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Abstract: The study aimed to investigate krill (Euphausia superba) and salp (Salpa thompsoni) popu-
lations in the Atlantic sector of the Southern Ocean in January and February 2022. Samples were
obtained to measure the abundance, biomass and distribution patterns of krill and salp. Sex differ-
ences and feeding habits of the Antarctic krill were determined. The dependence of the physiological
state of the studied aquatic organisms on changes in environmental parameters was analyzed. Cur-
rent data on the association of the dynamics of hydrometeorological parameters and processes with
the distribution of chlorophyll a, krill, and salp were obtained. It was established that, at numerous
stations, the biomass of salps prevailed over krill. The result indicates the replacement of the Antarctic
krill populations by gelatinous zooplankton. The obtained results allow assessment of the biological
resource potential in the studied region based on the analysis of the samples collected.

Keywords: chlorophyll a; Euphausiacea; Euphausia superba; Salpa thompsoni; planktonic tunicate;
climate change; feeding competition

1. Introduction

The Antarctic krill Euphausia superba Dana, 1850 is one of the most abundant marine
species of the Euphausiacea. It constitutes staple food for a wide range of animals and
plays an important role in the functioning of Antarctic ecosystems and the Antarctic food
web [1,2]. It has circumpolar distribution stretching from the coastal zone of the continental
shelf to the northern boundary of the Antarctic Convergence. Due to its huge biomass
and high biological value, it has become one of the important resources of the world’s
fisheries [3,4].

The maximum abundance of krill is observed in the Atlantic sector of the Southern
Ocean (ASO), where its dense aggregations are formed in mesoscale gyres near seamounts
and islands [5–7]. Over the past 80 years, krill abundance in the ASO has almost halved [8].
The extermination of whales in the 20th century did not lead to the expected increase
in krill abundance: large baleen whales were replaced by penguins, fish, cephalopods,
crabeater seals and small whales (Minke). The number of krill consumed by them exceeds
the total diet of all baleen whales in the past by more than twice [9]. Current assessments
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of the distribution and abundance of Antarctic krill in the ASO show that the prevailing
environmental factors are primary production, population of predators (including the
restoration of the population of whales and seals), surface water temperature, ice conditions,
sharp climatic fluctuations, etc. At the same time, the impact of Antarctic krill fishing is
considered to be minimal [10].

During summer, the adult part of the krill population is located in the surface water
layer, usually above the seasonal pycnocline, at an average depth of about 50 m. They have
an irregular spatial distribution, which can be explained by their active behavior. Krill often
forms surface patches and can search for more favorable environmental conditions. Water
dynamics can also have both a direct impact (cumulative effect of gyres) and an indirect
one (for example, through changing of the phytoplankton abundance). The confluence
of positive factors contributing to the formation of extensive and stable krill aggregations
is most likely to happen in coastal/near-ice and near-island areas, where the topography
slows down the system of gyres. In the oceanic zone, such aggregations are rare and
exist for a short time until they disintegrate due to the frequent changes in hydrophysical
conditions. Small aggregations of animals, represented by individual flocks, predominate
here. The krill areas in the continental seas and adjacent waters are largely formed by
the Coastal Antarctic Current and the circulation system by orographic and hydrological
factors [11,12].

Despite the high fecundity of krill, its reproduction success depends on the possibilities
of breeding in shallow waters, at the bottom of which krill eggs develop [12]. Several
authors, using the 41-year-old (1976–2016) KRILLBASE-abundance [13] and KRILLBASE-
length-frequency [14] databases, showed that the distributions of eggs, krill nauplii, and
metanauplii had maximum intensity and success of spawning on the shelf and above the
shelf slope. Association of the krill breeding zone with shallow waters clearly corresponds
to the idea that the core of the population area is confined to the circulation of the Coastal
Antarctic Current and the Weddell Sea.

Therefore, interannual fluctuations in the abundance of krill are mainly explained
by its reproduction success (when spawning in shallow waters) and the intensity of the
mechanical transfer of larvae and mature organisms away from spawning grounds by the
currents during the intensification of meridional processes The latter also determines the
abundance of other plankton (including phyto- and mesozooplankton) [12].

Krill abundance has been declining since the 1970s due to the penetration of salps into
the high latitudes of the Southern Hemisphere [15–22]. Invasion of gelatinous planktonic
animals, Salpa thompsoni Foxton, 1966, into the krill’s core areas to the south of 60◦ S is
followed by a dramatic increase in its abundance. The latter causes legitimate concern since
the feeding rate of tunicates is high, and the diet composition of these species, i.e., salps,
makes them feeding competitors of both krill and mesozooplankton [10,23]. Compared
to other tunicates (ascidians, pyrosomes, doliolids), which draw food-containing water
into the body using cilia, the salps have the functions of locomotion and food consumption
combined. Salps swim and feed uninterruptedly pushing water through the esophagus
with contractions of the muscles of the tunic and not experiencing saturation, which makes
them a “biological pump”. They have a “mucus” net that captures even tiny food particles
which form food boluses with the help of slime [24]. This way of feeding makes the salp
indiscriminate filter feeders. Salps are also well known for their fast growth rate among
metazoans [25–27]. This way of feeding and a complex reproductive cycle also help salps
increase their abundance [28]. Changes in the biomass and distribution of S. thompsoni
are now considered a potential determinant of the future structure and functioning of the
Antarctic and Southern Ocean ecosystems [29].

The purpose of our research was to obtain current data on the impact of changes in
wind patterns, hydrological structure and water dynamics on the distribution of chlorophyll
a fields and the abundance and biomass of krill and salps; we also aimed to assess the
resource potential of the region based on biological data, including size, sex composition
and examination of the physiological state of the animals.
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2. Materials and Methods

Oceanographic studies were carried out in cruise 87 of the R/V Akademik Mstislav
Keldysh in January–February 2022 [30] in the areas of the Bransfield Strait, Antarctic Sound,
and the Powell Basin of the Weddell Sea, near the South Orkney, James Ross and Shishkov
islands (latitude 65◦–60◦ S, longitude 62◦–41◦ W).

2.1. Remote Sensing Methods

Surface wind (SW) was studied using CCMP OCW vector data available with a 6-h
temporal resolution and a spatial resolution of 0.25◦ × 0.25◦ [31]. Based on these data,
averaged maps of the absolute dynamic topography (ADT) and absolute dynamic velocity
(ADV) of the geostrophic current for the period from 15 January 2022 to 15 February 2022
were constructed. In the course of the work, daily maps of ocean surface temperature (OST)
taken from the CMEMS with a spatial resolution of 0.05 × 0.05◦ [32] were also analyzed.

To analyze the spatial distribution of chlorophyll a, a map of satellite estimates of
chlorophyll a concentration was drawn based on sea colour measurements from 15 January
to 15 February 2022. To exclude omissions, use was made of the combined data of level 3
from satellite radiometers MODIS-Aqua, MODIS-Terra, and VIIRS-SNPP [33] with chloro-
phyll a concentrations from the chlor_a product, which uses the colour index algorithm
(CI) [34] for low chlor_a values (<0.15 mg/m3) and the OCx algorithm [35] for more pro-
ductive waters. To build a map in each pixel of a regular 4-km grid, the median values of
the chlorophyll a concentration between 15 January and 15 February 2022, were calculated.

2.2. CTD Measurements and Sampling

Hydrology. Our CTD data were obtained using an Idronaut OCEAN SEVEN 320Plus
manufactured by Idronaut, Italy. The sounding complex was equipped with: a high-
precision pressure sensor (PA-10X) with a measurement range of 0–100 Mpa, an accuracy of
0.01% and a resolution of 0.002%; two redundant temperature sensors with a measurement
range from −5 ◦C to 45 ◦C, an accuracy of 0.001 ◦C, and a resolution of 0.0001 ◦C; two
redundant conductivity sensors with a measurement range of 0–7 siemens/m, an accuracy
of 0.0001 siemens/m, a resolution of 0.00001 siemens/m. The currents were measured
using a TRDI Workhouse Monitor (Lowered Acoustic Doppler Current Profiler, LADCP)
submersible acoustic Doppler profiler with a frequency of 300 kHz paired with a Shipborne
Acoustic Doppler Current Profiler (LADCP) TRDI Ocean Surveyor-75 with a frequency
of 75 kHz. Both profilers are manufactured by Teledyne Technologies Inc., 1049 Camino
Dos Rios Thousand Oaks, CA 91360, USA. The obtained data were processed using the
LDEO Software version IX.10 [36]. Additionally, tidal forces were taken into account and
calculated using the software described in [37].

Chlorophyll a. Concentrations of chlorophyll a were measured on board by a standard
spectrophotometric method based on the analysis of the absorption spectra of chlorophyll
a extract in acetone [38]. Sea water was sampled at the stations by Niskin bathometers
mounted on a rosette. Instrumental measurements of maximum chlorophyll a concen-
trations of about 6 mg/m3 were performed on 28–29 January at 63.5–64.5◦ S, 55–56.5◦ W.
Detailed information on the spatial distribution of the chlorophyll a concentrations was
collected throughout the voyage by a continuous-flow laser fluorometer [39]; the intensity
of chlorophyll a fluorescence was measured in motion with an interval of 60 s, which
corresponded to approximately 300 m at a vessel speed of 10 knots. The seawater sampling
depth was 5 m; the values of chlorophyll a fluorescence intensity were converted into
chlorophyll a concentrations according to standard definitions data (38 points, R2 = 0.9).

Macrozooplankton. Sampling was carried out in the late January and the first half of
February 2022 in the western region of the ASO (Bransfield Strait (BS) and Antarctic Sound
(AS), near the South Orkney Islands (SOI), the Powell Basin of the Weddell Sea (PB), near
the islands of James Ross (JR) and Shishkov (SH) (Figure 1). The material was obtained from
34 hauls with the following fishing gear: double square net (DSN)—21 hauls, Isaak-Kidd
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mid-water trawl modified by Samyshev-Aseev (IKMT-SA)—10 hauls and 3 catches with a
standard Bongo net.
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Figure 1. Map of the Antarctic krill and salp sample collection area with indication of currents (by:
Heywood et al., 2004; Thompson et al., 2018). All stations were numerically marked. ACC—Antarctic
Circumpolar Current, BC—Bransfield Current, ACoC—Antarctic Coastal Current, ASF—Antarctic
Shelf Front, WF—Weddell Front, WDW—Weddell Deep Water. Fishing gear: •—IKMT-SA, �—DSN,
N—Bongo net. Area: •—BS, •—AS, •—PB, •—SOI, •—JR, •—SH (designations according to Table 1).

Table 1. Number of krill and salp specimens studied by areas: Bransfield Strait (BS), Antarctic
Sound (AS), South Orkney Islands Area (SOI), Powell Basin of the Weddell Sea (PB), James Ross
Island area (JR), Shishkov Island area (SH).

Parameter
Number of individuals

BS AS SOI PB JR SH Total

Antarctic Krill

Mass measurements 1140 548 733 743 500 125 3789

Biological analysis 734 330 529 543 300 125 2561

Salps

Mass measurements 1549 - 2433 2136 - 303 6421

DSN—a double square net with an inlet area of 1 m2 and a 6 m long filter cone made of
gas with a mesh size of 0.5 mm [40], net was equipped with a water flow meter (Hydrobios,
Germany) and a 24 kg wing-shaped depressor (Hydrobios, Germany). Oblique tows were
carried out in layers starting from 730 to 100 m at vessel speeds from 2 to 3.1 knots. The
towing depth was prompted by the pressure sensor readings of the Senti DT probe (Star
Oddi, Iceland).

IKMT-SA—Isaacs-Kidd trawl modified by Samyshev-Aseev—is a non-closing trawl
with a mouth area of 6 m2, the net part is 25 m long and made out of a knotless net with
a mesh of 6 mm and an insert at the trawl end of a nylon sieve № 15 (0.67 mm) [41].
Oblique tows were carried out in layers starting from 1900 to 440 m, at a vessel speed of
2.6–3.3 knots.

The Bongo net was a towed plankton net consisting of a frame with two metal rings,
which had two filter cones with a mesh of 300 microns fixed on them. The diameter of
each frame ring was 60 cm [42]. Oblique tow was carried out in layers starting from 270 to
130 m, at a vessel speed of 1.7–2.3 knots.

It should be noted that krill was obtained from catches using various types of gear
(Bongo net, DSN, IKMT-SA) with fishing depths ranging from 100 to 1900 m. As Antarctic
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krill can live at depths down to 800 m and the main concentrations of krill are in the depth
range of 0–200 m, some measurements of the abundance and biomass of krill obtained from
fishing with IKMT-SA at greater depths may be underestimates.

After trawling, each sample was weighed to an accuracy of 1 g and analyzed for
composition. When the samples were large, the entire catch was weighed and a subsample
(100–300 g) was taken out of it; the results of quantifying and weighing of such a subsample
were extrapolated to the entire catch.

For biological analysis, a subsample of at least 300 specimens was taken. If there
were fewer specimens in the catch, then it was analyzed in its entirety. For the calculation
of biomass and abundance of Antarctic krill and salp aggregations, the data on each
haul, tow depth and volume of filtered water per unit volume (1000 m3) were taken
into consideration [43]. Krill samples were processed following the generally accepted
procedures and CCAMLR recommendations [44,45].

Biological analysis of freshly caught krill included measurements of the standard
length from the outer edge of the eye to the end of the telson with an accuracy of 1 mm
using a laminated paper scale [46]. Sex and maturity stage were determined under a
UlabWF20X binocular (TM ULAB, China) with ×30 magnification or using a digital USB
microscope ADSM 301 (Shenzhen Andonstar Technology Co., Ltd., Shenzhen, Guangdong,
China) with digital zoom up to x4 according to the method of Makarov and Denys [47].

Stomach fullness (from 0 to 4 units, where 0 is empty, 4 is full), intestinal fullness (from
0 to 4 units, where 0 is empty, 4 is full), and liver colour were studied [48]. Each type of
measurement was performed by the same person to minimize variability of results [49].
Krill specimens were weighed individually on a 20-g equal-arm mechanical scale VSM-20
(JSC Nizhny Tagil Medico-Instrumental Plant, Russia) with an accuracy of 10 mg (Table 1).

All sampled salps were fixed in 4–6% formalin for subsequent laboratory testing. Then
a preliminary analysis of the selected samples was carried out by measuring the length
of the salps with laminated graph paper by size groups with a step of 5 mm. Salps were
weighed individually and in groups on a 20-g equal-arm mechanical scale VSM-20 (JSC
Nizhny Tagil Medico-Instrumental Plant, Russia) with an accuracy of 10 mg (Table. 1).

3. Results
3.1. Hydrology

For the entire study area (latitude 66◦–60◦ S, longitude 55◦–40◦ W), we drew maps of
ocean surface temperature (OST) with the surface wind (Figure 2) and absolute dynamic
topography with geostrophic current velocities (Figure 3). In the tested area the heavy
southeast wind (8 m/s) forked into the east and southwest winds (shown by arrows). The
latter swirled in the cyclonic northwest direction (Figure 2). The swirling of the geostrophic
current (shown by arrows) in the cyclonic direction was also observed (Figure 3). The wind
and geostrophic vorticity led to a water rise in the cyclone centre with a simultaneous sea
level lowering (the blue area in Figure 3). The lowering of the sea level occurred due to
a higher density of deep waters compared to surface waters. The data in Figures 2 and 3
are averaged over the period from 15 January 2022 to 15 February 2022. Thus, the cyclonic
vorticity, which led to the rise of deep waters during this period, was one of the reasons
for the increased content of chlorophyll a (approximately at latitude 64◦ S and longitude
48◦ W).

CTD data for the upper 200 m layer show a spatial temperature distribution typical
for the warm season (Figure 4). Positive temperature anomalies were recorded in the upper
50 m layer in most of the BS area and the coastal zones, while elsewhere a latitudinal
dependence with a decrease in temperature values to the south was observed. At depths of
100–200 m, temperatures were below 0 ◦C, except for a narrow coastal strip along the South
Shetland Islands associated with a current in the BS. Local temperature minimums were
registered at the southernmost stations and on the southwestern slope of the Powell Basin.
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Most of the Bransfield Strait (Figure 5a,b) was occupied by the colder and saltier
Transitional Zonal Water with Weddell Sea influence (TWW), which spread from north
to south. Transitional Zonal Water with Bellingshausen Sea influence (TBW) and with
the warm Bransfield current spread as a narrow jet close to the South Shetland Islands,
reaching the middle of the strait only in the upper 50 m. The tentative boundary between
these water masses runs along the 0 ◦C isotherms.
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recorded; a cyclonic gyre was present in the southern part of the Strait. 

3.2. Chlorophyll a 

Figure 5. Potential temperature (a,c,e) and salinity (b,d,f) for three sections: the Bransfield Strait (a,b),
the Antarctica Strait (c,d) and the Powell Basin (e,f). Station numbers are at the top, station positions
are marked with grey lines. Seabed topography is shown on GEBCO2021 database. (https://www.
gebco.net, accessed on 22 November 2022).

In the Antarctic Sound (Figure 5c,d), a decrease in temperature and salinity from north
to south was observed. The northern shallow part of the strait was filled with the waters of
the Bransfield Strait characterized by higher temperatures with a maximum of −0.10 ◦C in
the upper 60 m layer and higher water salinity with a maximum of 34.55 parts per 1000
in the bottom layer. The deeper part of the strait was influenced by the waters from the
Weddell Sea and by some freshening due to active ice melting.

The freshening was most pronounced in the upper 50 m layer (up to 34.29). Notably,
st. 7336 to the south of the Antarctic Sound had outstanding minimum salinity values
(33.55) and positive temperature values (0.10 ◦C) in the near-surface layer as well as greater
gradients of thermohaline characteristics (at a depth of 200 m the values were −1.82 ◦C
and 34.58).

The upper 200 m layer in the Powell Basin (Figure 5e,f) contained two water masses:
the surface layer from 20 to 100 m in thickness was occupied by the Antarctic Surface

https://www.gebco.net
https://www.gebco.net
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Water (AASW) formed during summer heating, while the underlying Cold Intermediate
Water (CIL) between 50 and 150 m in thickness was the result of winter convection. In the
AASW, the temperature increased from south to north from 0.50 ◦C to 2 ◦C; no latitudinal
dependence was noted in the salinity distribution. In the CIL, the minimum temperatures
were observed at the slope stations and reached −1.69 ◦C; the salinity increased smoothly
with depth.

Strong near-surface currents observed in some subareas had a significant impact on
the hydrological structure and water dynamics. The two-jet system of currents in the
Bransfield Strait corresponded to the thermohaline structure: a powerful narrow jet to the
northeast is the warm Bransfield Current (BC), while a weak wide jet to the southwest is
a continuation of the Antarctic Coastal Current (ACoC). The highest ACoC velocities of
0.4 m/s were recorded on the shelf to the northeast of Joinville Island. A constant water
flow from the Weddell Sea to the Bransfield Strait through the Antarctic Sound was not
recorded; a cyclonic gyre was present in the southern part of the Strait.

3.2. Chlorophyll a

The highest chlorophyll a concentrations (more than 3 mg/m3) were observed in
the northern central and in the northwestern parts of the Weddell Sea (Figure 6). In the
northern central part, increased values were recorded along the ice edge on 15–20 January;
the chlorophyll a concentrations visible from the satellite gradually decreased to the values
of about 1 mg/m3 two weeks later. In the northwestern part of the Weddell Sea, on the shelf,
high chlorophyll a concentrations were observed throughout the entire research period,
both in the presence of an ice edge until 25 January, and later, until 15 February, when it
was replaced by moving broken ice and icebergs.
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measurements from 5 m depth while the vessel is under way; (b) median values of the combined
satellite estimates from 15 January to 15 February 2022.

Average chlorophyll a concentrations (2–3 mg/m3 according to ship data and about
1 mg/m3 according to satellite data) were registered on the shelf of the South Orkney Is-
lands in the direction of the southwest (7 February 2022) and northwest (12 February 2022).
Relatively high values of chlorophyll a concentration (1–2 mg/m3 according to ship mea-
surements and 0.5–1 mg/m3 according to satellite data) were observed in the Bransfield
Strait closer to the South Shetland Islands.

The central part of the Powell Basin and the area to the east of the South Orkney Islands
had very low chlorophyll a concentrations of less than 0.5 mg/m3 and can, therefore, be
classified as oligotrophic waters.

3.3. Macrozooplankton

Krill. The relative abundance of Antarctic krill varied from 0 to 537 individuals/1000 m3.
Its maximum values were recorded on the shelf to the north of the South Orkney Islands
(Figure 1), where the IKMT-SA catch was ~33 kg. At this station, the trawling depth was
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maximal −1900 m—while the acoustic equipment of the vessel registered krill accumula-
tions at a depth of about 50–100 m.

To the southeast of James Ross Island a large spot of chlorophyll a was discovered,
which was investigated with a DSN at a separate station. At a depth of 210 m, the relative
abundance of krill represented by large immature individuals was 357 ind./1000 m3.
The third largest catch was in the Bransfield Strait with a relative krill abundance of
321 ind./1000 m3. The main part of this catch consisted of juveniles. The relative biomass
of Antarctic krill ranged from 0 to 331.8 g/1000 m3. The two catches with the highest
biomass were off the north of the South Orkney Islands and to the southeast of James
Ross Island (331.8 and 207.5 g/1000 m3, respectively), similarly to the catches with the
highest abundance. The third largest biomass value was recorded in the Bransfield Strait
(Figure 1)—73.4 g/1000 m3.

Size and weight composition of krill catches Large-sized krill with a length of more
than 45 mm prevailed near Shishkov Island, in the Antarctic Sound and in the area of the
South Orkney Islands (50.7, 51.6, 80.8%, respectively). Medium-sized krill (35–45 mm)
dominated the Powell Basin and off James Ross Island (51.3, 74.2%, respectively), and
were also present in significant numbers in the South Orkney Islands area (48.6%). The
minimum proportion of small-sized krill (<35 mm) was observed in the catches off the
South Orkney Islands—0.7%, off the Shishkov Island—0.8%, in the Antarctic Sound—7.9%,
in the Powell Basin—14.4%, off the James Ross Island—18.8%. In the Bransfield Strait, the
proportion of small-sized krill was the highest and amounted to 80.7%. In the Bransfield
Strait, 27 mm long krill prevailed among juveniles; adult lengths were 43 mm among
females and 42 mm among males. In the Antarctic Sound, the individuals were 27, 46 and
50 mm long, respectively. In the area of James Ross Island, juveniles were dominated by
37 mm long individuals; such large juveniles were also found in the Powell Basin, in the
Brasfield Strait, and near the South Orkney Islands. Both females and males in the area
of James Ross Island were dominated by 40 mm long individuals. In the Powell Basin,
33 mm long krill typified the major part of the juveniles, adult females were mostly 45 mm
long, and males were 40 mm long. In the waters near Shishkov Island, juveniles were
represented by single specimens, whereas 48 mm long adult females and 47 mm long
males predominated (Figure 7). The length-weight ratio of krill individuals was similar
in all studied areas, all significant standard deviations being within the margin of error of
individual measurements (Figure 8).

The results of cluster analysis allowed us to identify four krill groups according to their
size composition (Figure 9). A violin-shaped graph was used to visualize the distribution
of krill size data in various clusters. The main part of small-sized krill in cluster S was
represented by juveniles 21–30 mm long; cluster M1 included medium-sized krill with
body length of 35–41 mm, while medium-sized krill also prevailed in cluster M2, large
individuals, 39–53 mm long, were also present in significant numbers; cluster L mainly
included large-sized, 47–54 mm long, krill.

Small-sized krill (cluster S) were concentrated mainly in the Bransfield Strait near the
shelf of the Antarctic Peninsula. Large krill (cluster L) were recorded in the deep part of the
Bransfield Strait, in the area of Shishkov Island, in the northern part of the Powell Basin
and the northeast of the South Shetland Islands. Large and medium-sized krill (cluster M2)
were concentrated mainly in the Antarctic Sound, in the southwest of the Powell Basin and
north of the South Orkney Islands. Medium-sized krill (cluster M1) were registered in the
Antarctic Sound, in the southwest of the Powell Basin, south of James Ross Island, and in
the Bransfield Strait.

Krill sex composition. The predominance of juveniles was noted only in the Brans-
field Strait, whereas juveniles were also present in significant numbers in the catches off
James Ross Island and in the Powell Basin (34.3%, 25.41%, respectively). Females largely
predominated in the Powell Basin, where the female to male ratio was 2.6:1.0. Females
also prevailed in the Antarctic Sound with a gender ratio of 1.3:1.0. The ratio of males
and females near the South Orkney Islands was equal. Males prevailed slightly in the
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waters near James Ross Island at 1.3:1.0 and to a large extent near Shishkov Island, at 4.1:1.0
(Figures 10 and 11).
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Figure 11. Spatial distribution of Antarctic krill relative abundance (ind./1000 m3) and sex ratio
(%) in ASO: •—males, •—females, •—juveniles. Relative abundance (ind./1000 m3): 1–0; 2–< 10;
3–11-100; 4–101-400.
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Females which had completed spawning at the stage of maturity IIIE were absent in
almost all catches; a small number of them (1.2%) were found near the South Orkney Islands,
however. In this area, mostly females at stages IIIB and IIIC were registered—31.0% and
34.5%, respectively. In the Bransfield Strait, both mature pre-spawning females at stage IIIB
(35.5%) and immature females with a fully formed thelyum at stage IIB (34.6%) prevailed.

In the Antarctic Sound, females at stages IIIB and IIIC predominated, at 39.8% and
41.0% of the total, respectively. In the Powell Basin and near Shishkov Island, females at
stage IIIB also largely dominated, as 54.8 and 58.3%, respectively. In the James Ross Island
area, 74.7% of females were at stage IIB (Figure 12).
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Figure 12. Proportion of Antarctic krill females at different stages of maturity (%) by area (designa-
tions according to Table 1).

Females at stage IIIA were present in all areas (6.0–13.5%). Females at stage IIID were
present in all areas but in small numbers (1.0–8.3%), except for the area near James Ross
Island, where females at this stage of maturity were absent.

Generally, the largest number of females was represented by pre-spawning individuals
at stages IIIB (39.1%) and IIIC (29.4%) in the study areas. Females at the last stage of maturity
IIID as well as females that had spawned were almost absent in the catches and accounted
for 3.8% and 0.3%, respectively. Females at early stages of maturity (IIB and IIIA) were
present in small numbers (17.2% and 10.2%, respectively). The majority of males in the
Bransfield Strait (99.2%), near James Ross Island (96.4%), in the Powell Basin (68.8%), and
near the South Orkney Islands (73.8%) comprised individuals at stage IIA (Figure 13).
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Mature males prevailed in the Antarctic Sound and near Shishkov Island (IIIA ac-
counted for 53.4% and 67.7%, respectively, and IIIB—3.8% and 21.2%, respectively). In the
Powell Basin, the proportion of mature males was 30.4% (IIIA) and 0.9% (IIIB), while in the
area of the South Orkney Islands, they accounted for 22.7% (IIIA) and 3.5% (IIIB).

The maturation ogives of male and female Antarctic krill from late January to mid-
February are shown in Figure 14. Mass maturation (body length at 50% sexual maturity)
L50% occurs in 45 mm Antarctic krill for both males and females.
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Krill feeding. During the study period, krill actively fed in all areas, as evidenced
by the data on the average value of stomach/intestines fullness of mature and juvenile
individuals (Table 2). The stomach/intestines fullness of the juveniles was, on average,
lower than that of mature males and females. The krill actively fed in the Bransfield Strait
(3.7/1.9 units), in the Antarctic Sound (3.9/2.1), near the South Orkney Islands (3.3/1.4),
in the area of James Ross Island (3.6/2.0) and Shishkov Island (3.7/1.3 units). The lowest
feeding intensity, 1.7/0.7 units, was observed in the Powell Basin.

Table 2. Filling of the stomach/intestines (average score) of Antarctic krill in various research areas
(designation of areas according to Table 1).

BS AS SOI PB JR SH Average Score

Juvenile 3.6/1.8 3.4/2.2 2.5/0.5 0.5/0.2 3.4/1.7 1.0/0.0 2.7/1.3

Females 3.8/1.7 4.0/2.3 3.6/1.6 2.8/0.9 3.4/2.4 3.4/0.6 3.5/1.5

Males 3.9/2.3 3.9/2.1 3.0/1.2 1.9/0.9 3.8/2.3 3.8/1.5 3.3/1.6

Due to active feeding, almost all krill had light-green or dark-green livers (Figure 15).
Krill with transparent liver was present in all study areas but accounted for only 0.3–5.0%.
Krill with a yellowish liver was caught in the Powell Basin—11.7%, off the South Orkney
Islands—7.3%, and also near Shishkov Island—3.4%.

Salps. The relative abundance of salps varied from 0 to 202 ind./1000 m3. The largest
concentration of salps, 201.5 ind./1000 m3, was found in the central part of the Powell Basin
in the Weddell Sea. The highest concentrations of salps were all across the section through
the Powell Basin, to the east of the South Orkney Islands, in the northern and western parts
of the Bransfield Strait. Krill dominated to the north of the South Orkney Islands, in the
shelf zone of the southwestern part of the Powell Basin, and the south of the Bransfield
Strait in the Antarctic shelf zone. The krill only areas were found in the Antarctic Sound
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and the southeast area of James Ross Island. Salps were also present at a ratio of 4:1 near
Shishkov Island.
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The relative salp biomass varied from 0 to 72 g/1000 m3 with its maximum value
recorded in the Bransfield Strait (Figure 16). The distribution of the relative abundance and
biomass of krill and salps had similar patterns.
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Figure 16. Spatial distribution of relative biomass (g/1000 m3) and proportion (%) of Antarctic krill
(•) and salps (•). Relative biomass (g/1000 m3): 1–0; 2–< 10; 3–11-100; 4–101-350.

The only difference was the presence of large aggregations of small-sized krill and
medium-sized salps in the shelf zone of the Antarctic Peninsula in the south of the Bransfield
Strait (Figure 17), which resulted in a lower number of salps but their larger biomass.
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4. Discussion

The results of our studies showed that the thermohaline structure and dynamics of the
waters were in good agreement with established ideas about the hydrophysical processes in
this zone [50–52] and corresponded to the data of recent years [53–55]; however, significant
local differences were also observed. Thus, in the Bransfield Strait, a greater southward
spread of TWW along the entire strait was recorded compared to the data of 2013 [56]; the
waters of the Antarctic Sound were significantly warmer compared to the same period in
2020 [57]. There was no constant inflow of water from the Weddell Sea to the Bransfield
Strait through the Antarctic Sound, the structure of the currents was variable, which was
also confirmed by the recent studies in this area [58].

The spatial distribution and concentrations of chlorophyll a also corresponded to the
results of the previous studies. In January 1995, at the ice edge in the northwestern and cen-
tral parts of the Weddell Sea, chlorophyll a concentrations exceeded 5 mg/m3 and reached
13 mg/m3 [59]. In February 2015, low concentrations of chlorophyll a, 0.32 ± 0.02 mg/m3,
were recorded in the southeast of the South Orkney Islands and average concentrations of
1.87 ± 0.22 mg/m3 to the north and northwest of the South Orkney Islands [60]. Obtained
data most resembled the results of February–March 2008 and 2009 [61] which were as fol-
lows: concentrations of less than 0.5 mg/m3 occurred in the central part of the Weddell Sea
(AASW waters) and the zone of influence of the Weddell Sea in the Bransfield Strait (TWW
waters); 0.5–1.5 mg/m3—in the Bransfield Strait closer to the shelf of the South Shetland
Islands (TBW waters); more than 2 mg/m3 with peaks up to 4–7 mg/m3 to the east of
James Ross Island in the northwestern area of the Weddell Sea near active ice melt. Satellite
estimates of the chlorophyll a concentration in the Antarctic Peninsula area were lower
than the contact ones, which is associated with the regional optical characteristics [62,63].
Therefore, satellite maps of the chlorophyll a concentration should be analyzed for struc-
tural features of the pigment distribution, not the values per se. The general patterns of
the spatial distribution according to the data of satellite and contact measurements of the
chlorophyll a concentration were similar. Satellite data provide more information on the
areas adjacent to the expedition route, and the ship measurements provide more accurate
data for certain points of the route. Thus, in the central region of the Weddell Sea, accord-
ing to our contact measurements, no high concentrations of chlorophyll a were recorded.
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However, the satellite map showed that there were zones with increased concentrations of
chlorophyll a nearby, most probably due to the abundance of phytoplankton near the ice
edge, which corresponds well with the results of the previous studies in the northwestern
Weddell Sea [59].

Hydrological data and satellite observations for our study period indicated the transfer
of Antarctic krill from the Weddell Sea to the Bransfield Strait with a cold ACoC current
carrying colder and saltier TWW waters from the Weddell Sea. The maximum abundance
of Antarctic krill in the Bransfield Strait (the shelf of the Antarctic Peninsula), as well as
in the Antarctic Sound, was associated with a combination of favourable environmental
factors (temperature, salinity, and abundance of phytoplankton). In the Bransfield Strait,
such conditions were formed under the influence of the TWW with the temperatures of
−0.8 to 1.7 ◦C, which were optimal for the growth and development of both juveniles and
mature krill individuals [64–66]. In the Antarctic Sound, the main biomass of Antarctic
krill was also formed by krill brought from the Weddell Sea. The obtained data are
consistent with the view that immature individuals tend to colder waters, unlike mature
individuals [13,67]. Salinity variability seemed not to significantly affect the distribution
of krill at different stages of development, for which the range of 34.5–34.6 is optimal.
The maximum abundance of krill was noted around station 7336 (Figure 1), which was
characterized by the minimum salinity (33.55) in the surface layer, positive values of
potential temperature (0.1 ◦C), and high chlorophyll a concentration (>20 mg/m3), whereas,
at a depth of 200 m, the potential temperature was close to the freezing point of seawater
(−1.8 ◦C), salinity was higher, and the concentration of chlorophyll a did not exceed
0.5 mg/m3.

In the ASO, the average abundance and biomass of krill correlated well with the data
obtained in 2019–2020. However, our results for the density of Antarctic krill aggregations in
the Antarctic Sound were almost ten times higher than before [68,69]. Large accumulations
of salps were registered in the Bransfield Strait, which is associated both with the influence
of the warm BC current [70] and with the peculiarities of feeding and reproductive cycle
of salps [28]. The findings on the presence of large aggregations of Antarctic krill in the
Antarctic shelf of the Bransfield Strait are consistent with the previous studies [43,71].

The size composition of Antarctic krill varies greatly from year to year in the same
study area. According to our results, small-sized krill (82%) prevailed in the Bransfield
Strait, whereas, in the same ASO area, only 22% of small-sized krill were found by the
2020–21 expedition [72] and only about 40% by the 2019–20 expedition [68]. A similar
situation was observed in other regions. The reasons for such discrepancies could be
natural fluctuations in the size structure or differences in research methods, which therefore
require standardization. In particular, a repeated grid of stations is required for correct
comparisons of the obtained results and the use of large fishing gear similar in design
and size since krill can slip away out of small samplers [73,74]. Moreover, the entire layer
(0~200 m) of the Antarctic krill habitat needs to be sampled [75,76]. However, despite all of
the above, the feeding characteristics of krill remain the main factors determiningits size
compositions [6,7]. In some study areas, the catches included large individuals of krill (up
to 45 mm) without clearly expressed sexually dimorphic features (insufficiently developed
petasma and almost undeveloped internal genitals). The explanation of this phenomenon
could be found, with high probability, in the feeding conditions of krill [77–79], which is
also evidenced by the fatty acid analysis of its individuals [80]. It can be assumed that
under these conditions the growth of krill individuals is ahead of their development.

The sex composition of krill differed significantly from one of the previous years. So, in
the area of the Bransfield Strait and Antarctic Sound and eastward of the Antarctic Peninsula
(the Weddell Sea) the number of juveniles of different sizes was significantly higher than in
other researched areas, which was not observed in the recent studies [68,69,71,72]. At the
same time, in January–February 2020, a significant number of spent females were found
in almost all the studied areas [72], while in our study, spent females were found near the
South Orkney Islands only. In ASO, the number of juveniles caught did not exceed 33%,
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while in the recent study this value did not exceed 10% [72]. The maturation ogives of male
and female Antarctic krill indicate the same development of both genders up to the length
of sexual maturity L50%, after which females grow more slowly than males. This pattern
was also noted previously [77]. The condition of sexual maturity of krill impacts greatly on
this relationship.

Antarctic krill is an active filter-feeder and feeds mainly on phytoplankton [79,81]. As
was shown earlier, the decrease in the active feeding of krill occurs mainly in the autumn
and winter periods, while the feeding activity increases towards the end of spring [48]. Our
data also testify to the active feeding of krill in the austral summer period.

We recorded an almost complete absence of krill at the stations in the Powell Basin.
This area was studied by various expeditions on different sections [68,69,71,72,82–85].
Overall, the compilation of data for research regions shows much similarity. Thus, in the
Powell Basin, as well as in the waters near the South Orkney Islands, water temperature
regime (with the warming up to 2 ◦C) is favorable for the development of salps. Earlier
publications reported active salp development after winters with relatively low sea ice
development [6,7]. Unlike krill, the salp propagation does not depend on the ice cover and
the associated algae, which are the main prey for krill larvae and juveniles [86]. At the same
time, the life cycle of salps is much shorter than that of krill, and the fluctuations in their
abundance reflect the annual variability of conditions contributing to massive population
growth [87–89].

5. Conclusions

The analysis of the obtained data demonstrated significant shifts in the thermohaline
structure and currents of the upper 200-m water layer in the Antarctic Peninsula area. A
stronger southward spread of TWW was noted along the entire Bransfield Strait. The
upper layer of the Antarctic Sound waters became significantly warmer, and an extremely
small amount of ice was observed. The maximum values of chlorophyll a concentration
of more than 5 mg/m3 were observed only on the shelf in the northwestern Weddell Sea,
where the transport of icebergs and broken ice was registered. Waters with the lowest
concentrations of chlorophyll a (less than 0.3 mg/m3) were found in the central part of
the Powell Basin, in the area to the east of the South Orkney Islands, and in the Bransfield
Strait near the Antarctic Peninsula. Judging by the chlorophyll a concentration values, both
oligotrophic and mesotrophic waters are present in the study area. Mesotrophic waters,
with chlorophyll a concentrations of more than 2 mg/m3, were observed mainly in the
shelf areas in the northwestern part of the Weddell Sea and to the west of the South Orkney
Islands, as well as in separate zones at the edge of ice fields in the Weddell Sea.

This results also demonstrate a close relationship between Antarctic krill and salps and
a combination of such environmental factors as surface water temperature and availability
of forage. The circulation of water masses within the region play into the dynamics of
this interaction. Only in the Bransfield Strait and to the south of the Antarctic Sound at
the boundary of packed ice, in the relatively warm and desalinated surface layer and in
combination with the cold and salty subsurface water layer, were the optimal conditions
for the maximum concentrations of Antarctic krill formed. The reasons for the relatively
low krill reproduction in the study area may be found in the late spawning period and,
consequently, the low survival rate of krill larvae. The data on Antarctic krill abundance
for the latest decade have shown significant fluctuations in the ASO [8,10,15,90,91].

Thus, our results indicate the need to continue long-term monitoring of this area, where
the euphausiid biomass has traditionally been one of the largest in the entire Antarctic [12].
Climate changes gradually lead to significant seasonal and interannual fluctuations in the
abundance of these crustaceans against the background of an ever-increasing abundance
of salps [8,14,15]. Differences in the abundance of salps and krill can be explained by
differences in the ice cover in the ASO in other years, the extent of which determines the
availability of food for these planktonic animals: at high ice coverage, salps are limited
in food, while krill are able to “gnaw it out of the ice” [15,92]. The result indicates the
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replacement of the Antarctic krill populations by gelatinous zooplankton a steady long-
term tendency towards a decrease in the population of Antarctic krill (from 38% to 75% per
decade) and its successive replacement by salps in this water area [8,14,15,90]. Such changes
may affect the structure and productivity of the Antarctic ecosystem as a whole [8,10,91,93].
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