Integrated Hydrogeochemical Groundwater Flow Path Modelling in an Arid Environment
Abstract
:1. Introduction
2. Study Area
3. Material and Methods
Groundwater Sampling and Analysis
4. Results and Discussions
4.1. Geochemical Evolution and Flow Path Modeling
4.2. Geochemical Evolution and Mixing Ratios Calculations
4.3. Sources of Salinity in Groundwater
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perri, F.; Scarciglia, F.; Apollaro, C.; Marini, L. Characterization of granitoid profiles in the Sila Massif (Calabria, southern Italy) and reconstruction of weathering processes by mineralogy, chemistry, and reaction path modeling. J. Soils Sediments 2014, 15, 1351–1372. [Google Scholar] [CrossRef]
- Perri, F.; Ietto, F.; Le Pera, E.; Apollaro, C. Weathering processes affecting granitoid profiles of Capo Vaticano (Calabria, southern Italy) based on petrographic, mineralogic and reaction path modelling approaches. Geol. J. 2016, 51, 368–386. [Google Scholar] [CrossRef]
- Rabeiy, R.E. Assessment and modeling of groundwater quality using WQI and GIS in Upper Egypt area. Environ. Sci. Pollut. Res. 2017, 25, 30808–30817. [Google Scholar] [CrossRef] [PubMed]
- Apollaro, C.; Perri, F.; Le Pera, E.; Fuoco, I.; Critelli, T. Chemical and minero-petrographical changes on granulite rocks affected by weathering processes. Front. Earth Sci. 2019, 13, 247–261. [Google Scholar] [CrossRef]
- Appelo, A.; Postma, D. Geochemistry, Groundwater and Pollution, 2nd ed.; Balkama: Rotterdam, The Netherlands, 2005; Volume 536. [Google Scholar] [CrossRef]
- El Osta, M.; Masoud, M.; Ezzeldin, H. Assessment of the geochemical evolution of groundwater quality near the El Kharga Oasis, Egypt using NETPATH and water quality indices. Environ. Earth Sci. 2020, 79, 56. [Google Scholar] [CrossRef]
- Dhakate, R.; Ratnalu, G.V.; Sankaran, S. Hydrogeochemical and isotopic study for evaluation of seawater intrusion into shallow coastal aquifers of Udupi District, Karnataka, India. Geochemistry 2020, 80, 125647. [Google Scholar] [CrossRef]
- Rajmohan, N.; Elango, L. Hydrogeochemistry and its relation to groundwater level fluctuation in the Palar and Cheyyar river basins, southern India. Hydrol. Process. 2006, 20, 2415–2427. [Google Scholar] [CrossRef]
- Rajmohan, N.; Prathapar, S.A. Assessment of geochemical processes in the unconfined and confined aquifers in the Eastern Ganges Basin: A geochemical approach. Environ. Earth Sci. 2016, 75, 1212. [Google Scholar] [CrossRef]
- Manikandan, E.; Rajmohan, N.; Anbazhagan, S. Monsoon impact on groundwater chemistry and geochemical processes in the shallow hard rock aquifer. CATENA 2020, 195, 104766. [Google Scholar] [CrossRef]
- Rajmohan, N.; Masoud, M.H.; Niyazi, B.A. Impact of evaporation on groundwater salinity in the arid coastal aquifer, Western Saudi Arabia. CATENA 2021, 196, 104864. [Google Scholar] [CrossRef]
- Elango, L.; Kannan, R. Rock–water interaction and its control on chemical composition of groundwater. In Concepts and Applications in Environmental Geochemistry; Elsevier: Amsterdam, The Netherlands, 2007; Volume 5, Chapter 11; pp. 229–243. [Google Scholar]
- AbdelRahman, M.A.; Shalaby, A.; Mohamed, E. Comparison of two soil quality indices using two methods based on geographic information system. Egypt. J. Remote Sens. Space Sci. 2019, 22, 127–136. [Google Scholar] [CrossRef]
- Elbeih, S.F.; Madani, A.A.; Hagage, M. Groundwater deterioration in Akhmim District, Upper Egypt: A Remote Sensing and GIS investigation approach. Egypt. J. Remote Sens. Space Sci. 2021, 24, 919–932. [Google Scholar] [CrossRef]
- El-Zeiny, A.M.; El-Hamid, H.T.A. Environmental and human risk assessment of heavy metals at northern Nile Delta region using geostatistical analyses. Egypt. J. Remote Sens. Space Sci. 2022, 25, 21–35. [Google Scholar] [CrossRef]
- Abdalla, F. Ionic ratios as tracers to assess seawater intrusion and to identify salinity sources in Jazan coastal aquifer, Saudi Arabia. Arab. J. Geosci. 2015, 9, 40. [Google Scholar] [CrossRef]
- Masoud, M.H.Z.; Basahi, J.M.; Rajmohan, N. Impact of flash flood recharge on groundwater quality and its suitability in the Wadi Baysh Basin, Western Saudi Arabia: An integrated approach. Environ. Earth Sci. 2018, 77, 395. [Google Scholar] [CrossRef]
- Masoud, M.H.Z.; Basahi, J.M.; Zaidi, F.K. Assessment of artificial groundwater recharge potential through estimation of permeability values from infiltration and aquifer tests in unconsolidated alluvial formations in coastal areas. Environ. Monit. Assess. 2019, 191, 31. [Google Scholar] [CrossRef] [PubMed]
- Rajmohan, N.; Niazi, B.A.M.; Masoud, M.H.Z. Evaluation of a brackish groundwater resource in the Wadi Al-Lusub basin, Western Saudi Arabia. Environ. Earth Sci. 2019, 78, 451. [Google Scholar] [CrossRef]
- Zaigham, N.A.; Aburizaiza, O.S.; Mahar, G.A.; Nayyar, Z.A. Hydrogeologic assessment for groundwater prospects in Al-Abwa drainage basin, arid-terrain of Arabian Shield, Saudi Arabian Red Sea coastal belt. Arab. J. Geosci. 2020, 13, 370. [Google Scholar] [CrossRef]
- Rajmohan, N.; Masoud, M.H.Z.; Niyazi, B.A.M. Assessment of groundwater quality and associated health risk in the arid environment, Western Saudi Arabia. Environ. Sci. Pollut. Res. 2021, 28, 9628–9646. [Google Scholar] [CrossRef]
- Plummer, L.N. Geochemical modelling of water–rock interaction: Past, present, future. Proc. Int. Symp. Water–Rock Interact. 1992, 7, 23–33. [Google Scholar]
- Kumar, A.; Rout, S.; Narayanan, U.; Manish, K.; Mishra, R.; Tripathi, M.; Singh, J.; Kumar, S.; Kushwaha, H.S. Geochemical modelling of uranium speciation in the subsurface aquatic environment of Punjab state in India. J. Geol. Min. Res. 2011, 3, 137–146. [Google Scholar]
- Trabelsi, R.; Zouari, K. Coupled geochemical modeling and multivariate statistical analysis approach for the assessment of groundwater quality in irrigated areas: A study from North Eastern of Tunisia. Groundw. Sustain. Dev. 2019, 8, 413–427. [Google Scholar] [CrossRef]
- Garrels, R.M.; Thompson, M.E. A chemical model for sea water at 25 °C and one atmosphere total pressure. Amer. J. Sci. 1962 260, 57–66. [CrossRef]
- Sun, L.H.; Gui, H.R. Establishment of water source discrimination model in coal mine by using hydrogeochemistry and statistical analysis: A case study from Renlou Coal Mine in northern Anhui Province, China. J. Coal. Sci. Eng. 2012, 18, 385–389. [Google Scholar] [CrossRef]
- Sklash, M.G.; Farvolden, R.N. The Role of Groundwater in Storm Runoff. J. Hydrol. 1979, 43, 45–65. [Google Scholar] [CrossRef]
- Gui, J.; Li, Z.; Yuan, R.; Xue, J. Hydrograph separation and the influence from climate warming on runoff in the north-eastern Tibetan Plateau. Quat. Int. 2019, 525, 45–53. [Google Scholar] [CrossRef]
- Xia, C.; Liu, G.; Xia, H.; Jiang, F.; Meng, Y. Influence of saline intrusion on the wetland ecosystem revealed by isotopic and hydrochemical indicators in the Yellow River Delta, China. Ecol. Indic. 2021, 133, 108422. [Google Scholar] [CrossRef]
- Falcone, R.A.; Falgiani, A.; Parisse, B.; Petitta, M.; Spizzico, M.; Tallini, M. Chemical and isotopic (δ18O‰, δ2H‰, δ13C‰, 222Rn)multi-tracing for groundwater conceptual model of carbonate aquifer(Gran Sasso INFN underground laboratory–central Italy). J. Hydrol. 2008, 357, 368–388. [Google Scholar] [CrossRef]
- Medici, G.; Langman, J.B. Pathways and Estimate of Aquifer Recharge in a Flood Basalt Terrain; A Review from the South Fork Palouse River Basin (Columbia River Plateau, USA). Sustainability 2022, 14, 11349. [Google Scholar] [CrossRef]
- Jeelani, G.; Lone, S.A.; Nisa, A.U.; Deshpande, R.D.; Padhya, V. Use of stable water isotopes to identify and estimate the sources of groundwater recharge in an alluvial aquifer of Upper Jhelum Basin (UJB), western Himalayas. Hydrol. Sci. J. 2021, 66, 2330–2339. [Google Scholar] [CrossRef]
- Rainwater, F.H.; Thatcher, L.L. Methods for Collection and Analysis of Water Samples; US Government Printing Office: Washington, DC, USA, 1960. [CrossRef]
- Fishman, J.; Friedman, C. Methods for Determination of Inorganic Substances in Water and Fluvial Sediments; U.S. Geol. Surv. Book 5, Chapter A1; Open-File Report 85-495; USGS: Denver, CO, USA, 1985; Volume 84.
- American Society for Testing and Materials (A.S.T.M.). Water and Environmental technology. In Annual Book of ASTM; Standards, U.S.A. Sec. 11, Vol. 11.01, and 11.02; A.S.T.M.: West Conshohocken, PA, USA, 2002. [Google Scholar]
- Aghazadeh, N.; Mogaddam, A. Assessment of groundwater quality and its suitability for drinking and agricultural uses in the Oshnavieh area, Northwest of Iran. J. Environ. Prot. 2010, 1, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Deutsch, J. Groundwater Geochemistry: Fundamentals and Applications to Contamination; Lewis Publishers: New York, NY, USA, 1997. [Google Scholar]
- Plummer, L.N.; Prestemon, E.C.; Parkhurst, D.L. An Interactive Code (NETPATH) for Modeling NET Geochemical Reactions along a Flow Path; U.S. Geological Survey, Water-Resources Investigations Report 91-4078; U.S. Geological Survey: Reston, Virginia, USA, 1991; 227p. [CrossRef]
- Plummer, L.N.; Prestemon, E.C.; Parkhurst, D.L. An Interactive Code (NETPATH) for Modeling NET Geochemical Reactions along a Flow Path, Version 2.0; U.S. Geological Survey Water-Resources Investigations Report 94-4169; U.S. Geological Survey: Reston, Virginia, USA, 1994; 130p. [CrossRef]
- Hershey, L.; Heilweil, M.; Gardner, P.; Lyles, B.; Earman, S.; Thomas, J.; Lundmark, W. Ground-Water Chemistry Interpretations Supporting the Basin and Range Regional Carbonate-Rock Aquifer System (BARCAS) Study, Eastern Nevada and Western Utah. DHS; Publication No. 41230; Desert Research Institute Nevada System of Higher Education: Reno, NV, USA; US. Geological Survey: Reston, VA, USA, 2007.
- International Atomic Energy Agency (I.A.E.A.). Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle. Monograph Prepared under the Aegis of the I.A.E.A./UNESCO Working Group on Nuclear Techniques in Hydrology of the International Hydrological Program, STI./DOC./10; I.A.E.A.: Austria, Vienna, 1981; Volume 210. [Google Scholar]
- El Osta, M.; Masoud, M.; Alqarawy, A.; Elsayed, S.; Gad, M. Groundwater Suitability for Drinking and Irrigation Using Water Quality Indices and Multivariate Modeling in Makkah Al-Mukarramah Province, Saudi Arabia. Water 2022, 14, 483. [Google Scholar] [CrossRef]
- Alqarawy, A.; El Osta, M.; Masoud, M.; Elsayed, S.; Gad, M. Use of Hyperspectral Reflectance and Water Quality Indices to Assess Groundwater Quality for Drinking in Arid Regions, Saudi Arabia. Water 2022, 14, 2311. [Google Scholar] [CrossRef]
Well No | Calcite | Aragonite | Dolomite | Strontianite | Gypsum | Anhydrite | Celestite | SiO2 | Sepiolite |
---|---|---|---|---|---|---|---|---|---|
1 | −0.65 | −0.80 | −1.56 | −2.23 | −0.73 | −0.96 | −1.08 | −0.34 | −5.69 |
2 | −0.58 | −0.73 | −1.52 | −2.26 | −1.14 | −1.37 | −1.59 | −0.50 | −5.80 |
3 | −0.56 | −0.70 | −1.41 | −1.26 | −0.74 | −0.98 | −0.22 | −1.99 | −10.23 |
4 | −0.98 | −1.13 | −2.18 | −2.66 | −0.74 | −0.98 | −1.20 | −0.72 | −6.81 |
5 | −0.52 | −0.67 | −1.12 | −1.93 | −0.96 | −1.20 | −1.14 | −0.30 | −4.24 |
6 | −0.72 | −0.87 | −1.46 | −1.95 | −0.90 | −1.14 | −0.90 | −0.37 | −4.85 |
7 | −0.48 | −0.63 | −1.07 | −1.88 | −0.37 | −0.60 | −0.54 | −0.35 | −4.10 |
8 | −0.35 | −0.50 | −0.83 | −1.73 | −0.27 | −0.51 | −0.42 | −0.38 | −4.00 |
9 | −0.31 | −0.46 | −0.75 | −1.80 | −0.32 | −0.55 | −0.58 | −0.32 | −4.24 |
10 | −0.15 | −0.30 | −0.54 | −1.58 | −0.25 | −0.49 | −0.45 | −0.35 | −3.62 |
11 | −0.21 | −0.35 | −0.49 | −1.51 | −1.27 | −1.51 | −1.35 | −0.32 | −3.67 |
12 | −0.24 | −0.38 | −0.62 | −1.70 | −1.56 | −1.80 | −1.79 | −0.27 | −3.25 |
13 | −0.02 | −0.17 | −0.26 | −1.39 | −0.19 | −0.43 | −0.34 | −0.28 | −3.65 |
14 | 0.10 | −0.05 | −0.15 | −1.33 | −0.87 | −1.11 | −1.06 | −0.24 | −2.72 |
15 | −0.16 | −0.31 | −0.51 | −1.58 | −0.91 | −1.14 | −1.11 | −0.29 | −3.94 |
16 | −0.17 | −0.32 | −0.58 | −1.59 | −1.15 | −1.39 | −1.35 | −0.17 | −4.34 |
17 | −0.42 | −0.57 | −1.10 | −1.84 | −1.21 | −1.45 | −1.40 | −0.34 | −4.78 |
18 | −0.42 | −0.57 | −1.09 | −1.73 | −0.49 | −0.72 | −0.56 | −0.40 | −4.87 |
19 | −0.17 | −0.32 | −0.59 | −1.54 | −0.89 | −1.13 | −1.03 | −0.28 | −3.28 |
20 | −0.21 | −0.35 | −0.46 | −1.56 | −0.30 | −0.53 | −0.43 | −0.36 | −3.41 |
21 | −0.40 | −0.55 | −0.90 | −2.31 | 0.09 | −0.15 | −0.58 | −0.37 | −4.79 |
22 | 0.00 | −0.15 | −0.01 | −3.00 | 0.16 | −0.07 | −1.60 | −1.59 | −6.80 |
23 | −0.10 | −0.24 | −0.17 | −1.73 | −0.35 | −0.59 | −0.75 | −0.76 | −3.70 |
24 | −0.30 | −0.45 | −0.79 | −2.21 | −0.72 | −0.95 | −1.41 | −0.70 | −5.36 |
25 | −0.33 | −0.47 | −0.84 | −2.12 | −0.81 | −1.05 | −1.38 | −0.64 | −4.96 |
26 | −0.28 | −0.42 | −0.63 | −1.71 | −0.85 | −1.08 | −1.05 | −0.46 | −3.84 |
27 | −0.17 | −0.31 | −0.47 | −1.59 | −1.01 | −1.25 | −1.20 | −0.35 | −3.18 |
28 | −0.04 | −0.19 | −0.19 | −1.61 | −0.84 | −1.07 | −1.18 | −0.38 | −2.70 |
29 | 0.09 | −0.05 | 0.10 | −1.27 | 0.05 | −0.18 | −0.09 | −0.39 | −2.47 |
30 | 0.05 | −0.10 | −0.09 | −1.23 | −0.53 | −0.76 | −0.58 | −0.47 | −2.97 |
31 | 0.01 | −0.14 | −0.35 | −1.42 | −0.25 | −0.48 | −0.45 | −0.38 | −2.95 |
32 | −0.09 | −0.24 | −0.51 | −0.97 | −0.43 | −0.66 | −0.08 | −0.22 | −2.26 |
33 | −0.12 | −0.27 | −0.42 | −1.48 | −0.29 | −0.53 | −0.42 | −0.33 | −2.27 |
34 | 0.06 | −0.09 | −0.09 | −1.53 | 0.14 | −0.10 | −0.22 | −0.57 | −3.22 |
35 | 0.05 | −0.10 | 0.15 | −1.61 | −0.06 | −0.30 | −0.50 | −0.64 | −2.49 |
36 | 0.06 | −0.09 | 0.10 | −2.09 | −0.21 | −0.45 | −1.13 | −1.00 | −3.63 |
37 | 0.07 | −0.08 | −0.07 | −2.85 | −0.01 | −0.25 | −1.71 | −1.55 | −5.88 |
38 | 0.16 | 0.01 | 0.12 | −2.68 | −0.45 | −0.69 | −2.06 | −1.21 | −4.40 |
39 | 0.14 | −0.01 | 0.10 | −3.32 | −0.37 | −0.60 | −2.60 | −1.47 | −5.19 |
40 | 0.14 | 0.00 | 0.12 | −1.19 | −0.41 | −0.65 | −0.52 | −0.32 | −1.73 |
41 | −0.15 | −0.30 | −0.69 | −1.56 | −0.60 | −0.83 | −0.78 | −0.34 | −3.40 |
42 | 0.15 | 0.01 | −0.09 | −1.29 | −0.56 | −0.80 | −0.78 | −0.25 | −3.07 |
43 | −0.15 | −0.30 | −0.45 | −1.50 | −0.72 | −0.96 | −0.84 | −0.26 | −2.78 |
44 | 0.16 | 0.01 | −0.03 | −1.33 | −0.28 | −0.52 | −0.55 | −0.16 | −1.93 |
45 | 0.06 | −0.09 | −0.03 | −1.29 | −0.27 | −0.50 | −0.39 | −0.33 | −2.18 |
46 | −0.03 | −0.18 | −0.38 | −0.78 | −0.54 | −0.78 | −0.07 | −0.32 | −2.65 |
47 | −0.02 | −0.17 | −0.32 | −1.30 | −0.36 | −0.60 | −0.41 | −0.32 | −2.41 |
48 | −0.07 | −0.22 | −0.25 | −1.32 | −0.49 | −0.72 | −0.51 | −0.36 | −2.10 |
49 | −0.12 | −0.27 | −0.38 | −1.35 | −0.79 | −1.02 | −0.79 | −0.35 | −2.04 |
50 | −0.04 | −0.19 | −0.27 | −1.36 | −0.28 | −0.52 | −0.38 | −0.37 | −2.07 |
51 | 0.19 | 0.04 | 0.13 | −1.11 | −0.76 | −1.00 | −0.83 | −0.34 | −1.22 |
52 | 0.05 | −0.10 | −0.24 | −1.21 | −0.22 | −0.46 | −0.25 | −0.33 | −2.12 |
53 | 0.27 | 0.12 | 0.17 | −1.15 | −0.46 | −0.69 | −0.64 | −0.39 | −2.11 |
54 | −0.33 | −0.48 | −0.78 | −1.83 | −1.12 | −1.35 | −1.39 | −0.36 | −3.03 |
55 | −0.02 | −0.17 | −0.28 | −1.49 | −1.15 | −1.39 | −1.39 | −0.36 | −2.24 |
56 | 0.14 | −0.01 | −0.07 | −1.33 | −0.80 | −1.04 | −1.05 | −0.32 | −2.19 |
57 | 0.09 | −0.06 | 0.05 | −1.15 | −0.75 | −0.99 | −0.76 | −0.29 | −2.10 |
58 | 0.28 | 0.13 | 0.35 | −1.16 | −0.50 | −0.74 | −0.71 | −0.31 | −1.79 |
59 | 0.21 | 0.06 | 0.35 | −1.01 | −0.95 | −1.18 | −0.93 | −0.24 | −1.75 |
60 | 0.31 | 0.16 | 0.52 | −1.16 | −0.58 | −0.81 | −0.82 | −0.27 | −1.19 |
61 | 0.29 | 0.14 | 0.41 | −1.12 | −0.54 | −0.77 | −0.72 | −0.35 | −1.49 |
62 | 0.27 | 0.13 | 0.37 | −1.12 | −0.82 | −1.06 | −0.99 | −0.43 | −1.49 |
63 | 0.10 | −0.05 | 0.15 | −1.16 | −0.25 | −0.49 | −0.29 | −0.37 | −1.72 |
64 | 0.20 | 0.05 | 0.33 | −1.19 | −0.35 | −0.59 | −0.52 | −0.39 | −1.88 |
65 | 0.33 | 0.18 | 0.66 | −1.02 | 0.10 | −0.13 | −0.01 | −0.41 | −1.81 |
66 | 0.03 | −0.11 | 0.01 | −0.59 | −0.57 | −0.80 | 0.04 | −0.37 | −1.59 |
67 | 0.07 | −0.07 | 0.07 | −1.26 | −0.63 | −0.87 | −0.74 | −0.33 | −1.59 |
68 | 0.21 | 0.07 | 0.17 | −1.57 | −0.67 | −0.91 | −1.22 | −0.49 | −2.41 |
69 | 0.25 | 0.11 | 0.25 | −1.46 | −0.65 | −0.88 | −1.14 | −0.66 | −3.69 |
70 | 0.21 | 0.07 | 0.26 | −1.21 | −0.31 | −0.55 | −0.51 | −0.31 | −1.45 |
71 | 0.10 | −0.05 | 0.14 | −0.55 | −0.50 | −0.74 | 0.08 | −0.31 | −1.50 |
72 | 0.33 | 0.18 | 0.64 | −1.09 | −0.12 | −0.35 | −0.30 | −0.37 | −1.77 |
73 | 0.12 | −0.03 | 0.13 | −1.36 | −1.45 | −1.68 | −1.70 | −0.34 | −1.24 |
74 | −0.07 | −0.22 | −0.24 | −1.50 | −1.25 | −1.48 | −1.46 | −0.30 | −1.67 |
75 | 0.17 | 0.02 | 0.08 | −1.38 | −0.43 | −0.67 | −0.75 | −0.35 | −2.18 |
76 | 0.47 | 0.32 | 0.79 | −1.04 | −0.14 | −0.38 | −0.42 | −0.30 | −1.60 |
77 | 0.28 | 0.13 | 0.36 | −1.19 | −1.04 | −1.27 | −1.28 | −0.30 | −1.36 |
78 | 0.43 | 0.28 | 0.62 | −1.21 | −0.48 | −0.72 | −0.90 | −0.36 | −1.62 |
79 | 0.06 | −0.09 | 0.17 | −1.35 | −0.39 | −0.62 | −0.57 | −0.18 | −1.24 |
80 | 0.20 | 0.05 | 0.43 | −1.17 | −1.36 | −1.60 | −1.51 | −0.23 | −0.93 |
Flowing Pathway A | Flowing Pathway B | Flowing Pathway C | |||
---|---|---|---|---|---|
Minerals Involved (mmol/kg H2O) | Minerals Involved (mmol/kg H2O) | Minerals Involved (mmol/kg H2O) | |||
CALCITE | −0.75168 | CALCITE | −11.63734 | CALCITE | −4.40744 |
Ca−MONT | 12.32145 | Ca−MONT | 0.00566 | Ca−MONT | 9.09341 |
SYLVITE | 0.16605 | SYLVITE | 6.22078 | SYLVITE | 0.35017 |
DOLOMITE | −1.57484 | GYPSUM | 10.55809 | GYPSUM | 14.17006 |
GYPSUM | 15.1858 | SEPIOLIT | −0.00004 | SiO2 | 12.20306 |
SiO2 | 14.80311 | CELESTIT | −0.17823 | SEPIOLIT | 4.3475 |
SEPIOLIT | 7.46899 | ALBITE | −0.0185 | CELESTIT | −2.43591 |
Flow Path | Well No | EC | pH | TDS ppm | Ca | Mg | Na | K | Total Cations | CO3 | HCO3 | SO4 | Cl | Total Anions | SiO2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mmoles/L | |||||||||||||||
Flow path A | 69 | 2467.0 | 7.1 | 1533.5 | 5.48 | 2.62 | 7.83 | 0.45 | 16.38 | 0.00 | 6.63 | 6.97 | 5.09 | 18.70 | 0.38 |
25 | 1451.0 | 6.8 | 1145.0 | 3.80 | 2.11 | 6.09 | 0.33 | 12.32 | 0.00 | 4.55 | 5.73 | 2.82 | 13.09 | 0.40 | |
24 | 2070.0 | 6.7 | 1417.9 | 4.96 | 2.73 | 7.40 | 0.49 | 15.57 | 0.00 | 4.94 | 6.25 | 6.02 | 17.20 | 0.35 | |
77 | 1408.0 | 7.5 | 902.8 | 2.73 | 1.48 | 6.53 | 0.03 | 10.76 | 0.00 | 4.68 | 4.06 | 2.08 | 10.82 | 0.89 | |
27 | 1779.0 | 7.1 | 1136.7 | 2.40 | 1.51 | 10.01 | 0.10 | 14.02 | 0.00 | 5.20 | 5.41 | 2.57 | 13.18 | 0.78 | |
29 | 12,330.0 | 6.9 | 7272.9 | 23.23 | 15.87 | 43.50 | 0.28 | 82.88 | 0.00 | 3.12 | 24.98 | 69.11 | 97.22 | 0.68 | |
Flow path B | 4 | 2254.0 | 6.40 | 1410.04 | 4.11 | 2.16 | 9.57 | 0.31 | 16.16 | 0.00 | 2.47 | 6.77 | 6.63 | 15.87 | 0.33 |
3 | 2002.0 | 6.50 | 1201.03 | 4.72 | 2.05 | 5.22 | 0.40 | 12.39 | 0.00 | 4.29 | 5.62 | 4.39 | 14.30 | 0.02 | |
2 | 1082.0 | 6.60 | 656.55 | 2.75 | 1.04 | 3.05 | 0.22 | 7.06 | 0.00 | 4.42 | 2.71 | 1.34 | 8.47 | 0.55 | |
5 | 1480.0 | 6.70 | 927.00 | 3.01 | 2.20 | 4.35 | 0.24 | 9.80 | 0.00 | 4.29 | 4.68 | 1.77 | 10.74 | 0.89 | |
7 | 3920.0 | 6.70 | 2530.48 | 6.80 | 4.51 | 15.23 | 0.26 | 26.79 | 0.00 | 3.25 | 15.41 | 5.90 | 24.56 | 0.78 | |
8 | 4650.0 | 6.70 | 2994.88 | 8.77 | 5.78 | 17.40 | 0.36 | 32.32 | 0.00 | 3.51 | 16.66 | 10.76 | 30.93 | 0.72 | |
23 | 7660.0 | 7.00 | 4689.27 | 8.68 | 7.82 | 34.80 | 6.50 | 57.80 | 0.00 | 3.51 | 17.07 | 38.08 | 58.67 | 0.30 | |
Flow path C | 42 | 3070.0 | 7.0 | 1996.8 | 6.37 | 2.19 | 14.79 | 0.20 | 23.55 | 0.00 | 6.24 | 8.33 | 9.87 | 24.44 | 0.99 |
53 | 3100.0 | 7.3 | 1976.0 | 7.49 | 2.78 | 10.44 | 0.39 | 21.09 | 0.00 | 3.51 | 9.37 | 9.77 | 22.65 | 0.71 | |
32 | 3410.0 | 7.2 | 2245.4 | 5.75 | 2.37 | 17.40 | 0.18 | 25.70 | 0.00 | 2.86 | 14.16 | 2.91 | 19.93 | 1.05 | |
33 | 5130.0 | 7.1 | 3258.1 | 9.36 | 5.40 | 20.45 | 1.78 | 36.97 | 0.00 | 2.21 | 15.09 | 19.61 | 36.91 | 0.81 | |
36 | 6030.0 | 7.2 | 4191.8 | 9.98 | 8.23 | 28.71 | 0.82 | 47.74 | 0.00 | 2.86 | 20.82 | 22.92 | 46.60 | 0.17 | |
37 | 13,110.0 | 7.0 | 7630.3 | 20.51 | 10.80 | 62.64 | 0.55 | 94.50 | 0.00 | 2.60 | 22.90 | 79.13 | 104.63 | 0.05 | |
Rain | 87 | 6.94 | 29.15 | 0.18 | 0.02 | 0.10 | 0.00 | 0.30 | 0.00 | 0.24 | 0.07 | 0.16 | 0.46 | 0.00 | |
Sea | 67,900 | 7.80 | 43,062.71 | 12.48 | 80.98 | 542.88 | 9.21 | 645.54 | 0.42 | 2.10 | 31.23 | 695.81 | 729.55 | 0.00 |
Final Water | Mixing (Percent) | ||||
---|---|---|---|---|---|
Initial 1 Well 2 | Initial 2 Well 4 | Initial 3 Well 7 | Initial 4 Rain | Initial 5 Sea | |
17 | -- | 79% | -- | 21% | 0.00% |
21 | -- | 23% | -- | 7% | 70% |
23 | 14% | 0.00% | 77% | 5% | 4% |
55 | -- | 45% | -- | 53% | 2% |
65 | -- | 50% | -- | 32% | 18% |
72 | -- | 37% | -- | 26% | 37% |
73 | -- | 64% | -- | 36% | 0.00% |
80 | -- | 65% | -- | 34% | 0.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masoud, M.; Rajmohan, N.; Basahi, J.; Schneider, M.; Niyazi, B.; Alqarawy, A. Integrated Hydrogeochemical Groundwater Flow Path Modelling in an Arid Environment. Water 2022, 14, 3823. https://doi.org/10.3390/w14233823
Masoud M, Rajmohan N, Basahi J, Schneider M, Niyazi B, Alqarawy A. Integrated Hydrogeochemical Groundwater Flow Path Modelling in an Arid Environment. Water. 2022; 14(23):3823. https://doi.org/10.3390/w14233823
Chicago/Turabian StyleMasoud, Milad, Natarajan Rajmohan, Jalal Basahi, Michael Schneider, Burhan Niyazi, and Abdulaziz Alqarawy. 2022. "Integrated Hydrogeochemical Groundwater Flow Path Modelling in an Arid Environment" Water 14, no. 23: 3823. https://doi.org/10.3390/w14233823
APA StyleMasoud, M., Rajmohan, N., Basahi, J., Schneider, M., Niyazi, B., & Alqarawy, A. (2022). Integrated Hydrogeochemical Groundwater Flow Path Modelling in an Arid Environment. Water, 14(23), 3823. https://doi.org/10.3390/w14233823