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Abstract: A series of hydrogels as biosorbents to remove heavy metal ions (Pb2+, Cu2+, and Cd2+)
were prepared using Radix Isatidis residues as material grafted with acrylic acid and acrylamide.
The surfaces of Radix Isatidis residue/acrylic acid-co-acrylamide (RIR/AA-co-AM), Radix Isatidis
residue/polyacrylamide (RIR/PAM3), and Radix Isatidis residue/polyacrylic acid (RIR/PAA4) hy-
drogels have a sponge-like, three-dimensional, and highly microporous structure. The hydrogels all
have considerable swelling properties and the swelling rate of RIR/PAA4 is the highest at 9240%.
The hydrogels all possess high adsorptivity to Pb2+, Cu2+, and Cd2+. Under optimized conditions,
the maximum adsorption capacity of RIR/AA-co-AM hydrogel is 655.4 mg/g for Pb2+, 367.2 mg/g
for Cd2+, and 290.5 mg/g for Cu2+. The maximum adsorption capacity of RIR/AA-co-AM hydrogel
for Cd2+ and Cu2+ is slightly lower than that of RIR/PAA4. In addition, the adsorption process
of RIR/AA-co-AM for heavy metal ions conforms with the pseudo-second-order kinetic equation
and Langmuir adsorption isotherm. Based on the microstructure analysis and adsorption kinetics,
electrostatic adsorption and ion exchange are identified as the mechanisms for the hydrogels re-
moval of heavy metal ions from water. It infers that hydrogels from Chinese herb residue can be
used to effectively remove heavy metals from wastewater and improve the reutilization of Chinese
herb residue.

Keywords: hydrogel; Chinese herb residue; cellulose; biosorbent; heavy metal; removal

1. Introduction

With the acceleration of urbanization and the expansion of the industrial scale, water
pollution caused by organic (such as pesticides [1], dyes [2], etc.), and inorganic (such as
various toxic heavy metals and their oxides, acids, bases, salts, sulfides, and halides, etc.),
pollutants, is becoming more and more serious [3–5]. Among pollutants, heavy metals due
to their biomagnification effect through food webs, drinking water, and other ways [6],
can cause seriously detrimental effects on human health when their concentrations go
beyond permissible limits [7–10]. Lead, copper, and cadmium are common toxic heavy
metals widely used in battery manufacturing and other industries [11]. In recent years,
the pollution levels of Pb2+, Cu2+, and Cd2+ in surface water and coastal wetlands have
continued to rise [6], leading to harm to the ecosystem and causing diseases to human
beings [12]. For instance, persistent intake of inorganic cadmium causes irritation of
the respiratory system and damages the liver, kidneys, and lungs in humans via the
consumption of drinking water [13]. Lead accumulation in the food chain shows a negative
impact on human health, such as damage to the central nervous system, fetal brain, kidney,
reproductive system, liver, basic cellular processes, and causes diseases (such as anemia,
nephrite syndrome, hepatitis) [14]. Therefore, it is urgent and necessary to remove toxic
heavy metals from contaminated water.
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Recently, biosorbents have attracted more attention due to their high removal efficiency,
low cost, no chemical sediment, and easy availability [15,16]. However, preparing biosor-
bents with high adsorption capacity and fast adsorption rate needs intensive study [17,18].
At present, biosorbents from natural by-product materials (such as cellulose [19], chi-
tosan [20], keratin [21,22], zeolite and clay [23]), are potential options because of their
widely avaiable resources, eco-friendliness, biocompatibility, and low cost. Cellulose, a
natural macromolecular compound and one of the most abundant renewable resources in
nature, mainly comes from plants sources such as Chinese herbal residue [24], bamboo [25],
cotton straw [26–28], sawdust [29], nutshell [30], and Napier grass [31], which has the
characteristics of high toughness, biocompatibility, biodegradability [32], and excellent
adsorptivity for heavy metals. Furthermore, several studies have reported the excellent
performance of biosorbents-based cellulose for the removal of heavy metal ions (such as
mercury, lead, cadmium, and copper) in wastewater [6,10,15]. Therefore, cellulose-based
biosorbents have excellent prospects for the removal of heavy metals from wastewater.

Chinese herb residue-based biosorbent is a potential adsorbent due to being rich in
cellulose, large tonnage, and easy availability [33]. According to statistics, the annual
discharge of Chinese herb residues in the country is as high as 650,000 tons [34], which
will pollute the environment and groundwater because it is highly susceptible to rot if
it is not timely and properly treated [35]. Many researches have studied the utilization
of Chinese herb residue for protecting the environment (such as removing dyes [36] and
heavy metals [37] from wastewater). In addition, according to our previous study, Radix
Isatidis residue (RIR) can remove Cu2+ from the water to some degree, but it was found that
its adsorption capacity was extremely low (16.5 mg/g). Additionally, our team previously
prepared a series of biosorbents to remove Cu2+ in water by chemically modified licorice
residue (LR) [16] and RIR, but the adsorption capacity of modified RIR (31.0 mg/g) was
low because cellulose was embedded in lignocellulose and its functional groups were
difficult to expose, which made Chinese herb residues sparingly soluble in water. Although
the researchers had taken advantage of the cellulose in Chinese herb residues to remove
contaminants from wastewater, the cellulose mostly is wrapped in lignin and is compact,
resulting in low adsorption capacities and rates [38]. Therefore, developing the methods
to effectively dissolve the cellulose, remove lignin in Chinese herb residues, and improve
the adsorption efficiency has become an essential approach. To overcome these challenges,
our team previously adopted an alkaline solution to dissolve them at a low temperature
(−20 ◦C) and using a microwave to achieve their complete dissolution, supporting a
possible way to improve the utilization and further application of Chinese herb residues.

In recent years, as a bio-adsorbent for heavy metal removal, hydrogels have entered
people’s vision due to their advantages of simple synthesis, convenient application, and
wide selection of raw materials [39,40]. Unlike other adsorbents, hydrogels, a 3D network
structure composed of hydrophilic polymer chains crosslinked either physically, chemically,
or via polymerization, adsorb heavy metals in a three-dimensional and highly porous
network [41]. Hydrogels can retain a large amount of water in a swollen state within
their network from surface tension and capillary forces [42], leading to a high adsorption
efficiency [43]. The adsorption or desorption of hydrogels for heavy metals is mainly due
to the surface chemistry and presence of hydrophilic functional groups (−OH, −COOH,
−CONH2, and −SO3H, etc.), which act as a complexing agent for heavy metals removal
from wastewater [44,45]. Moreover, hydrogels can be modified with the addition of new
functional metal absorption capacities or the preparation of composites with natural or
synthetic sources such as cellulose [46] to enhance heavy metal adsorption capacities [47].

As for the material, hydrogel can be produced either from natural or synthetic poly-
mers. However, natural-based polymer hydrogel is more prominent due to its low cost,
good biocompatibility, and biodegradability. Chinese herb residue containing a large
amount of cellulose is a promising natural material for preparing hydrogels for removing
heavy metals from wastewater. To date, there are limited studies that used Chinese herb
residue as raw materials to synthesize hydrogel. Using Chinese herb residue as a source to
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prepare hydrogel is not only a promising method to remove heavy metals from wastewater,
but also a sustainable approach to improve the reutilization value of Chinese herb residue.

In this paper, the dissolved Radix Isatidis residue (RIR) was used as a raw mate-
rial, acrylamide (AM) and acrylic acid (AA) were functional monomers with numerous
functional groups (−CONH2, −COOH), N,N methylene bisacrylamide (MBA) and amine
persulfate were crosslinking agent and initiator, respectively. A series of hydrogels used
as biosorbents to remove heavy metals from wastewater were synthesized through free
radical polymerization. The prepared hydrogels were characterized by scanning electron
microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The adsorption
capacities of the hydrogel adsorbents were studied by the static adsorption test, and the
effect of pH of the solution, adsorption time, adsorbent dosage, and initial concentration of
Cu2+, Pb2+, and Cd2+ were investigated. The kinetic model and the isotherm model were
used to analyze the adsorption kinetics and adsorption capacity. Lastly, the adsorption
mechanism of hydrogel for the removal of heavy metals was discussed. In this study, a
series of biosorbents with excellent adsorption properties were synthesized using Chinese
herb residues at room temperature. This low-cost and convenient synthesis method sup-
ports the reutilization of Chinese herb residues, the development of biosorbents, and more
importantly the reduction of environmental pollution stress.

2. Experimental
2.1. Materials

Radix isatidis was obtained from Huiren Tang Pharmacy (Lanzhou, China). Urea
(CH4N2O) were purchased from Yantai Shuangshuang Chemical Co., LTD (Yantai, China).
Sodium hydroxide (NaOH), AM, AA and N,N-methylene bisacrylamide (MBA) were
purchased from Tianjin Damao Chemical Reagent Factory (Tianjin, China). Ethanol absolute
(C2H6O) and ammonium persulfate (APS) were purchased from Tianjin Best Chemical Co.,
LTD. (Tianjin, China). Lead nitrate (Pb(NO3)2), hydrated copper sulfate (CuSO4•5H2O),
and cadmium chloride hydrate (CdCl2•2 1/2H2O) were acquired from Tianjin Kermel
Chemical Reagent Co., LTD. (Tianjin, China). All other chemical reagents were of analytical
grade and used directly without further purification.

2.2. Pretreatment of Radix Isatidis Residue (RIR)

The RIR was washed with distilled water, boiled three times to remove the active
ingredients from RIR, and dried at 50 ◦C. Firstly, the dried RIR was modified with diluted
NaOH (1 mol/L) for 8 h, named as RIR-NaOH. After drying and grinding, RIR-NaOH
was sieved with a 200-mesh screen (Figure 1a). An amount of 7 g of sodium hydroxide
and 12 g of urea were dissolved in 81 mL of distilled water, named as the alkaline urea
solution. Then, the RIR-NaOH powder was dispersed in the alkali–urea solution at room
temperature with magnetic stirring 2 h (200 rmp), next this mixture was frozen at −20 ◦C
for 8 h, and then thawed and stirred at 0 ◦C for 2 h; this process was repeated twice. Lastly,
microwave radiated the above mixture for 20 min, the mixture was centrifuged for 5 min at
4000 rpm, and the supernatant was added with 1M HCl solution to neutral pH and stored
at 4 ◦C (Figure 1b).

2.3. Preparation of Hydrogels

The RIR-NaOH supernatant was stirred at room temperature for 15 min, and AA
(3 mL), AM (2 g), and MBA (0.2 g) were added. Then, the appropriate amount of APS
solution was added to generate hydroxyl radicals. Lastly, the mixture solution was stirred
for 1 min and maintained for 20 min to generate hydrogel at room temperature. The
reaction scheme is illustrated in Figure 2. After the reaction, the sample was washed with
absolute ethanol to remove unreacted reagents and by-products. Next, the hydrogel was
soaked in distilled water and changed water twice, which was lyophilized to produce the
final biosorbent (named RIR/AA-co-AM). At the same time, a series of hydrogels were
fabricated by introducing AA (2 mL, 3 mL, 4 mL) or AM (1 g, 2 g, 3 g) with the same method
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as mentioned above, named as RIR/PAA2, RIR/PAA3, RIR/PAA4, RIR/PAM1, RIR/PAM2,
and RIR/PAM3, respectively. Because RIR/PAA4 and RIR/PAM3 have better physical
properties than other hydrogels of the same series, only RIR/PAA4 and RIR/PAM3 were
compared with RIR/AA-co-AM in the following study.
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2.4. Characterization

The surface morphologies and structures of the dried hydrogels were observed using
scanning electron microscopy (SEM; JSM-6701F, JEOL, Tokyo, Japan) with an accelerating
voltage of 20 kV. Hydrogels were mounted on aluminum sample holders with double-sided
tape and coated with a thin layer of gold.

The structures of RIR-NaOH, RIR/AA-co-AM, RIR/PAA4, and RIR/PAM3 were char-
acterized with Fourier transform infrared spectrometer (FTIR, Nicolet Nexus, Waltham,
MA, USA). The hydrogels were dried and ground into potassium bromide tablets con-
taining 1% of the sample, and spectra were collected at wavenumbers from 400 cm−1 to
4000 cm−1.
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2.5. Swelling Experiments

In order to characterize the swelling behavior of hydrogels, 3 pieces of dry hydrogels
(50 mg) were immersed into 50 mL DI water at room temperature (25 ◦C). After swelling
for 24 h and reaching equilibrium, the weight of swollen hydrogels was measured. The
swelling ratio (Sw) of the hydrogels was calculated according to Equation (1) [48]:

Sw(%) =
Ws − Wd

Wd
× 100 (1)

where Wd (g) is the weight of dry hydrogels; Ws (g) is the weight of swollen hydrogels at
equilibrium.

2.6. Adsorption Experiments

An amount of 0.02 g of hydrogel samples was added to the colorimetric tube con-
taining 25 mL of the heavy metal aqueous solution, and the adsorption experiment of
Pb2+, Cd2+, and Cu2+ on RIR/AA-co-AM, RIR/PAA4, and RIR/PAM3 were studied. The
cuvettes were sealed and stirred in a thermostatic shaker (stirring at 120 rpm) at room
temperature, and the pH of the solutions was adjusted by adding appropriate HCl and
NaOH solutions. The effect of pH on metal ion adsorption between 1.0 and 5.0 was investi-
gated. In adsorption kinetic experiments, the contact time was 0.25–8 h. In the adsorption
isotherm experiment, the metal ion concentrations were between 100 and 1000 mg/L. After
adsorption, the residual concentration of heavy metal ions was determined using atomic
absorption spectroscopy (PerkinElmer, PinAAcle 900 T, Waltham, MA, USA).

The adsorption capacity (qe, mg/g) and heavy metal ions adsorption capacity (qt,
mg/g) of the hydrogel at equilibrium were determined by the following equations [44].

qe =
(C0 − Ce)V

W
(2)

qt =
(C0 − Ct)V

W
(3)

where qe (mg/g) is the equilibrium adsorption capacity, qt (mg/g) is the adsorption capacity
at a specific time, C0 (mg/L) is the initial concentration, Ce (mg/L) is the equilibrium
concentration, and Ct (mg/L) is the concentration of heavy metal solution at time t (h), V
(mL) the volume of heavy metal ion solution, and W (mg) is the amount of dry hydrogel.

3. Results and Discussion
3.1. Structure Characterization and Analysis of Hydrogels
3.1.1. Photos of RIR/AA-co-AM Hydrogel

The morphology of RIR/AA-co-AM was photographed as shown in Figure 3. The
prepared hydrogel looks like a jelly-like solid (a) maintained high water capacity due to
its high porosity structure [49]. After soaking in anhydrous ethanol, the gel lost a part of
the water, becoming tougher and more elastic (b). When soaked in distilled water, the gel
absorbed water and swelled rapidly (c). The lyophilized RIR/AA-co-AM showed a loose
and porous three-dimensional network shape, which was beneficial to provide more sites
for ion adsorption (d). Compared with the hydrogel introduced with acrylic monomer,
the hydrogel obtained by cross-linking polymerization of acrylamide and acrylic acid has
greatly improved elasticity and toughness and has better mechanical properties. It is easy
to recycle in future experiments, thereby reducing secondary pollution.



Water 2022, 14, 3811 6 of 19

Water 2022, 14, x FOR PEER REVIEW 6 of 20 
 

 

the water, becoming tougher and more elastic (b). When soaked in distilled water, the gel 

absorbed water and swelled rapidly (c). The lyophilized RIR/AA-co-AM showed a loose 

and porous three-dimensional network shape, which was beneficial to provide more sites 

for ion adsorption (d). Compared with the hydrogel introduced with acrylic monomer, 

the hydrogel obtained by cross-linking polymerization of acrylamide and acrylic acid has 

greatly improved elasticity and toughness and has better mechanical properties. It is easy 

to recycle in future experiments, thereby reducing secondary pollution. 

  
(a) (b) 

  
(c) (d) 

Figure 3. The photos of RIR/AA-co-AM hydrogel. Prepared RIR/AA-co-AM hydrogel (a); After eth-

anol dehydration (b); After soaking in DI water for 24 h (c); After freeze drying (d). 

3.1.2. SEM 

The surface morphology of RIR, RIR-NaOH, RIR/PAM3, RIR/PAA4, and RIR/AA-co-

AM was analyzed by SEM, as shown in Figure 4. The RIR structure was relatively loose 

with few regular pores. Although RIR-NaOH has a few pores, they were larger than 10μm 

which made the pollutants easy in and out, leading to a low adsorption capacity. Based 

on the structure of RIR and RIR-NaOH, their adsorption capacities for heavy metals were 

lower because cellulose is wrapped in lignin and is compact, resulting in low adsorption 

capacities and rates [46]. The porosity of hydrogel is a key factor attributed to its adsorp-

tion capacity [50]. Compared with RIR and RIR-NaOH, the hydrogels of RIR/AA-co-AM, 

RIR/PAM3, and RIR/PAA4 have sponge-like, three-dimensional, and highly microporous 

surface morphology. Among hydrogels, RIR/AA-co-AM has a regular porous and rough 

structure that significantly differs from RIR/PAM3 and RIR/PAA4 hydrogel. The average 

pore size of RIR/AA-co-AM in diameter is about 3μm, slightly larger than RIR/PAM3 and 

RIR/PAA4, which can provide more adsorption sites for heavy metal ions and improve 

the overall adsorption performance. The hydrogel RIR/PAA4 has a highly porous struc-

ture, leading to a higher adsorption capacity than RIR/PAM3. The main reason that the 

Figure 3. The photos of RIR/AA-co-AM hydrogel. Prepared RIR/AA-co-AM hydrogel (a); After
ethanol dehydration (b); After soaking in DI water for 24 h (c); After freeze drying (d).

3.1.2. SEM

The surface morphology of RIR, RIR-NaOH, RIR/PAM3, RIR/PAA4, and RIR/AA-co-
AM was analyzed by SEM, as shown in Figure 4. The RIR structure was relatively loose
with few regular pores. Although RIR-NaOH has a few pores, they were larger than 10 µm
which made the pollutants easy in and out, leading to a low adsorption capacity. Based
on the structure of RIR and RIR-NaOH, their adsorption capacities for heavy metals were
lower because cellulose is wrapped in lignin and is compact, resulting in low adsorption
capacities and rates [46]. The porosity of hydrogel is a key factor attributed to its adsorption
capacity [50]. Compared with RIR and RIR-NaOH, the hydrogels of RIR/AA-co-AM,
RIR/PAM3, and RIR/PAA4 have sponge-like, three-dimensional, and highly microporous
surface morphology. Among hydrogels, RIR/AA-co-AM has a regular porous and rough
structure that significantly differs from RIR/PAM3 and RIR/PAA4 hydrogel. The average
pore size of RIR/AA-co-AM in diameter is about 3 µm, slightly larger than RIR/PAM3 and
RIR/PAA4, which can provide more adsorption sites for heavy metal ions and improve the
overall adsorption performance. The hydrogel RIR/PAA4 has a highly porous structure,
leading to a higher adsorption capacity than RIR/PAM3. The main reason that the pores
developed in the hydrogel would improve the adsorption performance is that the pores
can permit guest molecules such as water and heavy metals to move across the composite
structure [51].
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3.1.3. FTIR Analysis

Various functional groups in hydrogels were determined by FTIR, as shown in Figure 5.
The absorption band around 3430 cm−1 is related to the O-H bond [16], the sharp peak
at 2927 cm−1 is related to the Csp3- stretching vibration [52], the peak at 1623 cm−1 is the
stretching of the C-N bond, the peak at 1413 cm−1 is related to the stretching vibration of
the -CO- bond in the phenyl hydroxyl group in lignin, the peak at 1314 cm−1 is the C-N
absorption band (amide III band), the peaks at 1158 cm−1 are attributed to the stretching
vibration of the ester bond in the cellulose ester group [16], the peak at 1030 cm−1 is
attributed to the bending vibration of the hydroxyl group [53], and the characteristic peaks
of cellulose still exist in RIR/AA-co-AM, RIR/PAA4, and RIR/PAM3 hydrogels. The peak at
2852 cm−1 is the characteristic absorption peak of methylene symmetry stretching vibration,
and 1454 cm−1 is the characteristic absorption peak of methylene deformation [54], the
vibration peak of C=O at 1561 cm−1, the absorption peak at 1119 cm−1 is related to the C-N
stretching vibration, these characteristic peaks are all from polyacrylamide and polyacrylic
acid. It can be seen that AA and AM were successfully introduced onto RIR-NaOH by graft
copolymerization.
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3.2. Swelling Ratio of Hydrogels

Figure 6 shows the results of the swelling properties of different hydrogels. RIR/PAA4
and RIR/AA-co-AM had the highest swelling rate (9240%) due to numerous hydrophilic
functional groups (e.g., –OH, −COOH, −NH2), which enable the adsorption and retention
of a large volume of water. After introducing CONH2, the swelling ratio (9064%) of
RIR/AA-co-AM and RIR/PAM3 were all lower than that of RIR/PAA4, and RIR/PAM3
had the lowest swelling rate (4024%) because the hygroscopicity of COOH is higher than
that of CONH2 on the surface of RIR/AA-co-AM and RIR/PAM3 [55]. Although RIR/PAA4
has the best swelling ratio among the three hydrogels, it could not maintain its form in the
process of adsorption.
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3.3. Adsorption of RIR/AA-co-AM
3.3.1. Effect of pH on Adsorption

The effect of pH on adsorption is shown in Figure 7. In this experiment, pH is a critical
parameter for the adsorption process that can change the chelating ability of adsorbents
by affecting their swelling ability and interactions between adsorbents and ions [56]. The
adsorption capacity of RIR/AA-co-AM hydrogel for Pb2+, Cd2+, and Cu2+ increased with
the solution pH and remained balanced at pH 3 (Figure 7a). This trend could be explained
by the changes in active sites on the hydrogel surface [57]. Here, the hydroxyl, -CONH2,
and -COOH were the main adsorption groups. When the solution pH was below 1, the
adsorption capacity of RIR/AA-co-AM to heavy metals was close to 0 mg/g, while the
adsorption capacity of the hydrogel increased rapidly when pH increased in the range of
1–3. It was mainly because when pH was lower than 1, there was a competition between
hydrogen ions and metal ions to bound active sites on the surface of the hydrogels. In
addition, the active groups -OH, -CONH2, and -COOH were protonated by hydrogen ions,
reducing the number of adsorbing sites available for metal ions uptake. Furthermore, a large
amount of H+ in the solution can compete with metal ions via the ion-exchange reaction.
As the pH increased, the number of positively charged surface active sites decreased, which
lowered the electrostatic repulsion between the positively charged heavy metal ions and
the surface of the adsorbent. At pH 3, the adsorption capacity of RIR/AA-co-AM to Pb2+,
Cd2+, and Cu2+ reached the maximum. Therefore, the use of hydrogel to adsorb heavy
metal ions is based on their electrostatic interactions and ion exchange and does not require
high alkalinity [58]. At higher pH (pH > 5.5), the number of adsorption sites is expected to
increase because there are more basic amino groups. However, in this pH range, Pb2+, Cd2+,
and Cu2+ can precipitate as insoluble hydroxides [59], possibly leading to an inaccurate
interpretation of the obtained results. Therefore, a pH of 3.0 was selected as the initial pH
for RIR/AA-co-AM to adsorb Pb2+, Cd2+, and Cu2+ solutions for the following adsorption
experiments.

From Figure 7b–d, RIR/PAA4 and RIR/PAM3 reached the maximum adsorption to
heavy metals at pH 4. At pH 3, the adsorption capacity of RIR/AA-co-AM for Pb2+ could
reach 655.38 mg/g at equilibrium, which was higher than those of Cd2+ (219.13 mg/g) and
Cu2+ (242.79 mg/g). It might be because numerous functional groups -CONH2 [60] and
-COOH [61] on RIR/AA-co-AM surface have more selective adsorption to Pb2+. Figure 7c,d
show that the RIR/AA-co-AM also had a better adsorption effect on Cu2+ and Cd2+ ions,
which could reach 242.79 mg/g and 260.69 mg/g, respectively. The high uptake of Cu2+ and
Cd2+ of RIR/PAA4 may be attributed to the electrostatic attraction between the Cu2+ and
Cd2+ ions and the negatively charged binding sites, as ligands such as carboxyl, hydroxyl,
and amino groups were free to facilitate interactions with metal cations [62]. However,
RIR/AA-co-AM had a better adsorption effect on Cu2+ and Cd2+ ions which could reach to
284 mg/g and 303 mg/g. It might because the electrostatic interaction between RIR/PAA4
and Cu2+ or Cd2+ ions is stronger than RIR/AA-co-AM and RIR/PAM3 at pH 4. In the
following study, pH 4 was chosen as the appropriate pH for RIR/PAA4 and RIR/PAM3 to
remove heavy metals ions.

3.3.2. Effect of Contact Time on Adsorption

Figure 8a elucidates the effect of contact time on the adsorption of heavy metal ions to
the hydrogels. The adsorption capacity of RIR/AA-co-AM increased with contact time and
reached equilibrium at 16 h for Pb2+, 2 h for Cu2+, and Cd2+. For Cu2+ and Cd2+, the active
sites on the surface of hydrogel were decreased and saturated, reaching the adsorption
equilibrium. Additionally, the adsorption capacity of the RIR/AA-co-AM for Pb2+ could
reach more than 350 mg/g within 2 h. RIR/AA-co-AM had fast adsorption rate and high
adsorption capacity for Pb2+ than Cu2+ and Cd2+. Furthermore, in Figure 8b, the removal
of Pb2+ was mainly carried out in the first stage (2 h), and the hydrogel RIR/AA-co-AM has
the fastest adsorption rate. The reason might be because the active sites (-COOH, -CONH2)
on the surface of RIR/AA-co-AM were more than those of RIR/PAA4 and RIR/PAM3
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hydrogels. The adsorption capacity of RIR/AA-co-AM continued to rise to 639.46 m/g in
the next 12 h (Figure 8e).
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Figure 7c,d depict the adsorption effect of three hydrogels on Cu2+ and Cd2+ under
different contact times. The removal rate of RIR/AA-co-AM for Cu2+ and Cd2+ was faster
than RIR/PAA4 and RIR/PAM3, but the maximum adsorption capacity of RIR/PAA4
(278.5 mg/g) for Cu2+ was higher than RIR/AA-co-AM (240.5 mg/g) and RIR/PAM3
(121.25 mg/g) hydrogels. Moreover, the RIR/PAA4 had the best adsorption effect on Cd2+

ions which could reach 376.25 mg/g. This may be because RIR/PAA4 could swell rapidly,
thereby enhancing the adsorption capacity for Cu2+ and Cd2+. The removal of three heavy
metal ions mainly occurred in the first stage when the adsorption sites were most bound
with the metal ions, which may gather near the active sites (-OH, -CONH2, and -COOH),
that is, the adsorption saturation state of the hydrogels.

3.3.3. Effect of Initial Ion Concentration on Adsorption

Figure 9a illustrates the effect of initial concentration on the adsorption of heavy
metal ions by the RIR/AA-co-AM. The adsorption capacity increased with the increases
in initial concentration, and Pb2+ and Cd2+ reached equilibrium at 600 mg/L, and Cu2+

reached equilibrium at 300 mg/L. In a fixed solution volume and adsorbent mass, the
number of Pb2+, Cd2+, and Cu2+ proliferated when the initial concentration in wastewater
increased [63]. Consequently, more Pb2+, Cd2+, and Cu2+ bound to the active sites of
RIR/AA-co-AM, thus accelerating the diffusion of heavy metals onto RIR/AA-co-AM sites
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due to the increase in driving force of concentration gradient, resulting in higher adsorption
capacities [64]. However, with a further increase in the initial concentration, the adsorption
capacity remained at the maximum levels. The following explanation was made: at low
pollutant concentration, the ratio of an initial number of moles of pollutant ions to the
accessible sites of hydrogels is large, which causes higher adsorption capacity. On the other
hand, at higher pollutant concentrations, the number of available adsorbent sites becomes
fewer, resulting in a decrease in pollutant removal efficiency [65,66].
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Figure 8. Effects of contact time for Pb2+, Cu2+, and Cd2+ on hydrogels. Adsorption conditions were
at absorbent = 0.02 g, T = 25 ◦C and pH = 3 for RIR/AA-co-AM, pH=4 for RIR/PAA4 and RIR/PAM3.
Adsorption capacity of RIR/AA-co-AM for Pb2+, Cd2+, and Cu2+ (a); Adsorption capacity of three
hydrogels for Pb2+ (b); Adsorption capacity of three hydrogels for Cu2+ (c); Adsorption capacity of
three hydrogels for Cd2+ (d); Adsorption capacity of RIR/AA-co-AM for Pb2+ after 4 h (e).
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Figure 9. Effect of initial concentration on Pb2+, Cu2+, and Cd2+ adsorption. Adsorption conditions
were at absorbent = 0.02 g, T = 25 ◦C, pH = 3 for RIR/AA-co-AM, pH = 4 for RIR/PAA4 and
RIR/PAM3, and t = 8 h. Adsorption capacity of RIR/AA-co-AM for Pb2+, Cd2+, and Cu2+ (a);
Adsorption capacity of three hydrogels for Pb2+ (b); Adsorption capacity of three hydrogels for
Cu2+ (c); Adsorption capacity of three hydrogels for Cd2+ (d).

Figure 9b–d describe the adsorption effects of three hydrogels on three metal ions un-
der different initial concentration solutions. With the increase in the initial ion concentration
of the solution, the adsorption capacity increased, and finally tended to equilibrium. From
Figure 9b, at the same initial concentration, the adsorption capacity of RIR/AA-co-AM for
Pb2+ could reach 618 mg/g, which was higher than those of Cd2+ and Cu2+. The possible
reason for RIR/AA-co-AM had high adsorption ability for heavy metals is mainly because
the hydrogels were highly porous and comprised of numerous hydrophilic functional
groups (e.g., –OH, −COOH, −NH2, and −CONH2), that enabled the adsorption and
retention of a large volume of water during the treatment process and eventually caused
up to the complete removal and recovery of aqueous heavy metals [67]. Figure 9c,d show
that the RIR/AA-co-AM also had a better adsorption effect on Cu2+ and Cd2+ ions, which
could reach 212.17 mg/g and 337.16 mg/g, respectively. However, the adsorption capacity
of RIR/PAA4 for Cu2+ (308 mg/g) and Cd2+ (414 mg/g) was higher than RIR/AA-co-AM,
this might be the reason that RIR/PAA4 had stronger electrostatic adsorbability for Cu2

and Cd2+ ions than that of RIR/AA-co-AM and RIR/PAM3.
After the adsorption reaches equilibrium, there was a plateau state for the adsorption

capacity of three adsorbents. This was because when the initial concentration was low, the
active sites of adsorption were not saturated. As the concentration increased, the driving
force for adsorption increased, which led to an increase in adsorption capacity. When the
initial concentration increased further, the adsorbed active sites tended to be saturated [68].
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3.3.4. Adsorption Kinetics

To investigate the effect of RIR/AA-co-AM on the adsorption rate, a kinetic model was
used to fit the experimental data. For solid-liquid interactions, the most common kinetic
models are pseudo-first-order as in Equation (3), and pseudo-second-order models as in
Equation (4). The pseudo-first-order kinetic model assumes that the adsorption rate is
controlled by diffusion and mass transfer, while the pseudo-second-order model assumes
that chemisorption is the rate-controlling step [69].

log(qe1 − qt) = log qe1 −
k1

2.303
t (4)

t
qt

=
1

k2qe2
2 +

t
qe2

(5)

where qe1 and qe2 (mg/g) are the equilibrium adsorption capacity, qt (mg/g) the adsorption
capacity at a specific time, k1 (min−1) and k2 (g/mg*min) quasi-first-order and pseudo-
second-order rate constant, respectively.

Figure 10 and Table 1 show the fitting curves and fitting parameters of the pseudo-
first-order model and pseudo-second-order model. Table 1 shows that in the pseudo-first-
order calculation, the calculated value (qe1) did not match the experimental value, but the
pseudo-second-order qe2 was closer to the experimental data. Consistent with this, the
pseudo-second-order correlation coefficient (R2) was high. The results showed that the
pseudo-second-order kinetic equation better described the adsorption of heavy metal ions
by the hydrogel, i.e., chemisorption was dominant. Additionally, the chemisorption rate of
the reaction was proportional to the square of the unoccupied adsorption sites.
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Table 1. Kinetic parameters for the adsorption of heavy metal ions.

Pseudo-First-Order Pseudo-Second-Order

k1 qe1 R2 k2 qe2 R2

Pb(II) 0.016 459.60 0.9747 0.00003 555.17 0.9867
Cd(II) 0.029 296.87 0.9583 0.00005 374.23 0.9627
Cu(II) 0.09 233.11 0.9800 0.00005 254.8 0.9910

3.3.5. Adsorption Isotherm

Adsorption isotherms are used to describe interfacial adsorption, a physicochemical
adsorption phenomenon that results from the interaction of metal ions with the adsorbent
surface. The Langmuir [70] and Freundlich [71] isotherm models were studied for the
adsorption capacity of RIR/AA-co-AM. The Langmuir model was applied to a monolayer
adsorption system, indicating that a limited number of adsorption sites were separated



Water 2022, 14, 3811 14 of 19

from each other without chemical interactions. The Freundlich model described the non-
uniform surface of the adsorption surface and was suitable for multi-layer adsorption or
high adsorption concentration system. The equations were as follows:

Ce

qe
=

1
KLqm

+
Ce

qm

{
RL =

1
1 + KLC0

}
(6)

ln qe = ln KF +
1
n

ln Ce (7)

where qe (mg/g) is the equilibrium adsorption capacity, Ce (mg/L) is the equilibrium
concentration, KL is the Langmuir constant, qm (mg/g) is the maximum adsorption capacity
covering the entire surface, RL is the separation coefficient or equilibrium parameter, C0
(mg/L) is the initial concentration of heavy metal ions, and KF and n are the Freundlich
constants.

Figure 11 and Table 2 describe the fitting parameters and fitting curves of the two
models, respectively. According to the correlation coefficient (R2), Langmuir was the best
fitting method to describe the adsorption process, indicating that monolayer adsorption
dominates the adsorption process. In addition, RL values less than 1 and n > 1 both reflected
the good adsorption capacity of the adsorbents.
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Table 2. Adsorption isotherms of heavy metal ions on RIR/AA-co-AM hydrogel.

Langmuir Freundlich

qm KL RL R2 n KF R2

Pb(II) 689.65 0.0244 0.0639 0.9745 2.695 80.654 0.5151
Cd(II) 346.02 0.0879 0.0222 0.9997 4.196 90.021 0.8328
Cu(II) 213.68 0.0292 0.1025 0.9828 3.085 31.521 0.6722

3.4. Adsorption Mechanism of Hydrogel

With the initiator, some weaker bonds were introduced into the cellulose macro-
molecules, so that the covalent bonds (C-C, C-O, C-H, O-H) with large bond energy in the
cellulose molecules were broken. At the general polymerization temperature, primary free
radicals that can initiate the graft copolymerization of monomers were generated on the
cellulose molecules, and then free radical graft polymerization occurs [72]. The adsorption
typically occurs through different interactions, which are extensively dependent on the
functional groups present in the hydrogel, its properties, the chemical composition of
pollutants, and experimental parameters [73]. The most common adsorption mechanism
for the removal of heavy metals by adsorbents is electrostatic interactions [59]. Electrostatic
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interaction comprised the interaction between charged modules, attractive and repulsive
interaction occurred when molecules were oppositely charged (cation–anion interactions)
and similarly charged (cation–cation or anion–anion interactions), respectively. The possi-
ble adsorption mechanism of RIR/AA-co-AM is shown in Figure 12. In this study, when
pH was low but higher than 1, RIR/AA-co-AM deprotonated, the adsorbent functional
groups -COOH, -CONH2 and -OH could negatively charge, which was the opposite charge
to the pollutants Pb2+, Cd2+, and Cu2+, removing the pollutants by electrostatic interactions.
In addition, functional groups -COOH, -CONH2 were positively charged when pH was
higher but below 5, which caused cations (Pb2+, Cd2+, and Cu2+) exchange to remove the
contaminants from wastewater.
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Compared with the adsorbents reported in literature, the hydrogel prepared in this
study has higher adsorption capacity for Pb2+, Cd2+, and Cu2+, especially the adsorption
of Pb2+ is higher than that of most adsorbents reported in the literature (Table 3). RIR/AA-
co-AM showed a better adsorption capacity when compared to pure cellulose-synthesized
MCC-g-poly(AA-co-AM), Ch/IA/MAA, GO/PAA, KCTS/PAM and SR–PAA introducing
only monomeric AA or AM. Moreover, the preparation of these hydrogels all require
heating during the synthesis process, increasing the synthesis costs. Furthermore, the
RIR/AA-co-AM was prepared using natural by-product which could pollute groundwater
if not utilized or disposed properly. RIR/AA-co-AM will not only alleviate the environmen-
tal pollution stress, but also improve the reutilization of Chinese herb residues. Therefore,
Chinese herb residue based hydrogel synthesized in this study has a simple synthesis
process and a relatively high adsorption capacity, which can serve as a more accessible and
environmentally friendly adsorbent to remove heavy metal ions in wastewater.

Table 3. Adsorption of heavy metal ions by different adsorbents.

Adsorbent
Adsorption Capacity (mg/g)

References
Pb2+ Cd2+ Cu2+

RIR/AA-co-AM 655.38 337.16 242.79 Present study
LR-NaOH - - 43.65 [16]
MCC-g-poly(AA-co-AM) 393.28 289.97 157.51 [7]
SR–PAA 422.69 160.75 - [52]
Ch/IA/MAA - 285.7 - [62]
GO/PAA - 316.4 - [74]
KCTS/PAM 61.41 - 72.39 [75]

4. Limitations

Because the desorption performance of RIR/AA-co-AM was poor, the reusability
experiment was not completed in this paper. In the future, we would like to further use
oxidation and other means to turn metal ions into an oxidized state, thereby realizing the
recovery of metal ions and the degradation of adsorbents.
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5. Conclusions

Hydrogel biosorbents that could adsorb heavy metal ions in water under different
conditions were successfully prepared using acrylic acid, acrylamide, and Radix Isatidis
residue. Through the physicochemical characterization of this sample, acrylic acid and
acrylamide monomers were grafted successfully with cellulose. SEM showed that the
hydrogel surface was rough, irregular, and porous. The swelling ratio of RIR/PAA4 was
9240% which was higher than that of RIR/AA-co-AM (9064%). RIR/AA-co-AM has an
adsorption capacity for different kinds of heavy metal ions, among which the adsorption
effect of Pb2+ was better. The maximum adsorption capacity of RIR/AA-co-AM for Pb2+

can be over 400 mg/g within 120 min. After 120 min, RIR/AA-co-AM could continu-
ously adsorb Pb2+. The maximum adsorption capacity of RIR/AA-co-AM for Cd2+ ion
adsorption was about 300mg/g within 120 min. The maximum adsorption capacity of
RIR/AA-co-AM for Cu2+ ion adsorption was 242.79 mg/g in 120 min. Compared with
RIR/PAA4 and RIR/PAM3, the overall adsorption capacity of RIR/AA-co-AM was higher.
Moreover, the adsorption process of hydrogels for heavy metal ions was well described
by the pseudo-second-order kinetic equation and Langmuir adsorption isotherm. The ad-
sorption mechanism of RIR/AA-co-AM was identified as the electrostatic adsorption and
ion-exchange effect. The results indicated that the prepared hydrogels were potential biosor-
bents for the removal of heavy metal ions from wastewater, providing a promising way for
the preparation of biosorbents and cyclic utilization of Chinese herb residues further.
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