M 

1 ). 

I
_

M 

2  The inflow for situation f2(δmin) = f1(S
M 

1 ). 

I
_

CM 

2  The inflow for situation δ = δmin, S1 = S
C 

1 . 

Appendix A 

According to the definition of δmin, the trend of δmin as σ increases (dδmin/dσ) can be 

expressed as: 

min
1

r
(1 )

d

d





    (A1) 

In Equation (A1), dδmin/dσ is positive and monotonically increases because Փ−1(1 − τr) 

is positive. 

dδSWA/dσ illustrates the trend of δSWA as σ increases: 

 
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2

2

1

1

=
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  
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 


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 
 
 

 (A2) 

where the molecular δSWA/σ2 − 1/(I1+I
_

SWA 

2 ) is smaller than δSWA/σ2; therefore, dδSWA/dσ is 

greater than δSWA/σ − σ/δSWA. δSWA is defined as the difference between the threshold for 

downstream levees Qthres and the release at point SWA (i.e., δSWA = Qthres − R
SWA 

2 ), which is 

larger than the difference between Qthres and the threshold of turbine release capacity (R
max 

2

) since the maximum power generation binding lead to R
SWA 

2  ≤ Rmax. To ensure down-

stream safety, the threshold of turbine release capacity was designed far lower than the 

downstream levee threshold [19], i.e., Qthres − R
max 

2 > σ. As a result, δSWA = Qthres-R
SWA 

2 > σ and 

dδSWA/dσ > δSWA/σ − σ/δSWA > 0. 

d2δSWA/dσ2 illustrates the trend of dδSWA/dσ as σ increases: 
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To judge the characteristic of d2δSWA/dσ2 for simplicity, assume that δSWA = σ and 1/(I1+

I
_

SWA 

2 ) = 0. Then, the actual value of d2δSWA/dσ2 is close to (−2/σ) and can be derived since σ < 

δSWA < σ2, that is, the denominator is one order of σ higher than the numerator. 

dδEWA/dσ measures the trend of δEWA as σ increases: 

 
3

21

2

2

1

1

=
EWA EWA

EWA
EWA

EWA

EWA

I

d

d
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  

 
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 (A4) 

dδEWA/dσ is calculated in the same way as the process in Equation (A2), and δEWA is 

larger than δSWA based on its definition; hence, dδEWA/dσ > dδSWA/dσ > 0. 

d2δEWA/dσ2 measures the trend of dδEWA/dσ as σ increases: 
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Similar to the trend of d2δSWA/dσ2, −1 < d2δSWA/dσ2 < 0 can be derived. 

Appendix B 

The optimality conditions change with different limitations working according to 

Equation (15). 

1. Without considering δmin. 

2. When I
_
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2  < I
_

2 < I
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2  or I
_

SWA 

2  < I
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2 < I
_
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2 , f2(δ*) is larger than f2(δSWA) that exceeds MUHG, 

i.e., f2(δ*) > f2(δSWA) = f1(S
A 

1 ) or f2(δ*) > f2(δSWA) = f1(SL), allocating as much space as pos-

sible or all of the space above FLSV, which depends on the lower bound of carryover 

storage, to accommodate the relative larger inflows to reduce flood risk. The optimal 

conditions of R.1 under different lower bounds of carryover storage can be written 

as Equations (A6) and (A7): 
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which suggests little or no water storage and the shadow price of the lower bound 

for carryover storage is positive, i.e., μ
s1l 

1 > 0 or μ
s12 

1  > 0. 

When I
_

EWA 

2  ≤ I
_

2 ≤ I
_

SWA 

2 , the price shadow of all the inequality constraints is to be zero. 

We have f1(S
* 

1) = f2(δ*), and the optimality conditions of R.2 are: 
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When I
_

EWA 

2  ≤ I
_

2 ≤ I
_

SWA 

2 , we have f1(S
C 

1 ) = f2(δSWA) > f2(δ*), the shadow price of the upper 

bound of carryover storage is positive (i.e., μ
su1 

1 > 0), and the optimality conditions of R.3 

are: 
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3. Case 1 

When δmin is smaller than δSWA, the optimal conditions are the same as the optimal 

conditions without considering δmin since it will not alter the space of hedging and decision 

making. 

4. Case 2 

When δSWA ≤ δmin ≤ δEWA and the forecasted inflow satisfies I
_

M 

2  < I
_

2 ≤ I
_

G 

2  or I
_

M 

2  < I
_

2 ≤ I
_

H 

2

, the MUPG exceeds MUFR, i.e., f1(S
* 

1 ) > f1(S
M 

1 ) = f2(δmin), implying that floodwater should 

be stored after satisfying the minimum flood-safety margin. Under this situation, the 

shadow price of the minimum safety margin constraint is positive, i.e., μ
δ 

2  > 0, and the 

optimality conditions are: 
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 (A10)

The optimal solutions of Case 2-R.2 and Case 2-R.3 are consistent with R.2 and R.3, 

respectively. 

5. Case 3 

δmin is larger than δEWA, illustrating a very small flood risk, and the optimal conditions 

of Case 3-R.1 and Case 3-R.2 are the same as Equations (A9) and (A10). 
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