Optimal Irrigation Levels Can Improve Maize Growth, Yield, and Water Use Efficiency under Drip Irrigation in Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Site
2.2. Experimental Design
2.3. Material
2.4. Sampling and Measurements
2.4.1. Stand Growth Index
2.4.2. Grain Yield and Yield Components
2.4.3. Data Analysis
2.4.4. Water Use Efficiency (WUE) [32]
2.5. Statistical Analysis
3. Results
3.1. Growth Index
Dry Matter Accumulation
3.2. Grain Yield and Harvest Index
3.2.1. Yield and Its Components
3.2.2. Harvest Index
3.3. Water Use Efficiency (WUE)
4. Discussion
4.1. Effects of Different Irrigation Quotas on Yield and Growth Index of Drip Irrigation Maize
4.2. Effects of Different Irrigation Quotas on WUE of Drip Irrigated Maize
5. Conclusions
- (1)
- From the comparative field observation experiment on four kinds of irrigation quotas under drip irrigation conditions, conducted for 9 consecutive years, it can be considered that the growth, yield, and irrigation WUE of maize are closely related to the irrigation quota. With the increase in irrigation quotas, the growth, yield, and irrigation water use efficiency of maize first increased, but then decreased.
- (2)
- Based on the analysis of each index, the growth index, dry matter accumulation, yields, and WUE with T3 were the highest. In comparison to T1, T2, and T4, the yield of T3 increased by 32.17%, 13.54%, and 11.27%, respectively, and the WUE increased by 16.56%, 6.49%, and 23.70%, respectively.
- (3)
- The significant correlations established between the maize yield and irrigation quotas could be simulated by Kuznets-style relation. When the irrigation quota (x) was 539.12 mm, the maize yield (y) was 16,043.92 kg·hm−2. Hence, optimizing the irrigation quota (540 mm) can effectively improve maize growth, yield, and water use efficiency under drip irrigation in the northwest region of China. In the future, the amount and duration of irrigation should be further optimized in the proposed planting methods, in order to further save water and increase efficiency.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilfred, V. Survey of genomics approaches to improve bioenergy traits in maize, sorghum and sugarcane. J. Integr. Plant Biol. 2011, 53, 105–119. [Google Scholar] [CrossRef]
- Illés, Á.; Szabó, A.; Mousavi, S.M.N.; Bojtor, C.; Vad, A.; Harsányi, E.; Sinka, L. The Influence of precision dripping irrigation system on the phenology and yield indices of sweet maize hybrids. Water 2022, 14, 2480. [Google Scholar] [CrossRef]
- Chen, Y.N.; Zhang, X.Q.; Fang, G.H.; Li, Z.; Wang, F.; Qin, J.X.; Sun, F. Potential risks and challenges of climate change in the arid region of northwestern China. Reg. Sustain. 2020, 1, 20–30. [Google Scholar] [CrossRef]
- Feng, X.P.; Lei, Y.J. Countermeasures and suggestions for sustainable development of water resources in Xinjiang. Agric. Biotechnol. 2019, 8, 126–134. [Google Scholar] [CrossRef]
- Wu, S.L.; Di, B.F.; Susan, L.; Ustin, S.L.; Constantine, A.; Stamatopoulos, C.A.; Li, J.; Zuo, Q.; Wu, X.; Ai, N.S. Classification and detection of dominant factors in geospatial patterns of traditional settlements in China. J. Geogr. Sci. 2022, 32, 873–891. [Google Scholar] [CrossRef]
- Jin, W.; Liu, S.S.; Zhang, K.; Kong, W. Influence of agricultural production efficiency on agricultural water consumption. J. Nat. Resour. 2018, 33, 1326–1339. (In Chinese) [Google Scholar]
- Giacomoni, M.H.; Kanta, L.; Zechman, E.M. Complex adaptive systems approach to simulate the sustainability of water resources and urbanization. J. Water Resour. Plan. Manag. 2013, 139, 554–564. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Chen, S.Y.; Sun, H.Y.; Pei, D.; Wang, Y.M. Dry matter, harvest index, grain yield and water efficiency as affected by water supply in winter wheat. Irrig. Sci. 2008, 27, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Cui, Y.; Qin, S.; Guo, H.; Yang, D.; Wang, C. Effect of drip irrigation on soil water balance and water use efficiency of maize in northwest China. Water 2021, 13, 217. [Google Scholar] [CrossRef]
- Chai, Y.W.; Chai, Q.; Li, R.; Li, Y.W.; Yang, C.G.; Cheng, H.B.; Chang, L.; Chai, S.X. Straw strip mulching in a semiarid rainfed agroecosystem achieves winter wheat yields similar to those of full plastic mulching by optimizing the soil hydrothermal regime. Crop J. 2022, 10, 879–892. [Google Scholar] [CrossRef]
- Ma, H.H.; Yang, T.; Niu, X.X.; Hou, Z.N.; Ma, X.W. Sound water and nitrogen management decreases nitrogen losses from a drip-fertigated cotton field in northwestern china. Sustainability 2021, 13, 1002. [Google Scholar] [CrossRef]
- Qi, D.L.; Hu, T.T.; Song, X. Effects of nitrogen application rates and irrigation regimes on grain yield and water use efficiency of maize under alternate partial root-zone irrigation. J. Integr. Agric. 2020, 19, 2792–2806. [Google Scholar] [CrossRef]
- Geng, Y.H.; Cao, G.J.; Wang, L.C.; Wang, M.; Huang, J.X. Can drip irrigation under mulch be replaced with shallow-buried drip irrigation in spring maize production systems in semiarid areas of northern China? J. Sci. Food Agric. 2020, 101, 1926–1934. [Google Scholar] [CrossRef] [PubMed]
- Saeed, I.A.M.; EI-Nadi, A.H. Forage sorghum yield and water use efficiency under variable irrigation. Irrig. Sci. 1998, 18, 67–71. [Google Scholar] [CrossRef]
- Niu, X.L.; Hu, T.T.; Liu, T.T.; Wu, X.; Feng, P.Y.; Liu, J.; Li, K.; Zhang, F.C. Appropriate partial water stress improving maize root absorbing capacity. J. Agric. Eng. 2014, 30, 80–86. (In Chinese) [Google Scholar] [CrossRef]
- Zheng, M.J.; Zhang, L.H.; Zhai, L.H.; Dong, Z.Q.; Jia, X.L. Comparison of irrigation strategies for summer maize under deficit irrigation: Grain yield and water use efficiency. Chin. J. Ecol. Agric. 2022, 30, 203–215. (In Chinese) [Google Scholar]
- Greaves, G.E.; Wang, Y.M. Effect of regulated deficit irrigation scheduling on water use of corn in southern Taiwan tropical environment. Agric. Water Manag. 2017, 188, 115–125. [Google Scholar] [CrossRef]
- Wang, X.Y.; Ma, H.; Gao, H.Y.; Li, N.N.; Li, J.H.; Xia, J.; Luo, H.H. Responses of cotton canopy structure characteristics to drip irrigation quota in north Xinjiang, China. J. Appl. Ecol. 2019, 30, 4169–4176. (In Chinese) [Google Scholar] [CrossRef]
- Han, C.Y.; Zhang, B.Z.; Liu, Y. Efficient water-saving irrigation based on regional irrigation schedule optimization. Desalination Water Treat. 2020, 187, 30–41. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Liu, C.W.; Xiao, C.H.; Xie, R.Z.; Ming, B.; Hou, P.; Liu, G.Z.; Xu, W.J.; Shen, D.P.; Wang, K.R.; et al. Optimizing water use efficiency and economic return of super high yield spring maize under drip irrigation and plastic mulching in arid areas of China. Field Crops Res. 2017, 211, 137–146. [Google Scholar] [CrossRef]
- Tang, G.M.; He, H.; Yang, J.Y.; Xu, W.L. Effect of irrigation quota on physiological characteristic and yield in drip irrigation under mulch of maize. Res. Soil Water Conserv. 2014, 21, 293–297. (In Chinese) [Google Scholar] [CrossRef]
- Wu, L.F.; Zhang, F.C.; Fan, J.L.; Zhou, H.M.; Liang, F.; Gao, Z.J. Effects of water and fertilizer coupling on cotton yield, net benefits and water use efficiency. J. Agric. Mach. 2015, 46, 164–172. [Google Scholar] [CrossRef]
- Liu, Y.E.; Hou, P.; Huang, G.R.; Zhong, X.L.; Li, H.R.; Zhao, J.R.; Li, S.K.; Mei, X.R. Maize grain yield and water use efficiency in relation to climatic factors and plant population in northern China. J. Integr. Agric. 2021, 20, 3156–3169. [Google Scholar] [CrossRef]
- Sun, K.; Niu, J.R.; Wang, C.X.; Fu, Q.P.; Yang, G.; Liang, F.; Wang, Y.Q. Effects of different irrigation modes on the growth, physiology, farmland microclimate characteristics, and yield of cotton in an oasis. Water 2022, 14, 1579. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle-Sice Analysis. In Methods of Soil Analysis, Part 1, 2nd ed.; Agronomy Mono-graphs No.9; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986. [Google Scholar]
- Gong, L.S.; Qu, S.J.; Huang, G.M.; Guo, Y.L.; Zhang, M.C.; Li, Z.H.; Zhou, Y.Y.; Duan, L.S. Improving maize grain yield by formulating plant growth regulator strategies in north China. J. Integr. Agric. 2021, 20, 622–632. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Ming, B.; Shen, D.P.; Xie, R.Z.; Hou, P.; Xue, J.; Wang, K.R.; Li, S.K. Optimizing Grain Yield and Water Use Efficiency Based on the Relationship between Leaf Area Index and Evapotranspiration. Agriculture 2021, 11, 4. [Google Scholar] [CrossRef]
- Smoczynska, A.; Szweykowska-Kulinska, Z. MicroRNA-mediated regulation of flower development in grasses. Acta Biochim. Pol. 2016, 63, 687–692. [Google Scholar] [CrossRef] [PubMed]
- EL-Hendawy, S.E.; EL-Lattief, E.A.A.; Ahmed, M.S.; Schmidhalter, U. Irrigation rate and plant density effects on yield and water use efficiency of drip-irrigated corn. Agric. Water Manag. 2008, 95, 836–844. [Google Scholar] [CrossRef]
- Liu, W.M.; Hou, P.; Liu, G.Z.; Yang, Y.S.; Guo, X.X.; Ming, B.; Xie, R.Z.; Wang, K.R.; Liu, Y.E.; Li, S.K. Contribution of total dry matter and harvest index to maize grain yield-A multisource data analysis. Food Energy Secur. 2020, 9, e256. [Google Scholar] [CrossRef]
- Wang, F.; Xie, R.Z.; Ming, B.; Wang, K.R.; Hou, P.; Chen, J.L.; Liu, G.Z.; Zhang, G.Q.; Xue, J.; Li, S.K. Dry matter accumulation after silking and kernel weight are the key factors for increasing maize yield and water use efficiency. Agric. Water 2021, 254, 106938. [Google Scholar] [CrossRef]
- Bandyopadhyay, K.K.; Misra, A.K.; Ghosh, P.K.; Hati, K.M.; Mandal, K.G.; Moahnty, M. Effect of irrigation and nitrogen application methods on input use efficiency of wheat under limited water supply in a vertisol of central india. Irrig. Sci. 2009, 28, 285–299. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Y.; Zhang, J.G.; Hu, Q.L.; Xue, J. Effects of irrigation regimes on soil water dynamics of two typical woody halophyte species in Taklimakan Desert Highway Shelterbelt. Water 2022, 14, 1908. [Google Scholar] [CrossRef]
- Li, J.G.; Qu, Z.Y.; Chen, J.; Wang, F.; Jin, Q. Effect of different thresholds of drip irrigation using saline water on soil salt transportation and maize yield. Water 2019, 10, 1855. [Google Scholar] [CrossRef] [Green Version]
- Fu, Q.P.; Wang, Q.J.; Shen, X.L.; Fan, J. Optimizing water and nitrogen inputs for winter wheat cropping system on the Loess Plateau, China. J. Arid Land 2014, 6, 230–242. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Su, Y.Z. Effects of soils and irrigation volume on maize yield, irrigation water productivity, and nitrogen uptake. Sci. Rep. 2019, 9, 7740. [Google Scholar] [CrossRef] [Green Version]
- You, Y.L.; Song, P.; Yang, X.L.; Zheng, Y.P.; Dong, L.; Chen, J. Optimizing irrigation for winter wheat to maximize yield and maintain high-efficient water use in a semi-arid environment. Agric. Water Manag. 2022, 273, 107901. [Google Scholar] [CrossRef]
- Jia, Q.M.; Sun, L.F.; Ali, S.; Liu, D.H.; Zhang, Y.; Ren, X.L.; Zhang, P.; Jia, Z.K. Deficit irrigation and planting patterns strategies to improve maize yield and water productivity at different plant densities in semiarid regions. Sci. Rep. 2017, 7, 13881. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Zhang, X.; Lei, Q.Y.; Liu, F. Effects of drip irrigation nitrogen coupling on dry matter accumulation and yield of Summer Maize in arid areas of China. Field Crops Res. 2021, 274, 108321. [Google Scholar] [CrossRef]
- Song, M.D.; Li, Z.P.; Feng, H. Effects of irrigation and nitrogen regimes on dry matter dynamic accumulation and yield of winter wheat. Trans. Chin. Soc. Agric. Eng. 2016, 32, 119–126. (In Chinese) [Google Scholar]
- Zou, H.; Huang, X.F.; Gong, S.H. Effects of water deficit on soil moisture and temperature regimes in subsurface drip irrigated summer corn field. Trans. Chin. Soc. Agric. Mach. 2012, 43, 72–77. [Google Scholar] [CrossRef]
- Wang, J.T.; Du, G.F.; Tian, J.S.; Jiang, C.D.; Zhang, Y.J.; Zhang, W.F. Mulched drip irrigation increases cotton yield and water use efficiency via improving fine root plasticity. Agric. Water Manag. 2021, 255, 106992. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Hokam, E.M.; Schmidhalter, U. Drip irrigation frequency: The effects and their interaction with nitrogen fertilization on sandy soil water distribution, maize yield and water use efficiency under Egyptian conditions. J. Agron. Crop. Sci. 2008, 194, 180–192. [Google Scholar] [CrossRef]
- Yavuz, D.; Yavuz, N.; Seymen, M.; Turkmen, O. Evapotranspiration, crop coefficient and seed yield of drip irrigated pumpkin under semi-arid conditions. Sci. Hortic. 2016, 197, 33–40. [Google Scholar] [CrossRef]
Soil Depth (cm) | Organic Matter (g·kg−1) | Total Nitrogen (g·kg−1) | Olsen-P (mg·kg−1) | Avail.K (mg·kg−1) | Bulk Density (g·cm−3) | Saturated Volumetric Water Content (%) | pH |
---|---|---|---|---|---|---|---|
0–20 | 16.79 | 1.44 | 26.52 | 415.98 | 1.56 | 32.01 | 8.19 |
20–40 | 17.92 | 1.40 | 26.76 | 416.78 | 1.67 | 33.14 | 8.20 |
40–60 | 16.74 | 1.38 | 23.56 | 354.65 | 1.72 | 33.26 | 8.16 |
60–80 | 8.16 | 1.03 | 8.13 | 246.37 | 1.74 | 34.54 | 8.14 |
80–100 | 7.04 | 0.80 | 6.15 | 214.47 | 1.76 | 35.67 | 8.16 |
Index | Total Hardness (mg/L) (CaCO3) | Mineralization Degree (mg/L) | (NH4-N) (mg/L) | Permanganate Index (mg/L) | SO42− (mg/L) | Cl− (mg/L) | Phenol |
---|---|---|---|---|---|---|---|
Content | 155 | 367 | <0.05 | 13.53 | 92.09 | 25.53 | <0.002 |
Treatment/Period | Seedling Stage | Jointing Stage | Bell-Mouth Stage | Heading Stage | Flowering Stage | Silking Stage | Grain Formation Stage | Milk-Ripe Stage | Maturity Stage | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|
Irrigation quantity (mm) | T1 | 13.7 | 53.6 | 53.6 | 53.6 | 53.6 | 53.6 | 50.9 | 45.5 | 41.9 | 420.0 |
T2 | 16.4 | 60.0 | 60.0 | 60.0 | 60.0 | 60.0 | 60.0 | 56.4 | 47.2 | 480.0 | |
T3 | 16.4 | 69.1 | 69.1 | 69.1 | 69.1 | 69.1 | 65.5 | 58.2 | 54.4 | 540.0 | |
T4 | 19.0 | 75.5 | 74.5 | 75.5 | 74.5 | 75.5 | 75.5 | 70.0 | 60.0 | 600.0 | |
Fertilizer amount (kg·hm−2) | Urea | 0.0 | 81.8 | 81.8 | 90.9 | 81.8 | 81.8 | 72.7 | 54.5 | 0.0 | 545.3 |
Monoammonium phosphate | 36.4 | 36.4 | 45.5 | 45.5 | 45.5 | 27.3 | 18.2 | 18.2 | 0.0 | 273.0 | |
Potassium sulphate | 0.0 | 18.2 | 27.3 | 27.3 | 36.4 | 22.7 | 18.2 | 13.6 | 0.0 | 163.7 |
Years | Sowing Date | Harvest Date | Flowering Stage | Maturity Stage |
---|---|---|---|---|
2013 | 8th May | 20th September | 18th July | 23th August |
2014 | 5th May | 22nd September | 13th July | 26th August |
2015 | 2nd May | 25th September | 15th July | 24th August |
2016 | 30th April | 24th September | 17th July | 25th August |
2017 | 7th May | 28th September | 20th July | 28th August |
2018 | 28th April | 27th September | 18th July | 25th August |
2019 | 30th April | 22nd September | 14th July | 22nd August |
2020 | 26th April | 1st October | 15th July | 2nd September |
2021 | 7th May | 24th September | 19th July | 27th August |
Year | Treatment | Ear Diameter (mm) | Kernel Number per Row | Row Number per Ear | 1000-Kernel Weight (g) | Yield (kg·hm−2) |
---|---|---|---|---|---|---|
2013 | T1 | 42.01 ± 2.11 b | 35.26 ± 3.69 b | 14.26 ± 0.89 b | 322.65 ± 23.83 c | 10,495.01 ± 1063.83 c |
T2 | 43.67 ± 4.54 ab | 35.87 ± 1.83 ab | 14.54 ± 0.59 b | 329.14 ± 28.11 bc | 12,841.24 ± 987.93 b | |
T3 | 44.11 ± 1.45 a | 36.52 ± 2.22 a | 16.27 ± 0.67 a | 346.63 ± 31.03 a | 15,852.10 ± 1293.72 a | |
T4 | 43.09 ± 3.69 ab | 35.90 ± 2.81 ab | 14.91 ± 1.05 b | 333.17 ± 34.69 b | 15,601.48 ± 1168.72 ab | |
2014 | T1 | 43.21 ± 1.35 c | 35.92 ± 2.75 ab | 15.19 ± 1.01 a | 319.83 ± 25.17 c | 11,702.33 ± 968.15 c |
T2 | 44.67 ± 1.58 ab | 35.96 ± 2.11 ab | 14.83 ± 0.88 ab | 339.12 ± 22.95 b | 13,366.67 ± 1473.38 ab | |
T3 | 45.94 ± 1.29 a | 36.14 ± 3.61 a | 15.26 ± 0.27 a | 358.2 ± 18.37 a | 14,404.35 ± 1185.43 a | |
T4 | 44.90 ± 1.53 ab | 35.93 ± 1.98 ab | 14.74 ± 0.83 ab | 345.27 ± 25.55 b | 12,833.21 ± 1277.49 bc | |
2015 | T1 | 44.30 ± 1.97 c | 29.50 ± 3.09 b | 12.60 ± 0.95 bc | 335.58 ± 34.03 c | 13,916.40 ± 2026.18 b |
T2 | 47.22 ± 1.34 ab | 33.35 ± 1.95 ab | 12.80 ± 0.98 bc | 365.74 ± 29.18 bc | 14,842.01 ± 1567.29 b | |
T3 | 49.24 ± 1.74 a | 35.24 ± 2.49 a | 14.05 ± 0.48 a | 393.92 ± 21.86 a | 16,515.66 ± 2617.32 a | |
T4 | 48.05 ± 3.19 a | 30.85 ± 1.09 b | 13.65 ± 1.00 ab | 337.29 ± 17.84 c | 14,288.22 ± 1632.62 b | |
2016 | T1 | 43.42 ± 1.36 c | 29.75 ± 2.69 b | 13.43 ± 0.43 b | 350.88 ± 21.07 b | 12,308.60 ± 1178.62 b |
T2 | 44.00 ± 1.61 bc | 33.30 ± 1.14 ab | 14.75 ± 1.41 a | 365.43 ± 26.76 b | 15,511.86 ± 1365.48 b | |
T3 | 48.55 ± 1.75 a | 34.60 ± 0.75 a | 14.90 ± 0.50 a | 376.14 ± 33.57 a | 16,843.50 ± 1634.13 a | |
T4 | 45.50 ± 0.43 b | 33.05 ± 2.83 ab | 14.60 ± 0.86 a | 354.94 ± 72.73 b | 15,063.40 ± 1549.37 b | |
2017 | T1 | 46.18 ± 2.04 b | 31.90 ± 2.14 c | 14.65 ± 0.61 a | 324.00 ± 27.39 c | 12,831.30 ± 1375.19 bc |
T2 | 46.66 ± 1.59 ab | 34.05 ± 1.47 ab | 14.71 ± 0.88 a | 330.50 ± 37.18 b | 14,236.02 ± 1467.28 b | |
T3 | 47.01 ± 1.38 a | 34.75 ± 1.64 a | 14.90 ± 0.64 a | 345.75 ± 31.29 a | 16,739.75 ± 1275.74 a | |
T4 | 47.97 ± 1.04 a | 35.45 ± 0.94 a | 13.90 ± 0.48 ab | 325.75 ± 35.44 bc | 14,877.88 ± 1128.48 b | |
2018 | T1 | 46.51 ± 1.78 b | 32.10 ± 1.89 b | 14.00 ± 0.86 a | 325.425 ± 19.91 b | 12,622.08 ± 1022.43 b |
T2 | 46.85 ± 2.73 b | 32.45 ± 2.25 b | 14.30 ± 0.50 a | 322.2 ± 15.62 b | 15,041.43 ± 1793.74 b | |
T3 | 49.00 ± 3.49 a | 35.65 ± 3.85 a | 14.30 ± 0.30 a | 347.225 ± 36.72 a | 16,320.98 ± 1317.82 a | |
T4 | 44.85 ± 1.17 c | 34.45 ± 3.51 ab | 13.80 ± 0.77 a | 324.475 ± 14.55 b | 15,788.32 ± 1082.73 ab | |
2019 | T1 | 43.57 ± 0.11 a | 34.75 ± 1.94 b | 16.42 ± 0.93 b | 323.50 ± 41.75 b | 12,315.23 ± 1367.05 b |
T2 | 43.55 ± 0.08 a | 33.05 ± 1.52 ab | 16.11 ± 0.36 b | 329.25 ± 40.56 a | 13,164.46 ± 1506.54 b | |
T3 | 43.64 ± 0.19 a | 35.90 ± 2.62 a | 25.25 ± 0.72 a | 326.00 ± 29.86 a | 16,408.04 ± 1480.95 a | |
T4 | 43.47 ± 0.08 a | 33.35 ± 2.94 ab | 15.84 ± 1.03 b | 323.25 ± 16.07 b | 13,866.91 ± 2277.41 b | |
2020 | T1 | 42.83 ± 1.88 c | 31.05 ± 1.59 a | 14.7 ± 0.38 a | 329.14 ± 39.01 c | 13,818.51 ± 700.42 c |
T2 | 43.51 ± 0.99 bc | 31.40 ± 0.21 a | 14.80 ± 0.53 a | 333.73 ± 33.29 bc | 15,775.93 ± 2026.60 bc | |
T3 | 49.55 ± 1.54 a | 31.30 ± 0.90 a | 14.93 ± 1.10 a | 369.91 ± 59.09 a | 18,800.32 ± 1653.87 a | |
T4 | 47.82 ± 1.06 ab | 32.80 ± 0.73 a | 14.91 ± 0.82 a | 346.58 ± 30.21 b | 16,053.01 ± 2651.63 b | |
2021 | T1 | 43.63 ± 0.45 b | 30.55 ± 0.60 b | 13.78 ± 0.37 a | 329.50 ± 26.34 c | 12,827.10 ± 1446.74 b |
T2 | 43.98 ± 1.83 b | 30.33 ± 2.09 b | 13.85 ± 0.13 a | 340.00 ± 19.05 b | 16,565.66 ± 1056.69 b | |
T3 | 45.52 ± 0.83 a | 32.53 ± 2.09 a | 14.02 ± 0.13 a | 372.50 ± 16.40 a | 17,247.86 ± 614.30 a | |
T4 | 44.54 ± 1.96 b | 31.93 ± 1.73 ab | 13.95 ± 0.51 a | 344.75 ± 16.33 b | 15,658.92 ± 1971.10 b | |
Mean | T1 | 43.96 ± 1.45 c | 32.31 ± 2.26 c | 14.34 ± 0.71 b | 328.95 ± 28.72 c | 12,537.40 ± 1238.73 c |
T2 | 44.90 ± 1.81 bc | 33.31 ± 1.62 bc | 14.52 ± 0.70 ab | 339.46 ± 28.08 b | 14,593.92 ± 1471.44 b | |
T3 | 46.95 ± 34.74 a | 34.74 ± 2.24 a | 15.99 ± 0.53 a | 359.59 ± 30.91 a | 16,570.28 ± 1452.59 a | |
T4 | 45.58 ± 33.75 b | 33.75 ± 2.06 ab | 14.48 ± 0.82 ab | 337.28 ± 29.27 bc | 14,892.37 ± 1637.73 b |
Treatment | Dry Matter at Flowering Stage (kg·hm−2) | Dry Matter at Maturity (kg·hm−2) | Dry Matter Translocation (kg·hm−2) | Dry Matter Transport Efficiency (%) | Grain Contribution (%) | Harvest Index (%) |
---|---|---|---|---|---|---|
T1 | 15,890.05 ± 1738.37 c | 21,814.93 ± 1188.26 c | 6569.02 ± 1555.33 c | 53.43 ± 22.60 c | 40.00 ± 20.44 c | 60.10 ± 14.17 c |
T2 | 17,657.26 ± 1899.31 bc | 23,613.32 ± 1371.05 b | 6601.98 ± 1200.16 bc | 58.63 ± 26.12 bc | 48.59 ± 22.75 bc | 62.73 ± 8.59 b |
T3 | 18,447.08 ± 1107.74 a | 26,110.00 ± 1906.50 a | 7479.68 ± 1587.54 a | 67.36 ± 21.52 a | 51.97 ± 16.94 a | 64.68 ± 19.07 a |
T4 | 17,645.46 ± 1968.47 bc | 24,893.06 ± 1434.82 b | 6802.67 ± 1968.47 b | 65.96 ± 22.77 ab | 46.69 ± 22.79 bc | 64.25 ± 4.51 a |
Year | Treatment | Irrigation Amount in Maize Growth Period (mm) | Yield (kg·hm−2) | IWUE (kg·m−3) | WUE (kg·m−3) |
---|---|---|---|---|---|
2013 | T1 | 420 | 10,495.01 c | 2.50 c | 2.33 b |
T2 | 480 | 12,841.24 b | 2.68 b | 2.52 ab | |
T3 | 540 | 15,852.10 a | 2.94 a | 2.79 a | |
T4 | 600 | 15,601.48 ab | 2.60 b | 2.48 ab | |
2014 | T1 | 420 | 11,702.33 c | 2.79 a | 2.33 b |
T2 | 480 | 13,366.67 ab | 2.79 a | 2.55 ab | |
T3 | 540 | 14,404.35 a | 2.67 ab | 3.08 a | |
T4 | 600 | 12,833.21 bc | 2.14 b | 2.00 c | |
2015 | T1 | 420 | 13,916.40 b | 3.35 a | 2.56 ab |
T2 | 480 | 14,842.01 b | 3.09 b | 2.71 ab | |
T3 | 540 | 16,515.66 a | 3.06 b | 3.03 a | |
T4 | 600 | 14,288.22 b | 2.38 c | 2.14 b | |
2016 | T1 | 420 | 12,308.60 b | 3.41 a | 2.42 b |
T2 | 480 | 15,511.86 b | 3.23 b | 2.73 ab | |
T3 | 540 | 16,843.50 a | 3.12 b | 3.10 a | |
T4 | 600 | 15,063.40 b | 2.51 c | 2.19 c | |
2017 | T1 | 420 | 12,831.30 bc | 3.29 a | 2.44 ab |
T2 | 480 | 14,236.02 b | 2.97 ab | 2.43 ab | |
T3 | 540 | 16,739.75 a | 3.04 ab | 2.81 a | |
T4 | 600 | 14,877.88 b | 2.48 b | 2.11 b | |
2018 | T1 | 420 | 12,622.08 b | 3.48 a | 2.55 b |
T2 | 480 | 15,041.43 b | 3.13 ab | 2.79 ab | |
T3 | 540 | 16,320.98 a | 3.02 ab | 3.03 a | |
T4 | 600 | 15,788.32 ab | 2.63 b | 2.39 c | |
2019 | T1 | 420 | 12,315.23 b | 3.41 a | 2.54 b |
T2 | 480 | 13,164.46 b | 2.74 bc | 2.34 b | |
T3 | 540 | 16,408.04 a | 3.04 b | 3.04 a | |
T4 | 600 | 13,866.91 b | 2.31 c | 2.03 c | |
2020 | T1 | 420 | 13,818.51 c | 3.77 a | 3.01 ab |
T2 | 480 | 15,775.93 bc | 3.29 b | 3.09 ab | |
T3 | 540 | 18,800.32 a | 3.48 b | 3.31 a | |
T4 | 600 | 16,053.01 b | 2.68 c | 2.55 b | |
2021 | T1 | 420 | 12,827.10 b | 3.29 a | 2.95 b |
T2 | 480 | 16,565.66 b | 3.45 a | 3.22 ab | |
T3 | 540 | 17,247.86 a | 3.19 ab | 3.52 a | |
T4 | 600 | 15,658.92 b | 2.61 b | 2.47 c | |
Mean | T1 | 420 | 12,537.40 c | 3.49 a | 2.57 b |
T2 | 480 | 14,593.92 b | 3.15 b | 2.88 ab | |
T3 | 540 | 16,570.28 a | 3.18 b | 3.08 a | |
T4 | 600 | 14,892.37 b | 2.56 c | 2.35 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Wang, G.; Liang, F.; Li, Q.; Tian, Y.; Jia, H. Optimal Irrigation Levels Can Improve Maize Growth, Yield, and Water Use Efficiency under Drip Irrigation in Northwest China. Water 2022, 14, 3822. https://doi.org/10.3390/w14233822
Liu M, Wang G, Liang F, Li Q, Tian Y, Jia H. Optimal Irrigation Levels Can Improve Maize Growth, Yield, and Water Use Efficiency under Drip Irrigation in Northwest China. Water. 2022; 14(23):3822. https://doi.org/10.3390/w14233822
Chicago/Turabian StyleLiu, Mengjie, Guodong Wang, Fei Liang, Quansheng Li, Yuxin Tian, and Hongtao Jia. 2022. "Optimal Irrigation Levels Can Improve Maize Growth, Yield, and Water Use Efficiency under Drip Irrigation in Northwest China" Water 14, no. 23: 3822. https://doi.org/10.3390/w14233822
APA StyleLiu, M., Wang, G., Liang, F., Li, Q., Tian, Y., & Jia, H. (2022). Optimal Irrigation Levels Can Improve Maize Growth, Yield, and Water Use Efficiency under Drip Irrigation in Northwest China. Water, 14(23), 3822. https://doi.org/10.3390/w14233822