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Abstract: Marine habitats provide various benefits to the environment and humans. In this regard, an
accurate marine habitat map is an important component of effective marine management. Newfound-
land’s coastal area is covered by different marine habitats, which should be correctly mapped using
advanced technologies, such as remote sensing methods. In this study, bathymetric Light Detection
and Ranging (LiDAR) data were applied to accurately discriminate different habitat types in Bonne
Bay, Newfoundland. To this end, the LiDAR intensity image was employed along with an object-
based Random Forest (RF) algorithm. Two types of habitat classifications were produced: a two-class
map (i.e., Vegetation and Non-Vegetation) and a five-class map (i.e., Eelgrass, Macroalgae, Rockweed,
Fine Sediment, and Gravel/Cobble). It was observed that the accuracies of the produced habitat
maps were reasonable considering the existing challenges, such as the error of the LiDAR data and
lacking enough in situ samples for some of the classes such as macroalgae. The overall classification
accuracies for the two-class and five-class maps were 87% and 80%, respectively, indicating the high
capability of the developed machine learning model for future marine habitat mapping studies. The
results also showed that Eelgrass, Fine Sediment, Gravel/Cobble, Macroalgae, and Rockweed cover
22.4% (3.66 km2), 51.4% (8.39 km2), 13.5% (2.21 km2), 6.9% (1.12 km2), and 5.8% (0.95 km2) of the
study area, respectively.

Keywords: marine habitats; aquatic vegetation; LiDAR; remote sensing; image classification

1. Introduction

Marine habitats have many benefits to the environment and humans. For example,
they provide shelter and food for various aquatic species [1–4]. Moreover, the fishing
and tourism and transportation industries largely benefit from marine ecosystems [5–7].
Despite the importance of marine habitats, they are significantly threatened by natural and
anthropogenic activities, such as climate change, shipping, and extensive fishing [8–10].
Thus, it is necessary to use advanced and practical tools for mapping and monitoring
these habitats.

Various remote sensing systems, such as optical satellites, bathymetric Light Detection
and Ranging (LiDAR), Sound Navigation And Ranging (SONAR), and drones, provide
valuable geospatial datasets to facilitate marine habitat studies over large and remote
ocean environments with a minimum cost and over a minimal amount of time [1–4,11].
For example, airborne bathymetric LiDAR systems have widely been applied to classify
marine habitats due to their ability to generate high-density point cloud data over relatively
deep-water bodies compared to other airborne and spaceborne remote sensing systems,
such as multispectral and Synthetic Aperture Radar (SAR) sensors [7,12–15]. LiDARs are
active systems and have their own source of illumination. Thus, they can operate during
both day and night times. Bathymetric LiDAR systems transmit laser pulses, usually
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in the green and blue ranges of the spectrum (e.g., wavelength = 530 nm), to the water
bodies (e.g., oceans) and measure the distance and intensity. The derived distance and
intensity values can later be applied to bathymetric mapping and for classifying different
marine habitat types, respectively. It should be noted that the main difference between
the bathymetric and terrestrial LiDAR systems is the fact that the first one uses green and
blue electromagnetic pulses, but the second one uses the red and infrared pulses. This is
because blue and green lights have a higher penetration into water and can see the bottom
of the water up to a specific depths (e.g., 20 m in inland water bodies) [2]. Bathymetric
LiDAR pulses can be attenuated in water due to several water quality parameters, such as
sediment, turbidity, and color [16].

Multiple studies have so far employed bathymetric LiDAR data for marine habitat
mapping. For instance, the authors of [17] used an airborne bathymetric lidar system at
Lake Banook, Nova Scotia to study the limitations of the lidar sensor for the application of
monitoring submerged aquatic vegetation (SAV) distribution and biomass. Through their
project, several products, such as a Digital Surface Model (DSM), a lidar reflectance grid,
a Digital Terrain Model (DTM), and an aerial orthophoto were collected. They classified
the aquatic vegetation and normalized the reflectance data and aerial photographs for
depth. The authors of [18] also measured the area, height, and biomass of macroalga,
and Ascophyllum nodosum using topo-bathymetric LiDAR data in southwestern Nova
Scotia, Canada. The comparison of LiDAR-derived seabed elevations with ground-truth
data collected using a survey grade Global Navigation Satellite System (GNSS) system
showed that the low tide survey data had a positive bias of 15 cm possibly because the
seaweed was lying over the surface. Despite the suspended canopy, which reduced the
lidar point density, the data collected at high tide did not show this change. Moreover, the
authors of [19] developed a novel method to map seagrasses, and their spatial distribution
and extent using full waveform topo-bathymetric LiDAR data in Corsica, France. The
data were analyzed to generate a seagrass meadows map with a classification accuracy of
86%. Furthermore, the seagrass height was extracted, allowing for the assessment of the
structural complexity and the quantification of the ecosystem services.

Along with remote sensing data, it is important to develop a robust algorithm to
produce an accurate habitat map. For example, machine learning models have shown
promising results in identifying marine habitat types using LiDAR data [11,13,20,21]. So
far, many studies have developed various machine learning algorithms for mapping
marine habitats. For instance, the authors of [15] applied a decision tree algorithm to
classify marine habitat features using a combination of LiDAR point cloud data, reflectance,
and bathymetry images. They reported that they could produce a habitat map with
a classification accuracy of 70%. Moreover, the authors of [21] produced a habitat map
derived from a decision tree classifier and LiDAR data over a coastal area in Australia. They
took the advantage of hydrodynamic features derived from numerical models (e.g., current
speed and wave height) to boost the final classification accuracy derived from LiDAR
features. They considered several classes, such as invertebrates, coral, seagrass, algae, and
no-epibenthos areas, and obtained a classification accuracy of 90%. Finally, the authors
of [20] produced 3D marine habitat maps using high-resolution LiDAR data over several
coastal areas in France. They employed a combination of waveform, elevation, and intensity
features within a Random Forest (RF) classifier to obtain an average accuracy of around 90%.

Newfoundland’s offshore area contains various marine habitats that need to be effec-
tively monitored. In this study, in situ data along with a supervised classification algorithm
were employed to produce an accurate habitat map over the Bonne Bay area in Newfound-
land. It is expected to use a similar approach to map marine habitats in other offshore areas
in the near future.
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2. Study Areas and Datasets
2.1. Study Area

The study area is Bonne Bay (Figure 1a), located on the western side of Newfoundland,
Canada (central geographical latitude and longitude are 49◦33′ N and 57◦55′ W, respec-
tively). Bonne Bay is generally a deep bay with steep nearshore slopes surrounded by
steep mountains. It is composed of east and south arms. The east arm comprises an inner
basin with a more than 230 m depth, partially separated by a shallow sill (approximately
12 m deep) from the outer bay. The south arm is a shallower basin with a depth of roughly
55 m, fully opening to the Gulf of St. Lawrence [22].
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Figure 1. (a) Coverage of the LiDAR data (the image shows the intensity values), (b) distribution of
the in situ samples over the study area. The red star indicates the location of the study area (i.e., Bonne
Bay in Newfoundland, Canada).

2.2. Field Data

In situ data were collected and provided by Fisheries and Oceans Canada (DFO).
Figure 1b demonstrates the distribution of the in situ samples over the study area, and
Table 1 provides more information about the number of samples for different marine habitat
types. All of the samples were classified based on two different categories: Category 1
had two classes of Vegetation and Non-Vegetation; Category 2 had four classes of Eelgrass,
Macroalgae, Fine Sediment, and Gravel/Cobble. Thus, two habitat maps based on Category
1 and Category 2 were produced for this study area.

Table 1. The number of in situ samples for different habitat types.

Category 1 Category 2 Number of Samples

Vegetation
Eelgrass 27

Macroalgae 10
Rockweed * 8

Non-Vegetation Fine Sediment 53
Gravel/Cobble 36

Note: * The samples for the Rockweed class were identified by visual interpretation of the high-resolution Google
Earth imagery.

It is worth noting that after analyzing LiDAR data and investigating high-resolution
Google Earth imagery, it was observed that rockweeds could also be identified in the LiDAR
data with a high level of accuracy. Thus, Rockweed was also added to the available classes,
and several samples for this class were identified by visual interpretation.



Water 2022, 14, 3809 4 of 13

2.3. LiDAR Data

The bathymetric LiDAR data were collected by the Canadian Hydrographic Service
(CHS). The positional and sounding accuracies of the data have been reported to be 0.1 m
and 0.25 m, respectively. Figure 1c illustrates the coverage of the LiDAR data over the
water bodies of the study area.

3. Methodology

The flowchart of the method to produce the marine habitat map of Bonne Bay using
the LiDAR data is illustrated in Figure 2. The detail of each step is also provided below. It
should be noted that this flowchart was used to develop two different models to produce
two habitat maps based on the Category 1 and Category 2 classes (see Table 1).
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3.1. Field Data Preprocessing

The field samples, which were point-based GPS locations of different habitat types,
were inserted into ArcGIS and were converted to polygons where it was possible to do
so. To this end, high-resolution Google Earth imagery and the LiDAR intensity product
were used. Through this process, the boundary of each homogeneous habitat type at each
sample location was delineated. Figure 3 illustrates this procedure for creating a polygon of
macroalgae. As it is clear, the intensity values for a macroalgae area were very similar, and
they were higher than those of the surrounding pixels. Thus, they belonged to a specific
habitat type. By converting field point-based samples to polygons, the number of samples
was increased. Finally, all of the polygons were randomly divided into training (70%) and
test (30%) data. The training and test polygons were, respectively used for training the
machine learning algorithm (see Section 3.4) and an accuracy assessment of the produced
marine habitat map (see Section 3.6).
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samples of Macroalgae overlaid on the high-resolution Google Earth imagery; (b) the same region in
the LiDAR intensity image; (c) the generated polygon for these two samples in the ArcGIS software.

3.2. LiDAR Data Preprocessing

The LiDAR data were provided as three separate groups of LASer (LAS) files: S1, S2,
and S3. S1 contained 92 LAS files, while S2 and S3 contained 76 LAS files. The S1 dataset
was collected with the LiDAR sensor’s topographic (red) laser, and the other two were
collected with the sensor’s bathymetric (green) laser. These two different lasers require dif-
ferent energetic outputs (as penetrating the water column requires more laser energy than
penetrating air). The standard post-processing of a LiDAR survey includes the normaliza-
tion of the returning laser waveforms between the green and red lasers, as well as between
the flight lines, and thus, the amplitude of the reflected pulse (i.e., intensity) is consistent
and normalized across the entire survey area. After normalization, the waveforms are
converted into points, and they are then tiled in a consistent grid format (Figure 4a) that is
ready for converting to a raster. The LAS files provided for this study have not undergone
these standard post-processing steps, and because the different laser returns were provided
separately (S1 vs. S2–S3), flight line artifacts remain throughout the datasets, and the LAS
files were not arranged in a consistent grid format (Figure 4b).

In this study, steps were taken to mitigate the lack of standard post-processing during
the raster generation process. While this amplitude normalization is not required to derive
consistent elevations across a LiDAR survey, it is necessary to produce consistent intensity
values across the survey area. For this reason, all three sets of LAS files provided were
processed together to produce the Digital Elevation Model (DEM). All LiDAR products
were gridded at a spatial resolution of 2 m using a linear interpolation to preserve the
integrity of the data while minimizing the data gaps (Figure 5). To remove the land, a
mask was made based on land elevation. Through iterative visual analysis, the geomorphic
coastline was determined to be roughly 1.8 m in elevation. A buffer of 20 cm elevation was
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added to this value, and so land over 2 m elevation was removed, and the results were
visually checked to ensure no pertinent data were being removed.
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To produce the critically important intensity models, the S1 LAS files (a result of the
topographic red laser) were processed as one dataset, and the S2–S3 LAS files (results of the
bathymetric green laser) were processed as another dataset. Flightline artifacts permeate
the intensity dataset (Figure 6), resulting in differing intensity values across homogeneous
ground features. Attempts were made to normalize the intensity between the flight lines by
comparing the mean intensity of a homogeneous patch of seabed under a flight line divide
and applying the mean difference as a linear equation. However, the difference in intensity
values varied across the survey area; thus, any corrections in one area enhanced the issues
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in another area. For this reason, a subsequent analysis was performed using uncorrected
gridded intensity data, and separate S1 and S2–S3 intensity raster data.
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3.3. Segmentation

It is widely reported that object-based classification methods are more accurate than
pixel-based techniques are [8,9,13]. Considering this fact, an object-based classification
model was developed in this study to obtain accurate marine habitat maps from the study
area. The first step in an object-based image analysis is implementing a segmentation
algorithm. In this study, the LiDAR intensity product with a spatial resolution of 2 m
was used to segment the study area within the eCognition software package. eCognition
provides many toolboxes to implement segmentation and classification, and it usually
provides better classification results compared to those produced from commonly used soft-
ware packages such as ArcGIS and ENVI. In this study, the multiresolution segmentation
algorithm available in eCognition was employed. This algorithm merges spectrally similar
pixels into segments (objects) with various sizes based on several tuning parameters, such
as scale, shape, and compactness [23]. For example, the scale parameter, which is the most
important tuning parameter of the multiresolution segmentation algorithm, defines the
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maximum standard deviation of the homogeneity of the pixels. In this study, the optimum
values of these three parameters were selected based on several trial and errors. Finally, the
values of 150, 0.4, and 0.5 were selected for the scale, shape, and compactness, respectively.

3.4. Classification

In this study, an RF algorithm was applied to classify the marine habitats. RF had
proved higher accuracies compared to other commonly used classification techniques
for various applications [24,25]. RF includes a group of decision trees. The final label
of a pixel/object is defined based on the votes of the decision trees [26,27]. RF contains
two important tuning parameters (i.e., depth and minimum sample number), the optimal
values of which should be selected to obtain a high classification accuracy. The depth
and minimum sample number, respectively, determine the number of nodes in each tree
and the minimum number of samples per node in each tree. In this study, the optimal
values of these two parameters were selected based on several trial-and-error attempts,
and finally, twenty and five were selected for them, respectively. It should be noted that
since object-based image analysis was used in this study, the RF algorithm was applied
to the objects produced from the segmentation algorithm. As discussed before, 70% of
the field samples were applied to train the RF algorithm. The result of the RF algorithm
was the preliminary habitat map which was visually investigated to ensure the accuracy is
acceptable. If the result was not satisfactory, the algorithm was refined (e.g., by changing
the tuning parameters of the algorithm) to obtain a suitable map.

3.5. Post-Processing

The post-processing step was performed by manually removing any errors and re-
fining the boundaries of some of the classes to improve the produced habitat maps. For
example, the maps were compared with the Google Earth imagery near coastlines to see
if the aquatic vegetation (e.g., rockweeds) was correctly identified and the errors were
removed where it was possible. Moreover, while the machine learning results were accept-
able in most parts of the study area, there were several shallow rivers and estuaries where
the classification appeared to underestimate the amount of eelgrass. These areas, such as
Lomond River, Southeast Arm, and Horseback Brook’s estuary, are environments with
significant and complex patches of eelgrass. Many of these eelgrass areas were visually
identified in both the imagery and the LiDAR intensity data. After post-processing, the
final marine habitat maps were produced.

3.6. Accuracy Assessment

The accuracy of the produced habitat map was assessed using the test data (i.e., 30%
of the independent field samples) to obtain the classification accuracy level. To this end,
the confusion matrix of the classification was generated, and several accuracy indices, such
as overall accuracy, kappa coefficient, and producer and user accuracies were evaluated. It
is worth noting that the statistical accuracy assessment was performed before and after the
post-processing step to evaluate the accuracies of both developed RF model and the final
refined habitat map, respectively.

4. Results and Discussion

The method described in Section 3 was applied to produce two marine habitat maps
based on the classes described in Table 1: a two-class habitat map (Category 1) and a
five-class habitat map (Category 2). In the following two subsections, the corresponding
maps and the accuracy levels are provided.

4.1. Two-Class Habitat Map (Category-1)

Figure 7 shows the classified habitat map based on the Category 1 classes obtained
from the object-based RF algorithm. First, the accuracy of this map was visually investigated
by comparing it with high-resolution Google Earth images and LiDAR intensity products.



Water 2022, 14, 3809 9 of 13

The identified areas had a good correlation with the real Vegetation and Non-Vegetation
areas. The areas of the classes were also calculated, and the results are reported in Figure 7.
Vegetation and Non-vegetation cover approximately 5.7 km2 (35%) and 10.6 km2 (65%) of
the study area, respectively.
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The accuracy of the produced habitat map based on the Category 1 classes was
also assessed using the confusion matrix, where the results are provided in Table 2. The
overall accuracy was 87%, indicating the high potential of the developed technique for
discriminating the Vegetation and Non-Vegetation classes in Bonne Bay. This level of overall
accuracy simply means that if we randomly select 100 points pixels of 2 × 2 m considering
both classes, 87 of them would be accurately identified within the produced map.

Table 2. Confusion matrix of the classification based on the Category 1 classes.

In Situ Data

Vegetation Non-Vegetation Total User Accuracy (%) Commission Error (%)

Classified
Vegetation 4925 444 5369 91.7 8.3

Non-Vegetation 690 2565 3255 78.8 21.2

Total 5615 3009 8624

Producer Accuracy (%) 87.7 85.24 Overall Accuracy = 87%

Omission Error (%) 12.3 14.76 Kappa Coefficient = 0.71

The producer and user accuracies along with the omission and commission errors for
each class of Vegetation and Non-Vegetation are also provided in Table 2. The producer
accuracies for both classes and user accuracy for the Vegetation class were high (between
85% and 92%). However, the user accuracy of the non-Vegetation class was relatively
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low (~79%). This means that there were some Vegetation samples that were wrongly
classified as the Non-Vegetation class (high commission error). This can be easily seen in
the confusion matrix where 690 pixels of Vegetation (out of 3255 pixels) were incorrectly
classified as Non-Vegetation.

The accuracy assessment of the classification model for the two-class habitat mapping
was also assessed before post-processing, and it was observed that post-processing did not
significantly affect the accuracy assessment. In this case, the overall accuracy and kappa
coefficient were 87% and 0.69, respectively.

4.2. Five-Class Habitat Map (Category-2)

Figure 8 illustrates the habitat map based on the Category 2 classes. First, the accuracy
of this map was visually assessed using high-resolution Google Earth images and the
LiDAR intensity product, and it was observed that the map was visually accurate. The
areas of the classes were also calculated from this map (see Figure 8). The results showed
that the Fine Sediment class had the highest coverage (8.4 km2). The smallest coverage
also belonged to the Rockweed and Macroalgae classes, which cover 0.95 km2 (5.8%) and
1.1 km2 (6.8%) of the study area, respectively.
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The confusion matrix of the five-class habitat map, which shows the overall accuracy
and class accuracies, is provided in Table 3. The overall accuracy and kappa coefficients
were 80% and 0.7, respectively, which were reasonable considering that there were several
challenges during this project. Overall, based on both producer and user accuracies,
Rockweed had the highest accuracies (producer accuracy = 88%, user accuracy = 99%),
which was followed by Gravel/Cobble (producer accuracy = 74%, user accuracy = 85%)
and Eelgrass (producer accuracy = 86%, user accuracy = 64%). For example, 3958 pixels of
the in situ Rockweed samples (out of 4492 pixels) were correctly classified as Rockweed.
The lowest accuracies (highest commission and omission errors) were observed for the
Macroalgae class (producer accuracy = 44%, user accuracy = 58%). The main reason for
this was that a large portion of the Macroalgae samples (95 pixels out of 226 pixels) were
wrongly classified as Fine Sediment. There was also some confusion between this class with
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the Rockweed class, where 31 pixels of Macroalgae were incorrectly classified as Rockweed.
Another high confusion was also observed between Fine Sediment and other classes. For
instance, 378 in situ pixels of the Fine Sediment (27%) were wrongly classified as Eelgrass.
Overall, there was an overestimation of Fine Sediment because there were many in situ
samples from other classes which were incorrectly classified as Fine Sediment.

Table 3. Confusion matrix of the classification based on the Category 2 classes.

In situ Data

Eelgrass Gravel/Cobble Fine Sediment Macroalgae Rockweed Total User Accuracy
(%)

Commission Error
(%)

Classified

Eelgrass 774 55 378 0 0 1207 64.1 35.9

Gravel/Cobble 44 1175 159 0 5 1383 85.0 15.0

Fine Sediment 78 355 876 95 468 1872 46.8 53.2

Macroalgae 1 2 9 100 61 173 57.8 42.2

Rockweed 0 0 0 31 3958 3989 99.2 0.8

Total 897 1587 1422 226 4492 8624

Producer
Accuracy (%) 86.3 74.0 61.6 44.2 88.1 Overall Accuracy = 80%

Omission Error
(%) 13.7 26.0 38.4 55.8 11.9 Kappa Coefficient = 0.7

The accuracy assessment of the classification model for the five-class habitat mapping
was also assessed before post-processing. In this case, the overall accuracy and kappa
coefficient were 76% and 0.68, respectively. Thus, the post-processing step slightly improved
the classification result of the five-class habitat map.

4.3. Limitations and Suggestions

In this project, LiDAR data along with a machine learning model were applied to
classify the marine habitats in Bonne Bay, Newfoundland. The results showed the potential
of the proposed method for habitat classification in other marine areas. Below, the main
limitations of the project along with several suggestions are provided to improve the results
in future works.

As discussed in Section 2.3, although several efforts were made to remove the errors of
the LiDAR raw data, some of these errors could not be resolved through the post-processing
steps. This would negatively affect the results of any studies which utilize similar datasets.

Although the collected in situ data were beneficial to obtain reasonable habitat maps,
more samples are required to develop a more accurate and robust machine learning model.
For example, the number of samples of the Macroalgae class was very low. In fact, this was
one of the main reasons for the low accuracy of this class in the produced map (see Figure 8
and Table 3). Overall, a higher number of samples provides a higher classification accuracy
in a machine learning model.

One approach to improve the classification results is by utilizing other types of remote
sensing datasets, such as very high resolution optical satellites and drone imagery. These
imageries would provide valuable information about marine habitats, especially over
shallower water areas. Additionally, high-resolution satellite images are very beneficial
when the objective is mapping and changing the analysis of marine habitats at regional
and global scales.

5. Conclusions

Marine habitats provide many services to both the marine ecosystem and humans,
and therefore, they should be accurately monitored using advanced technologies. In this
regard, airborne bathymetric LiDAR systems have great advantages for oceanographic
applications, such as bathymetric mapping and marine habitat classification. Bathymetric
LiDAR pulses can penetrate into water and can identify different marine habitats based on
the intensity values. This study used bathymetric LiDAR data to accurately discriminate
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five habitat types of Eelgrasses, Macroalgae, Rockweed, Fine Sediment, and Gravel/Cobble
using LiDAR intensity data. It was observed that LiDAR data has a great potential to
discriminate the Vegetation from the Non-Vegetation classes in marine environments. For
example, the overall classification accuracy for distinguishing these two classes was 87%.
Moreover, the accuracy of the five-class habitat map was reasonably accurate (overall
accuracy = 80%). It was concluded that the LiDAR data could identify the Rockweed
class with the highest accuracy (e.g., producer and user accuracies were 88% and 99%,
respectively). However, the accuracy of identifying the Macroalgae class was relatively low.
The main reason for this was the lack of in situ data for this class in our study. Additionally,
Macroalgae is usually found in deeper water compared to other aquatic vegetation species,
and thus, it can be identified with a lower accuracy using LiDAR data. In summary, lacking
enough in situ samples for some of the classes and the errors of the LiDAR data were the
main limitations of this study to obtain a better classification accuracy. Therefore, future
studies should employ more balanced in situ data and very high resolution satellite and
drone imagery along with better LiDAR data to achieve a more classification accuracy.
Finally, the proposed method should be applied to other study areas to investigate its
robustness at different conditions. In this regard, the effects of water quality and climate
conditions on the LiDAR pulses, and consequently, on the classification results could be
investigated further.
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