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Abstract: Water resource management and flood forecasting are crucial societal and financial stakes
requiring reliable predictions of flow parameters (depth, velocity), the accuracy of which is often
limited by uncertainties in hydrodynamic numerical models. In this study, we assess the effect of
two uncertainty sources, namely breach characteristics induced by overtopping and the roughness
coefficient, on water elevations and inundation extent. A two-dimensional (2D) hydraulic solver
was applied in a Monte Carlo integration framework to a reach of the Loire river (France) including
about 300 physical parameters. Inundation hazard maps for different flood scenarios allowed for
the highlighting of the impact of the breach development chronology. Special attention was paid
to proposing a relevant sensitivity analysis to examine the factors influencing the depth and extent
of flooding. The spatial analysis of the vulnerability area induced by a levee breach width exhibits
that, with increasing the flood discharge, the rise of the parameter influence is accompanied by a
more localized spatial effect. This argues for a local analysis to allow a clear understanding of the
flood hazard. The physical interpretation, highlighted by a global sensitivity analysis, showed the
dependence of the flood simulation on the main factors studied, i.e., the roughness coefficients and
the characteristics of the breaches.

Keywords: flood hazard; dike breach; Monte Carlo framework; global sensitivity analysis

1. Introduction

Floods have become a common experience worldwide, inflicting massive losses on
human life and widespread destruction of properties and the environment [1]. Costs and
causalities are likely to be exacerbated owing to the effects of population growth, climate
change, increased urbanization, limited drainage infrastructures and storage zones [2–4], as
well as to the actual limitations of early warning systems. Fluvial dikes (i.e., embankment
levees along river banks) have been built as defense structures against floods, but they can
fail, leading to severe damage in the protected areas [5]. Dike breaching can be induced by
different phenomena, but overtopping, generating surface erosion and side instabilities, is
identified as the most frequent causes of failure [6]. Overtopping normally occurs if the
water level exceeds the dike crest or the flow overtops a weak dike segment of a river. The
quantitative assessment of flood hazard is an important part of the effort toward gaining
higher safety levels in flood-prone areas, identifying possible hazards, and analyzing their
causes, frequencies, and uncertainties [7,8].

Numerical hydraulic models for flood propagation induced by levee breaches do not
only offer the potential to characterize flow and to map flood hazard, but also help to
design mitigating measures and support effective land use and emergency planning [9].
However, despite the significant improvement in computational resources, numerical
hydraulic models predict the flow patterns with an uncertainty range that is strongly linked
to the approximate description of hydraulic parameters [10], hydrological and geographical
data [11,12], and to the breach parameters (e.g., location, condition for initiation, expansion,
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final dimensions [13–17]). In this work, the topography and hydrological forcing are
considered as known. Integrating topography in an uncertainty quantification process is
challenging, due to the spatial structure characterization of its uncertainty in relation to the
river/channel morphology [18]. The upstream boundary condition corresponding to the
hydrological forcing is extrapolated from discharge frequency curves. A stage-discharge
relationship reconstructed from hydrological observations is assumed to be known at the
model downstream end, although, in addition to measurement errors, this relationship
relies on several assumptions (e.g., uniform flow), some of which inevitably introduce
errors [19]. For the sake of simplification, the present work focuses on how the friction
parameter and the occurrence of multiple breaches influence the flood hazard assessment.
Bed roughness is widely considered as a primary source of uncertainty [20]. The levee
breach modelling ranges from simple empirical equations [21] to complex models solving
a coupled system of shallow water and sediment transport equations [22]. For practical
modelling of flood inundations induced by levee breaching, parametric models are a
suitable approach [23], describing the breach expansion by simplified laws. Since breaching
is highly dependent on the geometrical and geotechnical characteristics of the levee, there
are uncertainties with regard to breach initiation and development [24].

To deal with uncertainties, probabilistic approaches have gained attention for pro-
viding insight into the robustness of the modelling results. The classical method for
propagating uncertainty and analyzing model parameter sensitivity through the model
is the Monte Carlo technique [25–27], which is generic and robust, but computationally
expensive for large river domains with complex topographies [28]. One way to diminish
the computational burden is the use of one-dimensional (1D) or coupled 1D-2D models.
However, 1D models fail in representing some aspects of out-of-bank flows, such as the
complex topographic gradients found in floodplains or confluence areas. Coupled 1D-2D
models can be a good alternative [29], but the momentum exchange between channel and
floodplain or return flow from floodplain to channel are ignored [30]. Two-dimensional
depth-averaged hydraulic models are currently at the forefront of engineering applications
for river flood propagation [31].

Based on a reduced number of model computations, other effective ways of over-
coming the large Monte Carlo computational burden can be found in the literature. First,
an alternative known as emulation modelling aims at representing the large-scale flood
hazard system with a model that is much less computationally demanding [32]. Still, the
emulator techniques introduce additional uncertainties, as they approximate the original
model. Second, a limited number of runs are used to evaluate model uncertainty estimates.
For instance, the associated probabilities for a design flood event of given return period
are estimated from breach scenario probabilities derived from a fragility curve [28]. How-
ever, computational effort can drastically increase with the number of multiple breaches
considered [33].

This work presents a flood hazard assessment study over a reach of the Loire river.
This reach was chosen as an example case but our methodology is generic and can be
applied to other cases. A 2D depth-averaged hydraulic model is used to assess the impact
of roughness coefficients and multiple dike breaches induced by flow overtopping for
different flood events (from 100 to 1000-year return periods) (Section 2). With this aim, the
Monte Carlo method is used to propagate the uncertainty through the model (Section 3),
while considering multiple levee breaches, with uncertainties on the breach initiation
conditions and final breach dimensions. Although the flood simulation can be sensitive
to the roughness coefficients and breach characteristics [34], to the best of our knowledge,
a probabilistic flood hazard study tackling these uncertainties is still missing. Results
are analyzed twofold (Section 4): on one hand, a global statistical analysis all over the
domain is done to provide flood inundation maps. On the other hand, the effect of the
variability of random inputs is assessed at some points (around a heavily populated area,
for example). In this study, we are in the presence of a high-dimensional uncertain input
space (approximatively 300 uncertain parameters), therefore special attention was paid to
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perform a relevant sensitivity analysis to understand the relationship between the uncertain
parameters and the simulated state variables. This is another significant contribution of
the current work. Indeed, the non-linearity of local phenomena, such as dike overtopping,
may affect only a small proportion of input parameter space and leads to output variability
difficult to translate by any moment of the random variable. Thus, a permutation feature
importance based on a model training with machine learning (Random Forest) and the
statistical Borgonovo moment-independent sensitivity measures have been investigated.

2. Case Study and Numerical Model

The flood hazard assessment is conducted with a 2D depth-averaged hydraulic model
(i.e., shallow water equations) on a reach of the Loire river (France). The study area extends
between St-Martin-sur-Ocre (upstream) and Châteauneuf-sur-Loire (downstream), which
is about 50 km long (Figure 1a). Levees and longitudinal weirs were progressively built
since the 19th century to protect population and assets against floods of the Loire river. In
the present work, eight breaches are considered, five being located at the right side and
three at the left side of the river.

2.1. Model Set Up

The 2D depth-averaged hydrodynamic model TELEMAC-2D, from the TELEMAC-
MASCARET hydro-informatic system (www.opentelemac.org, accessed on 6 December
2021), is used to simulate free-surface flow using the finite element method on a trian-
gular element mesh [35]. TELEMAC-2D has been widely applied for simulating flood
propagation induced by levee breaching [23,36]. The mesh composed of 311,112 nodes
is elaborated from break lines so that topographic singularities (e.g., roads, dikes, weirs,
low walls, etc.) could be accurately described. The grid size varies from 10 to 20 m in
the sectors with topographic singularities and steep slopes (e.g., main bed, levees, etc.)
to more than 350 m at the edge of the valley (Figure 1b). The densely urbanized regions
are numerically considered through specific friction areas. A constant flow discharge is
imposed at Saint-Martin-sur-Ocre, whereas a stage-discharge relationship (measurements
at gauge station at Châteauneuf-sur-Loire) is defined as a downstream boundary condition.
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2.2. Hydrodynamic Model

TELEMAC-2D solves the following shallow water equations (Equations (1)–(3)).

∂h
∂t

+
∂

∂x
(hu) +

∂

∂y
(hv) = 0 (1)

∂hu
∂t

+
∂

∂x
(huu) +

∂

∂y
(huv) = −gh

∂Zs

∂x
+ hFx +∇(hνe∇(u)) (2)

∂hv
∂t

+
∂

∂x
(huv) +

∂

∂y
(hvv) = −gh

∂Zs

∂y
+ hFy +∇(hνe∇(v)) (3)

where x and y are horizontal Cartesian coordinates; t is time; u and v are components of
the depth-averaged velocity in x- and y-direction, respectively; h is the water depth; νe is
an effective diffusion representing depth-averaged turbulent viscosity νt and dispersion;
Zs is the free surface elevation; g is gravitational acceleration; Fx and Fy refer to the friction
forces in x- and y-direction, respectively (Section 2.2.1). TELEMAC-2D has been validated
for many analytic, experimental and real-world cases [37]. In this work, the finite element
approach is used to solve the previous equation system. The N edge by edge scheme
(NERDS) and the Positive Streamwise Invariant (PSI) distributive scheme are used for
solving the advection of velocity and water depth, respectively. Wetting and drying of grid
elements is considered through a correction of the free surface gradient [35].

2.2.1. Roughness Coefficient

The following component of the friction force is treated in a semi-implicit form within
TELEMAC-2D [35]: {

Fx = − u
2h C f
√

u2 + v2

Fy = − v
2h C f
√

u2 + v2 (4)

where C f is a dimensionless friction coefficient. Empirical formulas are used for calculating
C f [38]. In the present work, the following Strickler formula is used, in which the Strickler
coefficient Ks is a parameter to be calibrated:

C f =
2g

Ks2h1/3 (5)
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The model calibration is a reverse method which is used to find an “acceptable” friction
coefficient leading to computed water levels close to the measured ones for a given flow
discharge. In the present study, the Strickler coefficient is assumed constant in time and
spatially distributed. Three events are retained from Banque HYDRO data [39] (December
2003 (3320 m3/s at Given, 17-year flood) from January 2008 (890 m3/s at Given, less than
1-year flood) and November 2008 (2320 m3/s at Given, 4-year flood) for calibration of the
main river Strickler coefficients. Observation data are unavailable in the floodplain, and
no significant flooding events have been recorded to date. Thus, the floodplain friction
areas are identified based on the inventory of Corine Land Cover of 2018 [40]. For each
area and following expert knowledge, the Strickler coefficient is taken as the mean value of
an interval bounded by physical values depending on soil occupation.

2.2.2. Levee Breaches

Simplified models describe the levee breaching by making assumptions on the location,
initiation, development, number, and shape of the levee breach, often based on engineering
experience, and knowledge of historical events [23]. In the present study, breaches are
initiated at pre-defined locations (Figure 1a), identified from historical observations [41,42]
and field surveys. The breach initiation occurs if the overtopping flow depth above the dike
(Es) reaches a threshold value and when the energy balance (∆E), defined as the difference
between the upstream head (channel side, Eriv) and downstream head (floodplain side, Epla)
of a weak point is high enough (Figure 2). The proposed criterion permits the taking into
account of two crucial physical phenomena affecting the breach initiation: the overtopping
height (the water height above the dike crest or the earth ridge) and the energy balance
which can potentially prevent (or accelerate) the failure mechanisms. For instance, if
the floodplain is totally inundated (∆E near to zero), no breach can form in our model.
This is in agreement with safety studies performed by French public authorities (see for
instance [43]).
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Figure 2. Scheme profile cross-sectional of a dike (surmounted by an earth ridge) with variables used
to identify breach initiation. v (m/s) is mean flow velocity.

Current state-of-the-art on the breaching of fluvial dikes due to overtopping flows
shows that the breaching expansion is progressive (i.e., non-instantaneous) [44,45], fol-
lowing two main phases (referred to as breach formation and development, respectively).
During the first phase, the breach deepening (vertical incision of the breach) is faster than
the breach widening [5]. Then, when the breach bottom reaches the foundation of the dike
or a non-erodible layer, only lateral widening is observed until the breach stabilizes (i.e.,
the fully formed breach with erosion being stopped). For the sake of simplification, we
assume that the breach shape is rectangular, and its expansion follows one phase according
to this linear law:

B(t) = kin × t, ∀ t ≤ Tf . (6)



Water 2022, 14, 3815 6 of 19

where t is time in hours (after breach initiation), B is the breach width in meters at time t,
kin (m/h) is the breach widening rate, assumed constant in this study, and Tf is the total
duration of the breach expansion.

The breach time-deepening is also described according to a linear law:

Zb(t) = Zb(0)−
Zb(0)− Zb,min

Td
× t, ∀ t ≤ Td. (7)

where, Zb is the breach invert elevation at time t, Zb(0) is the breach invert initial elevation,
Zb,min is the breach minimum level, and Td is the breach deepening duration. Since the
breach deepening is evolving faster than the breach widening, Td is taken 10 times smaller
than Tf .

3. Uncertainty Assessment Methodology

Below we describe the methodology used for assessing how the friction parameter and
multiple breaches influence the flood hazard evaluation. The methodology involves three
steps: (i) uncertainty quantification, (ii) uncertainty propagation, and (iii) sensitivity analy-
sis. The Application Programing Interface (API) framework described by Goeury et al. [46]
was used. The Monte Carlo approach has been implemented using MPI technology on the
HPC resource for the parallel computation of all clearly separated and identifiable samples
in order to be fast and compatible with industrial needs. The chart of the methodology is
shown in Figure 3.
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3.1. Uncertainty Quantification
3.1.1. Flood Inundation Scenarios

Extrapolated flow discharges from frequency curves of 100-, 200-, 500- and 1000-year
return period scenarios, respectively, and are used as the upstream boundary condition.
A real duration of four days is simulated, with a time step of 2 s, requiring one and a half
hours of parallel computation with Intel-Xeon(R) Platinum 8260 processors. The quantity
of interest is the flow depth at the steady state condition.

3.1.2. Uncertain Parameter Characterization

• Roughness coefficient quantification:

Following the principle of maximum entropy, a uniform distribution for the roughness
coefficient is imposed. Uniform bounds in the riverbed are set to ±2.5 m1/3s−1 from the
calibrated value to be compatible with the calibration accuracy of 20 to 25 cm. In the
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floodplain, bound values are assigned according to land cover classes as presented in
Table 1. A total of 280 friction areas are considered.

• Dike breach controlling coefficient quantification:

Table 1. Floodplain roughness characterization and associated probabilistic distribution.

Land Cover Class Variation Interval
(m1/3s−1) Probability Distribution

Areas with dense urbanization [5, 8]

Uniform
Areas with low urbanization [8, 10]

Areas of shrubs, undergrowth [8, 12]
Low-height agricultural areas [10, 15]
High-height agricultural areas [15, 20]

The uncertain breach parameters considered in this study are the initiation criteria
and the final breach width (Table 2).

Table 2. Breach parameters with associated range of variations, based on measurement uncertainty or
historical analysis with geotechnical characteristics [41,42] (Failure Criterion Es and final breach width
B f , respectively) or defined by expert knowledge (energy balance criterion ∆E).

Name Dike Crest Zb(0)
(m NGF N)

Failure Criterion Es
(m)

Failure Criterion ∆E
(m)

Final Breach Width Bf
(m) Dike Material

Fusible du déversoir 120.80 [−0.25, 0.3] [0.3, 1.5] [50, 850] clay-dominated
Les ormes 119.72 [0.05, 0.6] [0.3, 1.5] [50, 950] sandy-loamy

Embouchure de la Sange 118.82 [0.05, 0.6] [0.3, 1.5] [50, 950] sandy-loamy
Saint-Père 116.66 [0.05, 0.6] [0.3, 1.5] [50, 950] clay-dominated
Prouteaux 115.60 [−0.25, 0.3] [0.3, 1.5] [50, 950] sandy-loamy
Bouteille 114.46 [−0.25, 0.3] [0.3, 1.5] [50, 950] sandy-loamy

Les Boutrons 112.08 [0.05, 0.6] [0.3, 1.5] [50, 950] sandy-loamy
Sigloy 111.54 [0.05, 0.6] [0.3, 1.5] [50, 950] sandy-loamy

The breach triggering is assumed to occur at the lowest elevation point of the levee
crest determined from topographic data (Lidar or survey data). Failure by overtopping
(Failure Criterion Es) is allowed in a certain range of variation to take into consideration
the topographic measurement uncertainty (minimum permitted values (Table 2): −0.25 m
and 0.05 m respectively for Lidar data and accurate topographic surveys) and geotechnical
characteristics of the levee (Loire river levees typically feature a “banquette” (earth ridge)
on top [47] (Figure 2) providing additional resistance to the levee characterized by a highest
maximal value (0.6 m) in comparison to a dike without earth ridge (0.3 m); upper bounds
in Table 2). The energy balance criterion ∆E is set, following expert opinion, to [0.3, 1.5]
(m). The duration of overtopping over the dike crest is not considered in this study since its
quantification is subject to significant uncertainty for a relatively low potential impact [17].

The breach shape is assumed to be rectangular, characterized by its final width (B f ),
widening rate (kin) and final invert elevation (Zb,min). The minimum and maximum values
of the final breach width (B f ) interval ([50, 950] (m); Table 2) are determined from historical
analysis [41] and geotechnical considerations [42]. The breach widening rate kin is con-
sidered constant, with values of 102 m/h and 10.2 m/h corresponding to predominantly
sandy-loamy and clay-dominated structures, respectively [48–50]. The duration of breach
widening Tf is also assumed to be deterministic and deduced from Equation (6) using B f
and kin. The breach depth is assumed to be the same as the height of the levee itself, as
non-erodible layers are considered in dike foundations.

3.2. Uncertainty Propagation

To handle dynamic system behavior under parameter uncertainty, a set of sample
configurations is generated using random sampling. In the sampling procedure, the
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parameter uncertainties are taken in a uniform distribution whose limits are defined
by the minimum/maximum values of its variation range. The solver TELEMAC-2D
(thereafter denoted M) ensures the relationship between a configuration vector of model
uncertain inputs θj =

(
θj,1, θj,2 · · · θj,v

)
and the output quantity of interest Y(x) whereby

Y(x) = M
(
θj; x

)
(Figure 3). As TELEMAC-2D is a spatially discrete model, for a realization

θj, the model output Y is composed of scalar output given on a set of m ∈ N space
coordinates {x1, . . . , xm } such as Y = (Y1, . . . Ym) (with Yi = Y(xi)= M

(
θj; xi

)
). The full

set of spatially discrete output over the complete random sampling gives a matrix of size
n×m (where n is the number of Monte Carlo simulations).

Y = (Y1, . . . , Ym) =


y1,1 y1,2
y2,1 y2,2

· · · y1,m
· · · y2,m

...
...

yn,1 yn,2

. . .
...

· · · yn,m

 (8)

Each row of the matrix Y corresponds to the flow depth throughout the computational
domain for a fixed upstream flow scenario of uncertain input parameter, while each column
Yi in Y contains the values of the output variable for the full set of scenarios, at a given
position xi (local analysis in Figure 3, Yi = Y(xi)= M(θ1, θ2, . . . , θv; xi)). From matrix Y ,
statistical estimators can be calculated, such as first two statistical moments (i.e., mean
and variance values) or percentile of the response quantity at spatial coordinates (global
analysis in Figure 3). The Monte Carlo method is robust with a convergence rate, O

(√
n
)
,

that is independent of dimension, i.e., the number of factors (v) in the problem.

3.3. Sensitivity Analysis

The sensitivity analysis aims at quantifying the impact of uncertainty in input vari-
ables on the accuracy of the model output variables. Conventional approaches to Global
Sensitivity Analysis (GSA) imply that the stochastic estimation of statistical moments [51],
and indices are classically achieved with the Monte-Carlo technique [52]. To alleviate the
computational burden of the Monte Carlo approach, emulators can be used to estimate
sensitivity indices [53]. However, the non-linearity of local phenomena, such as dike
overtopping, may affect only a small proportion of input parameter space and leads to
output variability that is difficult to translate by any moment of the random variable. This
can lead to uncertainty in the determination of sensitivity [54]. To obtain accurate results,
a sensitivity analysis must satisfy the following requirements [55,56]: global (i.e., entire
input distribution taken into consideration), model free (i.e., no assumptions on the model
functional relationship to its inputs), moment independence (i.e., avoid some information
loss by the use of an output variability summary) and be quantitative. In this framework,
two statistical moment independence and model free GSA methods are carried out: a
permutation feature importance based on a model training with machine learning and
the statistical Borgonovo moment-independent sensitivity measures [56]. For the sake of
clarity, in the following, the GSA methods are described in the case of scalar output such as
Yp = Y

(
xp
)
= M

(
θ1, θ2, . . . , θv; xp

)
where xp is the location of the variable of interest.

3.3.1. Permutation Feature Importance

The permutation feature importance consists of measuring the decrease in the predic-
tion score in a machine learning algorithm after permuting randomly an input parameter
(a feature) [57]. Randomly re-ordering a parameter causes a prediction deterioration that
indicates how much the model depends on the feature. If the decrease in prediction quality
is small or high, the model is slightly or very sensitive to the shuffled input parameters. In
this study, the prediction score is the coefficient of determination R2, and random forest
algorithms [57] are employed as machine learning regressors since they do not make any
assumptions on the model functional relationship to its inputs.
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Random forests are built by averaging the prediction of many individual decision
trees. Each decision tree is fitted to a bootstrap sample created from the learning dataset
(sampling matrix D =

(
θ1, θ2, . . . , Yp

)
). A decision tree is a recursive process of splitting

internal nodes. To break-up a node, a collection of candidate splits is generated, and a
criterion is evaluated to choose between them. For each candidate split s = (k, Tval), the
data are routed to subtrees depending on whether it exceeds the threshold value Tval in the
chosen dimension k such as:{

Cl =
{(

θ1, θ2, . . . , Yp
)∣∣θk ≤ Tval

}
Cr =

{(
θ1, θ2, . . . , Yp

)
|θk >Tval

} (9)

The variance reduction method is then used to determine the optimal split at each
node of the decision tree. This method is based on a calculation of the following equation:

max
s

 ∑
yi∈P

(
yi − yP

)2

np
− nl

np
∑

yi∈Cl

(
yi − yCl

)2

nl
− nr

np
∑

yi∈Cr

(
yi − yCr

)2

nr

 (10)

where P denotes the parent node containing np training samples, Cl , Cr are respectively
the left and right child node subtrees containing respectively nl , nr data, and yx is the mean
value of output values in the node x ∈ {P, Cl ,Cr}.

The terminal nodes of a tree, also called leaf nodes, provide the final prediction
by averaging the output of training samples within the corresponding leaf node. The
methodology described here before was performed based on an open-source library for
Machine Learning named “scikit-learn” [58].

3.3.2. Borgonovo Sensitivity Analysis

Moment-independent sensitivity measures overcome the output variability summary
associated with the interpretation of variance-based measures. In this framework, a sensi-
tivity measure based on the shift between the output distribution and the same distribution
conditionally to a parameter was proposed [56] and reads as:

δi =
1
2

[∫
πΘi (θi)

[∫ ∣∣∣πY(y)− πY|Θi
(y)
∣∣∣dy
]

dθi

]
(11)

However, based on the entire distribution, the Borgonovo sensitivity analysis can
become unsuitable when the computational cost of each run of the model is non negligible
or the number of model inputs is large. Thus, a sample-based estimation was proposed to
handle this issue [59]. In the present work, this Borgonovo sensitivity analysis was carried
out based on an open-source library for performing the sensitivity analyses “SALib” [60].

4. Results

Separated and identifiable Monte Carlo simulations were performed based on the
MPI parallel computing technology for launching and managing the TELEMAC-2D solver
computations (Figure 3). A sample set of size n = 3000 is set for the uncertainty propagation.
This number was determined based on a convergence study carried at some control points
(see Section 4.2). It was also checked in terms of the robustness of sensitivity estimates
through asymptotic confidence intervals (Table 4). The obtained results are analyzed
twofold: on one hand, a global statistical analysis on the whole domain is performed. On
the other hand, the effect of the variability of the random inputs is assessed at some specific
points (selected around a populated area, for example, as reported in Figure 1).
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4.1. Global Statistical Analysis
4.1.1. Uncertainty Propagation

Figure 4 shows the probabilistic flood hazard maps of the 90th percentile water depths.
These results could be of importance for flood management by identifying water surface
elevations and lateral flood extents for each flood event. As expected, the 90th percentile
water depth level increases with the rise in the flood return period. To better analyze the
lateral flood extents, the 90th percentile scalar flow velocity calculated for different flood
events of different return periods is also computed and presented in Figure 5.

It can be noticed that not all dike breaches are formed for the different scenarios. The
water elevation in the right floodplain is directly influenced by the Fusible du déversoir,
Saint-Père and Les Boutrons levee breaches (Figure 1) which occur from the 100-year return
period flood event. On the other hand, the significative rise in water elevation in the left
floodplain occurs at high flood event scenarios with Embouchure De La Sange and Sigloy
levee breaches (Figure 1). As a result, in terms of flood mitigation, it is imperative that
hazards related to levee systems are thoroughly evaluated.
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4.1.2. Sensitivity Analysis

For a given flood scenario, the breach width can significantly affect the water heights
in the floodplain since it is a parameter influencing the breach outflow hydrographs [15].
Figure 6 shows the computation of the Borgonovo index to evaluate the influence of
a breach width on the water depth. Particularly, a value close to 0 and, conversely, 1
means that the output is, respectively, independent or highly dependent on the variable of
interest. Figure 6 highlights the spatial influence scale and intensity of the Saint-Père breach
width uncertain variable on the water depth. The intensity of the parameter influence
increases with increasing flood scenarios’ discharge. This increase is accompanied by
a more localized spatial effect, emphasizing the need for local flood analysis to better
understand the conditions under which flood mitigation is most likely to occur, thereby
helping to make communities more resilient to flooding [61].
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4.2. Local Statistical Analysis
4.2.1. Uncertainty Propagation

A statistical analysis of flow depth values at specific locations yields a valuable tool
for understanding the flooding patterns. When applying a sampling-based statistical analy-
sis, the estimators are not computed exactly but rather approximated from the available
samples. To assess the robustness and convergence of such estimates, the convergence
rates of the statistical coefficient of variation (ratio of the standard deviation to the mean)
and its 90% confidence interval obtained by the bootstrap method are evaluated as the
sample size n increases for the points of interest (see locations on Figure 1). As illustrated in
Figure 7, the number of samples needed to reach stable statistical estimates can vary from
one discharge to another. However, from a sample size of 2500, the statistical estimators
are stabilized for all the points of interest of this study. Thus, the number of 3000 model
evaluations considered in this study is satisfactory to obtain reliable results. The robustness
of the statistical coefficient of variation is analysed through confidence intervals. They are
estimated from 100 bootstrap samples. As shown in Table 3, the bounds of the confidence
intervals are relatively close and demonstrate the capacity of Monte Carlo sampling to
produce accurate estimates for the points of interest of this study.

Figure 8 displays how the model parameter uncertainties (roughness coefficients and
levee breach characteristics) affect the water depth at selected locations for given flood
scenarios. The spreading of the water depth distribution is more significant for low flood
scenarios (100-year return period) and diminishes with the rise in the flood discharge.
This demonstrate that high flood scenarios are less sensitive to the selected uncertain
parameters. The results highlight the complexity of the flow with non-symmetric (non-
Gaussian) water level distributions. Some water level distributions show multiple peaks in
the PDF, especially for low flood scenarios. These multimodal distributions indicate that
the control point sample can have several patterns of response, suggesting that the flooding
patterns can drastically change, starting from a given combination of the uncertain inputs.
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Table 3. 90% confidence intervals of the coefficient of variation obtained from the Monte Carlo sample
set of 3000 computations for 100, 200, 500 and 1000-year return period flood scenarios at some control
points.

Control Points Sully-Sur-Loire Les Places Les Boutrons Le Mesnil

100-years flood scenario [0.375, 0.391] [0.821 , 0.849] [0.242 , 0.25] [0.147, 0.150]
200-years flood scenario [0.309, 0.315] [0.242 , 0.252] [0.0676 , 0.0704] [0.0452 , 0.0465]
500-years flood scenario [0.0834, 0.0865] [0.0747 , 0.779] [0.0342 , 0.036] [0.0479 , 0.0518]

1000-years flood scenario [0.0562, 0.0579] [0.0623 , 0.0641] [0.0379 , 0.0394] [0.0851 , 0.0877]



Water 2022, 14, 3815 14 of 19Water 2022, 14, x FOR PEER REVIEW 14 of 19 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 8. Water level probability density function estimated with Monte-Carlo sampling for 100, 
200, 500 and 1000-year return period floods at control points: (a) Sully-Sur-Loire; (b) Les Places; (c) 
Les Boutrons; (d) Le Mesnil. 

4.2.2. Sensitivity Analysis 
Table 4 summarizes the sensitivity results at Les Places control point. The robustness 

of the sensitivity indices is analysed through confidence intervals. They are obtained 
asymptotically from the standard deviation estimated with 100 bootstrap samples. As 
mentioned in Section 3.3, random forest regressors were used to compute the permutation 
feature importance score. Here, for each point of interest and flood scenario, a collection 
of possible regressors, ordered by number and depth of decision trees, is provided and an 
optimum is chosen in terms of learning and prediction score (coefficient of determination Rଶ). The train and test subsets are randomly obtained after splitting the Monte Carlo 
sample set in the percent proportion of 80 and 20, respectively. Thus, for each point of 
interest and flood scenario, an optimum Random Forest regressor with a coefficient of 
determination Rଶ higher than 0.98 and 0.75 for learning and predictive score is obtained 
and considered satisfactory in a study framework, respectively. 

The sensitivity analysis methods tested in this work lead to a similar ranking of the 
importance of the uncertain parameters. This statement, in contrast to the work presented 
in [54], confirms the requirement for sensitivity analysis (global, model free, moment 
independence and be quantitative) to produce accurate results. Of all the uncertain input 
parameters, only several (levee breach parameters and roughness coefficient close to the 
point of interest) are identified as playing a major role in the accuracy of the water level 
at the relevant control point. 

Figure 8. Water level probability density function estimated with Monte-Carlo sampling for 100, 200,
500 and 1000-year return period floods at control points: (a) Sully-Sur-Loire; (b) Les Places; (c) Les
Boutrons; (d) Le Mesnil.

4.2.2. Sensitivity Analysis

Table 4 summarizes the sensitivity results at Les Places control point. The robustness
of the sensitivity indices is analysed through confidence intervals. They are obtained
asymptotically from the standard deviation estimated with 100 bootstrap samples. As
mentioned in Section 3.3, random forest regressors were used to compute the permutation
feature importance score. Here, for each point of interest and flood scenario, a collection of
possible regressors, ordered by number and depth of decision trees, is provided and an
optimum is chosen in terms of learning and prediction score (coefficient of determination
R2). The train and test subsets are randomly obtained after splitting the Monte Carlo
sample set in the percent proportion of 80 and 20, respectively. Thus, for each point of
interest and flood scenario, an optimum Random Forest regressor with a coefficient of
determination R2 higher than 0.98 and 0.75 for learning and predictive score is obtained
and considered satisfactory in a study framework, respectively.

The sensitivity analysis methods tested in this work lead to a similar ranking of the
importance of the uncertain parameters. This statement, in contrast to the work presented
in [54], confirms the requirement for sensitivity analysis (global, model free, moment
independence and be quantitative) to produce accurate results. Of all the uncertain input
parameters, only several (levee breach parameters and roughness coefficient close to the
point of interest) are identified as playing a major role in the accuracy of the water level at
the relevant control point.
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Table 4. Sensitivity analysis at Les Places control point for 100, 200, 500 and 1000-year return period
flood events: Borgonovo indices and permutation feature importance with their corresponding
asymptotic confidence intervals, typically with a confidence level of 90%. PK and FR indicates,
respectively, the friction coefficients for the riverbed and the floodplain (as reported in Figure 1).

Methods Borgonovo Indices Permutation Importance

100-years flood
scenario

Saint-Père overtopping level: 0.22 ± 0.011 Fusible du déversoir overtopping level: 0.73 ± 0.028
Fusible du déversoir overtopping level: 0.20 ± 0.011 Saint-Père overtopping level: 0.72 ± 0.024

PK403-414: 0.12 ± 7.2 × 10−3 PK403-414: 0.33 ± 0.02
Saint-Père breach width: 0.10 ± 4.2 × 10−3 PK414-420: 0.099 ± 6 × 10−3

Fusible du déversoir breach width: 0.091 ± 3.9 × 10−3 Saint-Père breach width: 0.018 ± 1.4 × 10−3

FR-64977: 0.09 ± 4.3 × 10−3 FR-64977: 0.0083 ± 6.9 × 10−4

200-years flood
scenario

Saint-Père breach width: 0.22 ± 9.9 × 10−3 Saint-Père overtopping level: 0.91 ± 0.039
Saint-Père overtopping level: 0.21 ± 0.011 PK403-414: 0.57 ± 0.028

PK403-414: 0.13 ± 8.29 × 10−3 Saint-Père breach width: 0.24 ± 9.7 × 10−3

Prouteaux overtopping level: 0.097 ± 6 × 10−3 FR-64977: 0.081 ± 5.6 × 10−3

FR-64977: 0.083 ± 7.8 × 10−3 Fusible du déversoir breach width: 0.045 ± 4 × 10−3

Fusible du déversoir breach width: 0.078 ± 7 × 10−3 Prouteaux overtopping level: 0.01 ± 1 × 10−3

500-years flood
scenario

Saint-Père breach width: 0.32 ± 0.011 Saint-Père breach width: 1.12 ± 0.042
FR-65537: 0.1 ± 0.01 FR-65537: 0.30 ± 0.018

Les Ormes overtopping level: 0.085 ± 7.02 × 10−3 Prouteaux overtopping level: 0.14 ± 0.011
Prouteaux overtopping level: 0.081 ± 9.1 × 10−3 Les Ormes overtopping level: 0.12 ± 0.01

PK403-414: 0.071 ± 7.65 × 10−3 PK403-414: 0.048 ± 4.4 × 10−3

Les Ormes breach width: 0.058 ± 9 × 10−3 Prouteaux breach width: 0.047 ± 5.8 × 10−3

1000-years
flood scenario

FR-65537: 0.22 ± 0.014 FR-65537: 0.68 ± 0.028
Saint-Père breach width: 0.19 ± 9.84 × 10−3 Saint-Père breach width: 0.63 ± 0.023
Prouteaux overtopping level: 0.10 ± 0.012 Prouteaux overtopping level: 0.23 ± 0.011

PK403-414: 0.098 ± 0.011 PK403-414: 0.14 ± 6.2 × 10−3

Prouteaux breach width: 0.062 ± 9.55 × 10−3 Prouteaux breach width: 0.10 ± 8.4 × 10−3

Les Ormes breach width: 0.054 ± 7.1 × 10−3 Les Ormes breach width: 0.08 ± 8.9 × 10−3

The physical interpretation of the sensitivity results allows a clearer understanding
of the flood hazard. The concomitance of the Saint-Père and Fusible du déversoir breaches
could be at the origin of the bimodal behavior in the PDF observed for the 100-year return
period flood scenario. In fact, the overtopping variables Es and ∆E for the initiation of
these two breaches appear to be, with the same relative weight, the most important factors.
The increase in flow rate is accompanied by a major impact of the Saint-Père breach width,
leading progressively to a single peak in the water depth distribution. These results are
consistent with the physics of flow. In the case of a low flood event (100-year return period
flood), overtopping level and bed roughness are of primary importance since they directly
influence the initiation of dike breaching. For higher return period floods, overtopping
always occurs (whatever the overtopping level and bed friction parameters) and the
water level at the point of interest is directly influenced by the breach discharge (which
depends on the breach width) and the local floodplain roughness (FR-65537). Moreover, the
control point is located between two potential dike failure locations (the Saint-Père and
Prouteaux breaches). However, the dike failure at Saint-Père, which is located upstream
from the control point, appears as the most influential factor. The Fusible du déversoir breach
acts as a fuse plug dike clipping the flood between the 100 and 200-year return period
floods. Then, other breaches (Les Ormes and Prouteaux) form along the Loire river, which
increase the water depth at the control point. This finding leads to the conclusion that in
a hydraulic study of inundations induced by multiple breaches, the breach development
chronology affects probabilities of the formation of downstream breaches, and thus the
flood hazard [26], especially for flooding events close to the design conditions for river
dikes. It can be noticed that the water level at the control point is also controlled by friction
coefficients in its neighboring zone. As expected, the riverbed and floodplain friction
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coefficients (identified as “PK403-414” and “FR-65537”) also have an impact on the water
level at low and high flow, respectively.

5. Discussion

In this study, the effect of the uncertainty resulting from the stochastic processes of
dike breaches and roughness coefficients on water level calculations for extreme flood
events was investigated. The analysis presented in this work can be carried out on other
quantities of interest, such as scalar flow velocity (|v|), flood hazard index [28], total force
and/or total depth indicators [9]. Based on the Froude number, the last indicator has
been investigated. Since the Froude number has a limited impact in the computational
domain, no significative difference is observed with the water depth analysis presented in
the previous section. As for quantity of interest, the methodology described in this paper
can be applied for other uncertain parameters. In a steady state condition, integrating
breach development times has no major impact on the numerical results in comparison to
instantaneous and complete breaches computation. However, in the case of unsteady flow,
this parameter variability in interaction to other ones (e.g., breach width) can significantly
affect the dike failure probability [26]. In that case, it also could be interesting to test the
influence of parametric laws for the breach expansion [36].

A major issue arising from the methodology presented in the current study concerns
the optimization of the number of computational runs needed for sufficient results in the
uncertainty analysis. The Monte Carlo technique, while generic and robust, is also compu-
tationally expensive due to its low convergence rate. Ways to reduce the computational cost
typically require the replacement of the pure random sampling that forms the backbone
of the Monte Carlo method by alternative sampling methods such as the optimized Latin
Hypercube Sampling (LHS) approaches [62].

To handle the high-dimensional uncertain input space problem, special attention was
paid to proposing a relevant sensitivity analysis to produce accurate and robust results.
Thus, two moment independence and model free GSA methods have been investigated. Al-
though the ranking is similar between the two methods tested, the permutation importance
based on random forest provides a better distinction between influential and non-influential
parameters. However, this statement needs to be completed by investigating the effect of
the computation number on the sensitivity analysis methods. This was not studied here
and will be the topic of a future study.

Despite the fact that the permutation importance method has informal and strong
connections with Sobol’ sensitivity theory [63], the method is considered in the paper as a
moment independence and model-free GSA method. Indeed, the permutation importance
method based on the random forest algorithm is assumed to be model-free since it does not
make any assumptions on the model functional relationship to its inputs. In addition, no
explicit statistical moment of the output variable is decomposed by the machine learning
approach, which is why it is designed as the moment independence method.

6. Conclusions and Perspectives

The effect of uncertainty resulting from the stochastic processes of multiple dike
breaches and roughness coefficients on water level calculation was investigated numerically
for different extreme flood scenarios on a reach of the Loire river. To address the uncertainty
analysis in high dimensional spaces, a 2D depth-averaged hydraulic model was run in a
Monte Carlo framework. Inundation hazard maps for different flood scenarios highlighted
the important impact of the breach development chronology. To overcome the non-linearity
difficulty of local phenomena, such as the overtopping of a dike, moment independence and
model free sensitivity analysis methods were carried out to assess the factors influencing
the flow depth and flood extent. The spatial analysis of vulnerability area induced by
levee breaching showed that, with increasing flood discharge, the rise of variable influence
intensity is accompanied by a more localized spatial effect. This argues for local flood
analysis to allow a sound understanding of the flood hazard for these scenarios. The
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physical interpretation, highlighted by the Global Sensitivity Analysis (GSA), emphasized
that interactions between breach parameters and roughness coefficients play a significant
role in the water level uncertainty.

The quantification of uncertainty in roughness coefficients was done following ex-
pert knowledge, but potentially available sources of information (e.g., in situ and remote
sensing data) can be employed. The effect of other uncertain breach parameters (e.g.,
overtopping duration, widening stages and associated kinetics, breaching duration, breach
shape) and other causes of breaching (e.g., piping) can be also considered in future works.
Uncertainty also arises from boundary conditions (state-discharge and discharge frequency
curves), hydraulic model parameterization (roughness coefficient, behavior of hydraulic
and protection structures) and geometric description (bathymetric and topographic data).
Even if difficult, these uncertainties should also be considered from both modelers and
decision-makers to propose an adapted strategy for hazard mitigation. Handling uncer-
tainty in hydraulic study is central to sustainable and successful flood risk management [64]
involving public safety and economic damage. Communicating uncertainty analysis to
decision makers in order to construct a consensus for a flood hazard management process
is a new challenge to overcome [65].
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