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Abstract: With the record breaking flood experienced in Canada’s capital region in 2017 and 2019,
there is an urgent need to update and harmonize existing flood hazard maps and fill in the spatial gaps
between them to improve flood mitigation strategies. To achieve this goal, we aim to develop a novel
approach using machine learning classification (i.e., random forest). We used existing fragmented
flood hazard maps along the Ottawa River to train a random forest classification model using a range
of flood conditioning factors. We then applied this classification across the Capital Region to fill in
the spatial gaps between existing flood hazard maps and generate a harmonized high-resolution
(1 m) 100 year flood susceptibility map. When validated against recently produced 100 year flood
hazard maps across the capital region, we find that this random forest classification approach yields a
highly accurate flood susceptibility map. We argue that the machine learning classification approach
is a promising technique to fill in the spatial gaps between existing flood hazard maps and create
harmonized high-resolution flood susceptibility maps across flood-vulnerable areas. However,
caution must be taken in selecting suitable flood conditioning factors and extrapolating classification
to areas with similar characteristics to the training sites. The resulted harmonized and spatially
continuous flood susceptibility map has wide-reaching relevance for flood mitigation planning in
the capital region. The machine learning approach and flood classification optimization method
developed in this study is also a first step toward Natural Resources Canada’s aim of creating a
spatially continuous flood susceptibility map across the Ottawa River watershed. Our modeling
approach is transferable to harmonize flood maps and fill in spatial gaps in other regions of the world
and will help mitigate flood disasters by providing accurate flood data for urban planning.

Keywords: flood hazard map; flood susceptibility map; spatial gaps; random forest; flood probability
thresholds

1. Introduction

With urbanization and climate change, the world is experiencing an increase in costly
and destructive flooding events [1]. Floods threaten human societies, infrastructures, nat-
ural ecosystems and wildlife. Floods can also transport and mobilize environmentally
persistent pollutants including metals stored in alluvial sediments and cause severe wa-
ter pollution [2]. In Canada, flood is the costliest natural hazard [3] and with Canada’s
accelerated warming, it is predicted that more frequent and intense floods will occur in the
next decades [4,5]. Since 1948, the provinces of Ontario and Quebec have experienced an
increase in winter precipitation accompanied by a warmer and wetter spring [4]. These
factors have likely contributed to the record breaking spring flood event in 2017 and 2019
across the Ottawa River watershed [6,7]. These flood events occurred in spite of the Ottawa
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River’s integrated river discharge control system, including 50 major dams and 13 principal
reservoirs [8,9]. These record breaking floods have caused significant socioeconomic, eco-
toxicological and ecosystem damage, particularly in the capital region [10]. Consequently,
it is critical to identify flood susceptible areas, defined as the potential flood zones in the
watershed [11]. Harmonized and spatially continuous flood hazard maps are key tools to
enhance the resilience and sustainability of infrastructures and ecosystems by adapting land
use plans, and improving emergency response and flood mitigation risks planning [12].

However, since flood hazard mapping is completed at the provincial level and is
often conducted by different municipalities at different times and by different companies,
there is a lack of consistency between flood hazard maps. This is particularly true for
the Ottawa River watershed, where the Ottawa River serves as a natural border between
Quebec and Ontario (Figure 1) for hundreds of kilometers. For example, around the capital
region, many existing flood hazard maps, generated during the Flood Damage Reduction
Program (FDRP), show discontinuity along the Ottawa River shoreline and between the
two provinces (Figure 2A). These fragmented maps are also largely outdated with many
being created or last updated in the 1980s. These spatial gaps, inconsistencies and lack
of standardization between the provinces are making flood mitigation planning more
challenging. In this context, there is an urgent need to develop an approach to harmonize
and update the existing flood hazard maps and generate a spatially continuous map across
the watershed so that localities can best prepare flood mitigation plans.
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Figure 1. (A) topographic map with main roads and urban areas, from the World Topo Map (Esri,
DeLorme, HERE, TomTom, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN,
GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo,
MapmyIndia, and the GIS User Community). (B) land cover map, from the 2015 Land Cover of
Canada (Government of Canada, Natural Resources Canada, Canada Centre for Remote Sensing).
The solid line within the Ottawa River represents the provincial boundary between the provinces
of Ontario (Ottawa city) and Quebec (Gatineau city), from the Topographic Data of Canada CanVec
Series (Government of Canada, Natural Resources Canada, Canada Centre for Remote Sensing).
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Figure 2. (A) FDRP 100 year flood hazard maps on the Ontario and Quebec side (1980s) with spatial
gaps; (B) RVCA 100 year flood hazard map for the Ontario side (continuous); and (C) Training site 1
for random forest classification. Flood hazard maps are compiled from the FDRP (for Quebec side)
and RVCA maps (for Ontario side).
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Municipalities mostly use hydrologic-hydraulic-based models (i.e., engineering mod-
els) to generate 100 year flood hazard maps, defined as the probability of an area to be
flooded once in a 100 year return period [12]. Hydrologic analyses are focused on quantify-
ing the volumetric flow rate of water (i.e., using rainfall and evaporation data) to determine
peak flood discharges and flood occurrence frequencies [13–15]. Hydraulic analyses are
focused on flow scenarios (e.g., depth of flow, flow velocity, and forces) in streams and
infrastructure to estimate the water surface elevations and behaviour for a selected return
period (e.g., 100 year flood) [13–15]. These 100 year flood hazard maps are the basis for
land use planning and for regulating future development in an effort to mitigate flood
risks. Although these engineering models achieve a high level of accuracy (using cali-
bration data), they are, however, very costly and require extensive fieldwork and data
collection [16,17]. Therefore, these models are run in a spatially discontinuous manner,
prioritizing populated localities and using a standard provincially regulated flood return
period (e.g., 100 year return period in Ontario and Quebec). Considering the limitations
of the existing hydrologic-hydraulic models and in a context of rapid climate change and
increasing flood damages, Natural Resources Canada (NRCan) is exploring approaches
to update, harmonize and extend the coverage of existing flood hazard maps to create a
spatially continuous flood susceptibility map across the Ottawa River watershed. This pilot
study aims to explore the potential of machine learning classification, more specifically
random forest, to fill in the spatial gaps and harmonize the existing flood hazard maps of
the Ottawa River in the Capital region.

Machine learning classification using a range of flood conditioning factors has shown
promises to delineate more accurate flood susceptibility maps [16–22]. The flood condi-
tioning factors are generally related to topography (e.g., elevation, aspect and distance
to river), hydrology (e.g., precipitation), and geology (e.g., land cover, soil type and soil
drainage capacity) [23]. However, the selection of suitable flood conditioning factors vary
depending on the study area [24]. For example, soil drainage capacity and impervious
surfaces will determine the rate and amount of surface runoff generation [11,25], and might,
therefore, play a more important role in urban areas. Therefore, selecting the most relevant
flood conditioning factors is the most crucial step in machine learning classification applied
to flood mapping [11,22]. The hypothesis proposed here is that using machine learning
classification (i.e., random forest) and a series of flood conditioning factors, we will be able
to generate an accurate, harmonized and spatially continuous 100 year flood susceptibility
map around the capital region of Canada.

2. Materials and Methods
2.1. Study Area

The Ottawa River is the second largest river in eastern Canada (1271 km) and acts
as a boundary separating the provinces of Ontario and Quebec [26,27]. Its watershed
covers an area of over 140,000 km2 with 65% on the Quebec side and 35% on the Ontario
side [26,27]. Our study area focuses on the central area of the National Capital Region
of Ottawa–Gatineau, which consists of the Canadian capital of Ottawa, Ontario and the
neighboring city of Gatineau, Quebec (Figure 1). The selected study area covers an area
of 1972.62 km2 covering approximately 93 km length of the Ottawa River. Our goal is to
train a random forest classification model using existing fragmented flood hazard maps,
then apply the model to the entire study area to generate an updated, harmonized and
continuous flood susceptibility map.

2.2. Random Forest Classification

Machine learning (ML) classification has shown promise in generating flood sus-
ceptible areas in different regions across the globe using a range of flood conditioning
factors [11,17,20,22,28]. There are a variety of ML algorithms but random forest is one of
the most popular ones in flood susceptibility mapping studies [16,20,21,29,30]. A study
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testing 179 classification algorithms has shown random forest classification to be the most
accurate classification approach for these types of studies [31].

Random forest is an ensemble learning approach that is based on generating an
ensemble of decision trees [18]. Random forest uses an ensemble technique known as
Bagging (also known as Bootstrap aggregation) to randomly sample from the original data
set resulting in n number of data subsets (i.e., bootstrapped samples) to train an ensemble of
decision trees. Each decision tree is trained using a random subset of predictors (i.e., flood
conditioning factors) [32]. The term “random” is from the random selection of bootstrapped
samples and a random selection of predictors when training each decision tree. The term
“forest” is from the ensemble of decision trees that are created [32]. This ensemble of
decision trees are then used in the classification of flood by running input data through
the decision trees and taking the classifier with the majority of votes as the resulting flood
prediction [32]. An error rate is calculated using a data subset that were not used in the
bootstrapped samples, named as out of bag or OOB data. The OOB data are tested against
the decision trees to evaluate correct predictions. The prediction results for the OOB are
aggregated and used to calculate the error rate [32].

Random forest classification of flood susceptibility requires two types of input data:
(1) a series of potential geospatial predictors of flood, commonly known as flood condition-
ing factors, and (2) a training set of points and a testing set of points derived from existing
flood hazard maps with their respective flood class (flooded and non-flooded).

2.3. Existing Flood Hazard Maps Used for Training Random Forest Classification

In this study, we first compiled existing flood hazard maps from different sources.
NRCan provided existing historical FDRP maps, which contain discontinuous flood hazard
maps along the Ottawa River (red patches in Figure 2A). The FDRP maps were created as
part of a national program (1976–1996) with funding from both the federal and provincial
governments covering 900 communities [13,33]. They were created using traditional
engineering hydrologic-hydraulic methods and based on data available at the time, such as
topographic maps, which were less precise than today [34]. Within our study area, FDRP
maps have a larger coverage on the Quebec side as opposed to the Ontario side (Figure 2A).

To train a model across provincial boundaries, we need to sample an area with continu-
ous flood hazard maps from both sides of the Ottawa River. We aimed for a more balanced
distribution of training points between the Ontario side and Quebec side of the river. The
FDRP maps lacked continuity on the Ontario side of our study area (Figure 2A). Therefore,
we obtained a flood hazard map from the RVCA (Rideau Valley Conservation Authority,
2014) [35] to cover the Ontario side (Figure 1B). The RVCA map for the Ottawa River was
created to replace the 30 year old flood hazard maps (created as part of the FDRP). This
map on the Ontario side was generated using more modern hydrologic-hydraulic methods
and high quality and high-resolution LiDAR data. This map was generated following the
technical guidelines by FDRP [34].

We combined these flood hazard maps, using the FDRP map for the Quebec side and
the RCVA map for the Ontario side of the Ottawa River (Figure 2C). These combined flood
hazard maps provide a continuous floodplain from downtown Ottawa–Gatineau toward
the east for ~15.4 km along the Ottawa River. We selected this 15.4 km section to create our
initial training area (covering 197.56 km2 named as training site 1, Figure 2C) as it provides
the largest continuous flood maps on both sides of the river. The selected training site
1 covers the most populated and urbanized areas in the capital region along the Ottawa
River, which were severely impacted by the recent floods.

2.4. Flood Conditioning Factors as Predictors of Flood

Various factors contribute to determining which zones are likely to be flooded. To
generate a flood susceptibility map using random forest classification, we compiled a series
of geospatial flood conditioning factors that are likely to influence flood occurrences based
on the literature and availability of high-resolution geospatial data. We compiled a total of
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14 potential flood conditioning factors as predictors of flood. All the 14 flood conditioning
factors, their resolution and sources, are listed on Table 1 and shown in Figures S1 and S2.

We used high resolution (1 m) elevation data and various elevation derivatives since
they play an important role in determining flood prone areas [16,36]. First, the 1 m
resolution elevation dataset of Quebec and Ontario were merged and a spatial gap between
the two provinces representing the Ottawa River was filled using the focal statistics tool
in ArcGIS Pro. We then derived the slope, aspect, curvature, roughness, topographic
roughness index (TRI), topographic position index (TPI), and stream power index (SPI)
from the 1 m resolution elevation raster. Slope, aspect and curvature were calculated using
spatial analyst tools in ArcGIS Pro. Roughness, TRI and TPI were calculated using the
raster package in R [37]. SPI was calculated using the whitebox package in R [38].

Elevation and slope are critical in flood prediction as low elevation and flat areas with
gentle slopes are particularly susceptible to river flooding [11,23,24]. Aspect (orientation of
slope) is another important flood conditioning factor as it influences the micro-climate (i.e.,
precipitation amount and temperature) [11,23]. We use curvature (classified as flat, convex
or concave) as it accounts for flatness in the region and naturally flat areas are prone to
flooding as water flows downhill to flat areas [16,23]. Roughness elements (e.g., surface
irregularities) play an important role in the hydrology of a floodplain, therefore roughness
and TRI are used as important flood conditioning factors to express elevation differences
between adjacent cells of a DEM [11]. Roughness is defined as the difference between
the maximum and the minimum value of a cell and its 8 surrounding cells, and TRI is
defined as the mean of the absolute differences between the value of a cell and the value of
its 8 surrounding cells [37]. TPI is another important terrain classification method where
the positive index represent hills and ridges and the negative index represents sunken
features such as valleys [39]. TPI is defined as the difference between the value of a cell
and the mean value of its 8 surrounding cells [37]. SPI measures potential streams erosion
caused by surface runoff and, therefore, indicates the stability of an area and can play a
role in flood prediction [11,16]. For example, an increase in the catchment area and slope
gradient increases the runoff accumulated from the upslope areas as well as the velocity of
the runoff, thereby contributing to erosion risks [40].

TWI (topographic wetness index) is a widespread hydrological analysis and defined
as the potential water accumulation at a location based on cumulative upslopes and
the tendency of gravitational forces [11,16]. For example, areas that are prone to water
accumulation or flood are represented by high TWI values whereas well-drained dry areas
are represented by low TWI values [41]. Since at 1 m resolution TWI is not very meaningful
and a minimum of 30 m resolution is recommended [42], we used a 30 m resolution
elevation dataset to derive the TWI using the dynatopmodel package in R [42].

HAR (or height above river) is a normalized DEM providing the relative elevation
above a river (i.e., Ottawa River). HAND (or height above nearest drainage network), its
counterpart representing the relative height above the nearest stream, has recently been
used in several flood studies in Canada [16,29]. In this study, we have opted for HAR as
our study focuses on a smaller scale and flooding from the main river (i.e., Ottawa River).
In addition, HAR is better suited for LiDAR based high resolution DEM [43]. HAR with
respect to the Ottawa River was calculated from the 1 m elevation raster and the National
Hydrographic Network (NHN, representing the Ottawa River). HAR values are generated
at each location by subtracting a calculated weighted average river elevation from the
elevation of individual grid cells [44]. Since there was minimal variation of elevation in the
neighboring river cells at 1 m resolution, we used the original elevation for the river cells
instead of the weight average. The elevation data of the river was extracted to create the
elevation raster of the Ottawa River. For all land cells the elevation of the nearest river cell
(i.e., the river cell closest to land) was derived using the Euclidean allocation tool in ArcGIS
Pro. Then, the nearest river elevation value was subtracted from the land elevation value
to derive the HAR values at each location.
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Distance to river is one of the most important flood conditioning factors as river flood-
ing occurs along the river and streams affecting the areas closest to the river bank [11,23].
The distance to river was calculated from the NHN (representing the Ottawa River) using
the Euclidean distance tool in ArcGIS Pro. Urban flooding is influenced by road networks
and built surroundings as they contribute to imperviousness (decreased infiltration capac-
ity) resulting in large and quick runoff [11,23]. We used the road network obtained from the
City of Ottawa and City of Gatineau. Distance to road was calculated using the Euclidean
distance tool in ArcGIS Pro. Lastly, the land cover and surface geology were obtained from
Natural Resources Canada. Surficial geology controls water movement through channels
and defines active fluvial systems [30], therefore influences flood peak discharges and
volumes particularly for large basins [45]. Land cover or land use influences the water flow
components, such as infiltration, evapotranspiration and run-off generation through the
natural and built environment [11]; for example, forest cover contributes to water retention
through natural processes (e.g., transpiration and infiltration into the soil) and, in contrast,
urbanization contributes to imperviousness and runoff generation [30].

All the geospatial data were projected to NAD1983 MTM zone 9 with a 1 m resolution.
The vector data surface geology was converted to raster and the coarse resolution datasets
(TWI, land cover and surface geology) were resampled to 1 m resolution to align with the
other 1 m resolution flood conditioning factors.

Table 1. Flood conditioning factors and their resolution and sources.

Flood Conditioning Factors Resolution References

(1) Elevation 1 m City of Ottawa for the Ontario side [46] and the Ministry of Forest Wildlife
and Parks [47] for the Quebec side

(2) Height above river (HAR) 1 m derived from 1 m resolution elevation [46,47] and National Hydrographic
Network (NHN) [44]

(3) Slope 1 m derived from 1 m resolution elevation [46,47]

(4) Aspect 1 m derived from 1 m resolution elevation [46,47]

(5) Curvature 1 m derived from 1 m resolution elevation [46,47]

(6) Roughness 1 m derived from 1 m resolution elevation [46,47]

(7) Topographic roughness index (TRI) 1 m derived from 1 m resolution elevation [46,47]

(8) Topographic position index (TPI) 1 m derived from 1 m resolution elevation [46,47]

(9) Stream power index (SPI) 1 m derived from 1 m resolution elevation [46,47]

(10) Topographic wetness index (TWI) 30 m derived from a 30 m resolution elevation dataset obtained from the Open
Government Portal [48]

(11) Distance to river 1 m calculated using the National Hydrological Network (NHN) [49].

(12) Distance to road 1 m calculated based on the road network obtained from the City of Ottawa and
City of Gatineau [50,51].

(13) Land cover 30 m Natural Resources Canada [52]

(14) Surface geology 25 m Natural Resources Canada [53]
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2.5. Training and Testing Data for the Random Forest Classification

To derive training and testing data, we used the FDRP and RVCA maps and defined
the flood classes. The “flooded” class was defined as the land within the existing flood
hazard areas and the “non-flooded” class was defined as the land area beyond the existing
flood hazard areas (Figure 2C). A total of 10,000 samples (5000 for the “flooded” class and
5000 for the “non-flooded” class) were generated using the Create Random Points tool in
ArcGIS Pro within the training site 1 (Figure 3). Values for each flood conditioning factor
were extracted at the location of each sample point using the Extract Multi Values to Points
tool in ArcGIS Pro. The resulting matrix contained the dependent factor (with “flooded” or
“non-flooded” classes) and 14 flood conditioning factors for all 10,000 sample points. We
used this matrix to train a random forest classification using the caret (Classification and
Regression Training) package in R [54].
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Figure 3. Multiple training sites: training site 1 (Central), training site 2 (West) and training site
3 (East) using the flood hazards maps (FDRP on the Quebec side and RVCA on the Ontario side).

The 10,000 sample points were then divided into a set of training points (70%,
7000 sample points) and a set of testing points (30%, 3000 sample points) randomly in R.
This 70:30 ratio for training and testing is commonly found in the literature [16,23]. We
tested the model’s performance, using between 1000 and 30,000 sample points. Increasing
the sample points beyond 10,000 did not significantly improve the accuracy of the classifi-
cation. Therefore, we ultimately chose 10,000 sample points (training and testing points) to
run the random forest classification.

2.6. Selecting Optimal Set of Flood Conditioning Factors and Single Site Training
and Extrapolation

We used the VSURF package (Variable Selecting Using Random Forest), to determine
the most optimal set of flood conditioning factors for the classification of flooded and
non-flooded classes [55]. VSURF combines the most important flood conditioning factors
by determining the importance of each of the flood conditioning factors and removing the
redundant flood conditioning factors.

With the selected combination of flood conditioning factors, we trained the random
forest classification model using the training subset (70% of the sample points). The caret
package and the ranger classification method, a fast implementation of random forest for
high dimensional data were used for training this model in R [54,56]. The train function
tests different parameters (e.g., mtry, split rule and minimum node size) and determines
the optimized setting to obtain a final model with the highest accuracy.

To further optimize the model, we used the k-fold cross-validation feature in the caret
package. We then validated the single site trained model against the testing subset (30% of
the sample points). Then, using this single site trained model, we extrapolated the flood
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prediction across our study area to fill in the spatial gaps and generate a harmonized flood
susceptibility map across the Capital region.

We validated our flood susceptibility map against recently developed NFHDL maps
(National Flood Hazard Data Layer, newer and more spatially continuous flood hazard
maps available in the Ottawa River watershed) provided by NRCan. The NFHDL maps
are a compilation of all the flood hazard maps developed by the provinces and territories
across Canada. Although it does contain some FDRP flood maps, most of the contents are
newer maps, generated between the mid-1990s and 2021. The provinces and territories
have shared these maps with the federal government so that the federal government have
a better understanding of the age and coverage of the existing flood hazard maps across
the country.

2.7. Multi-Sites Training and Extrapolation: Extending Training and Testing Data to
Improve Extrapolation

To optimize the classification model and extrapolation (single site training in Section 2.6),
we selected two additional training sites upstream and downstream named training site
2 (8.6 km length of the Ottawa River and an area covering 72.18 km2, west of downtown
Ottawa–Gatineau region), and training site 3 (4.3 km length of the Ottawa River and an area
covering 22.49 km2, east of downtown Ottawa–Gatineau region) (Figure 3). The three training
sites used in multi-sites training account for 28.3 km in length of the Ottawa River and cover a
total area of 292.23 km2.

We assigned an additional 4000 random sample points for training site 2 and 1000 sample
points for training site 3 (still split 50:50 between “flooded” and “non-flooded classes”)
(Figure 3). The number of points selected is proportional to the area of the training sites
relative to training site 1. The additional sample points aim to increase the variation in the
training and testing dataset, thereby optimizing the classification model and extrapolation
across the study area.

We repeated the same steps as in Section 2.6 to determine the most optimal set of flood
conditioning factors and to train the random forest classification model using 15,000 sample
points (i.e., 10,000 from training site 1, 4000 from training site 2, and 1000 from training
site 3). Similarly, using the multi-sites trained model, we generated a flood susceptibility
map for the study area across the Capital region and validated those predictions against
the NFHDL maps.

2.8. Flood Probability Thresholds to Delineate Final Flood Susceptibility Map Polygons and
Validation against NFHDL Maps

We compared our flood susceptibility map from the multi-sites trained model with the
training maps (i.e., existing flood hazard areas from the FDRP and RVCA maps). In ArcGIS
Pro the flood susceptibility raster was clipped within the boundary of the training maps
and a histogram was generated to show the distribution of predicted flood probability
at each pixel. This histogram provides information including the mean, first standard
deviation and second standard deviation of the flood probability values.

These values were used as thresholds in classifying flooded areas. All the predicted
pixels that fall above these thresholds were classified as flooded areas to create the final
flood susceptibility map polygons across the capital region. To validate our final flood
susceptibility map polygons, we visually compared these with the new NFHDL maps,
particularly at the locations of spatial gaps within the FDRP maps. The NFHDL maps
provide a much greater coverage within our study area for the validation purpose with
the Quebec side starting from the west end up to a few kilometers before the east end of
the study area. For the Ontario side, the NFHDL maps start from a few kilometers west of
training site 2 up to a few kilometers before the east end of the study area. We demonstrated
our complete methodology using the flowchart shown in Figure 4.
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3. Results
3.1. VSURF Output for Single Site and Multi-Sites Training

VSURF selects the same combination of flood conditioning factors for both single site
and multi-sites training. Based on VSURF optimization, elevation, HAR, distance to river,
and surface geology are the best combination of flood conditioning factors as predictors of
flood within the training sites. However, we chose to exclude surface geology as it is the
weakest of the selected flood conditioning factors and has a relatively low resolution (25 m)
resulting in artifacts in the predicted flood susceptibility map.

3.2. Single Site Training vs. Multi-Sites Training Performances against NFHDL Maps

Overall, the random forest classification produces high accuracy flood prediction
based on both single site training (accuracy 0.972, kappa coefficient 0.944, Table S1) and
multi-sites training (accuracy 0.971, kappa coefficient 0.943, Table S1). In addition, when
visually compared with the new NFHDL maps, both single site training and multi-sites
training flood predictions perform very well. Particularly, around the downtown Ottawa–
Gatineau region and towards the east of downtown, our flood prediction shows very high
accuracy (i.e., very high probability of flood occurrence in red, Figure 5). However, as we
go west from the downtown area, the flood prediction accuracy is reduced for the single
site training model; for example, at some existing flood locations (on NFHDL maps) the
single site training flood prediction shows a lower probability of flood occurrence (flood
areas represented with yellow and orange, Figure 5A). However, the multi-sites training
flood prediction improves the flood prediction accuracy by increasing the flood occurrence
probability to ‘very high’ toward the west of downtown (flood areas represented with red,
Figure 5B).
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Figure 5. Flood susceptibility maps from the random forest classification model predictions:
(A) based on single site training; and (B) based on multi-sites training.

3.3. Statistical Evaluation of Flood Probability Thresholds: Used for Delineating Final Flood
Susceptibility Map Polygons

The histogram shows the distribution of flood occurrence probability ranging from
0 to 1 within the existing flood hazard areas (FDRP and RVCA maps, used for training).
Values closer to 0 have a low flood occurrence probability and those closer to 1 have a
high flood occurrence probability (Figure 6). The histogram shows a mean of 0.935 (very
high flood probability) representing ~85% of pixels classified as flood, a one standard
deviation of 0.75 (high flood probability) representing 92% of pixels classified as flood, and
a two standard deviations of 0.57 (moderate flood probability) representing ~95% of pixels
classified as flood (Table S2). All the pixels from the flood susceptibility raster (Figure 5B)
falling above these thresholds (i.e., within two standard deviations) were, respectively,
classified as flooded areas in a series of flood susceptibility polygons across the capital
region (Figure 7).
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Figure 7. Final flood susceptibility map polygons generated using the flood occurrence probability
thresholds of mean, first standard deviation and second standard deviation The circles (A–F) are
indicating the locations of existing spatial gaps within the FDRP flood hazard areas, which were used
to validate flood prediction accuracy against the NFHDL maps shown in Figure 8.

3.4. Validation of the Final Flood Susceptibility Map Polygons at the Locations of Existing Spatial
Gaps within the FDRP Flood Hazard Areas against the NFHDL Maps

The final flood susceptibility map polygons generated using the flood occurrence
probability thresholds of mean, first standard deviation and second standard deviation
are shown in Figure 7. Figure 7 also indicates the locations of existing spatial gaps (circles)
within the FDRP flood hazard areas, which were used for validating our flood prediction
accuracy shown in Figure 8. In the final flood susceptibility map polygons, the mean
+ first standard deviation flood occurrence probability line up very closely overall with
the new NFHDL maps (Figure 8). However, with the second standard deviation, we
observe some mismatch (Figure 8). In most locations, the flood predictions (at mean + first
standard deviation) match perfectly with the NFHDL maps across the study area. However,
some areas, mainly around downtown and toward the far west, show some discrepancies
between our flood predictions and the NFHDL maps (Figure 8). In addition, as indicated
in Section 2.8 and marked in Figure 8 (spatial gaps A, B, F), some predicted areas are
not part of the validation as the NFHDL maps do not have coverages for those areas to
validate against.
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Figure 8. Validation of the final flood susceptibility map polygons at the locations of existing spatial
gaps within the FDRP flood hazard areas as shown in Figure 7 with circles (A–F). The NFHDL maps
do not cover the Ontario side for spatial gap A and most of spatial gap B. For spatial gap F, the
NFHDL maps end midway on both the Quebec and Ontario side. The end of the NFHDL coverage is
indicated by red arrows.
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4. Discussion
4.1. Evaluate Random Forest Classification (Single Site Training vs. Multi-Sites Training)
Performance against NFHDL Maps

We find at 1 m resolution, both the single site training (accuracy 0.972, kappa coefficient
0.944, Table S1) and multi-sites training (accuracy 0.971, kappa coefficient 0.943, Table S1)
of the random forest classification produces very high accuracy flood susceptibility maps
using the same combination of flood conditioning factors (elevation, HAR and distance to
river). When compared against the NFHDL maps, both the single site and the multi-sites
trained models perform very well with flood prediction in the downtown Ottawa–Gatineau
region and east of downtown (Figure 5A,B).

However, west of downtown, flood prediction accuracy decreases for the single site
trained model (yellow and orange, Figure 5A), whereas the multi-sites trained model
largely improves the overall flood prediction in those regions at existing flood locations
(red, Figure 5B). When we analyze the 1 m resolution elevation raster, we see a trend
of increasing elevation when moving westward from training site 1 (Figure S3). This
trend suggests that there is not sufficient elevation variation in the training and testing
dataset used in the single site trained model. We overcame this issue by extending our
training and testing data from the two additional sites (training site 2 and training site 3,
Figure 3) and the optimized multi-sites trained model demonstrated this when validated
against the NFHDL maps west of downtown. The multi-sites trained model improved the
prediction accuracy by increasing the flood occurrence probability from moderate (yellow
and orange Figure 5A) to very high in those regions (red, Figure 5B). This improvement can
be explained by the increased variation of the training and testing data used for the multi-
sites trained model. This also indicates that the efficiency of random forest classification in
predicting flood is dependent on the training and testing data. Applying a random forest
classification should be performed with caution, particularly considering the characteristic
of the areas that are predicted compared to the areas that are used for training.

4.2. Final Flood Susceptibility Map Polygons Based on Flood Probability Thresholds and Validating
Existing Spatial Gaps within the FDRP Maps against NFHDL Maps

We delineated our final flood susceptibility map polygons using the flood probability
thresholds (mean, 1 SD and 2 SD, Figure 7) derived from the multi-sites trained model.
When validated, overall, the mean + first standard deviation flood probability thresholds
line up very closely with the NFHDL maps whereas the second standard deviation shows
some over prediction (Figure 8). However, for the second standard deviation, the probabil-
ity of flood occurrence is only moderate (2 SD = 0.57). With these results, it can be inferred
that the predicted flood susceptibility map (from the multi-sites trained model) is highly
accurate as the majority (75.8%) of the flooded pixels were predicted with ~100% flood
occurrence probability within the existing flood hazard areas (FDRP and RVCA maps). In
addition, 92% of the flooded pixels (at mean + 1 SD threshold) were within the high to
very high flood occurrence probability range (Table S2). In order to determine the overall
performance of random forest classification to fill in the spatial gaps between existing flood
hazard maps, we validated our multi-sites trained model outside of the training sites 1,
2 and 3. We show the spatial gaps within the FDPR maps with circles on Figure 7 and
compare our flood predictions at those locations against the NFHDL maps (Figure 8).

Overall, our final flood susceptibility map polygons (at mean + 1 SD threshold) line
up accurately against NFHDL maps at the locations of those spatial gaps within the FDRP
flood hazard areas. However, we see some mixed results in some areas around central
Ottawa–Gatineau in spatial gaps C (eastern portion) and D, and some areas far west of
Ottawa–Gatineau in spatial gap A (Figure 8). The discrepancies in the central Ottawa–
Gatineau areas (spatial gaps C and D) can be explained by the fact that this is the most
urbanized region within our study area and additional high resolution flood conditioning
factors, such as land cover or imperviousness, might have improved the accuracy. For
spatial gap A in the far west in Pontiac, Quebec, this area is 30 km away from the nearest
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training site 2, therefore, it is expected that flood conditioning factors in these areas may
vary compared to our training sites. This may have resulted in some discrepancies in flood
prediction in spatial gap A. Some overall discrepancies can be further explained as the
training data from the Quebec side is based on much older FDRP maps compared to the
more recent RVCA map on the Ontario side. The lack of consistency between these maps
(e.g., different modeling tools and parameters and data used in FDRP were much older)
are likely to have contributed to some of the discrepancies seen in Figure 8.

On the other hand, we notice our flood predictions match very closely with the NFHDL
maps when we go outside the central Ottawa–Gatineau areas both westward in spatial
gaps B and C and eastward in spatial gaps E and F (Figure 8). This may be explained
partially by the lack of urbanization near the river, making our flood conditioning factors
sufficient for this classification exercise without needing additional predictors. Our overall
high accuracy flood prediction results imply that high resolution elevation-based data (e.g.,
elevation and HAR) and distance to river are powerful base flood conditioning factors.

5. Conclusions

Our analysis demonstrates that random forest classification is able to predict high
accuracy flood susceptibility maps at high resolution (1 m). When validated against the
recently produced NFHDL flood hazard maps (Figure 8) provided by Natural Resources
Canada, we demonstrated that our multi-sites training random forest classification yields a
highly accurate flood susceptibility map and can fill in spatial gaps between existing flood
hazard maps. We argue that random forest classification is a time and cost-effective solution
to harmonize and extend existing flood hazard maps. Our flood susceptibility map of the
Ottawa–Gatineau region will provide a guide and contribute toward Natural Resources
Canada’s long-term goal of developing spatially continuous flood susceptibility mapping
at the watershed scale. This map is already applicable and beneficial for flood mitigation
efforts and urban planning in the capital region. We have made our flood susceptibility
maps’ polygons publicly available at https://doi.org/10.6084/m9.figshare.21424944. Since
flood hazard maps are expensive to generate, this study will benefit similar situations
around the globe. Although this random forest classification framework was applied
within a Canadian study area it can be replicated elsewhere with relevant data.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14233801/s1, Figure S1: The flood conditioning factors (part 1);
Figure S2: The flood conditioning factors (part 2); Figure S3: 1 m resolution elevation raster across
the study area; Table S1: Random forest classification performance for single site vs. multi-sites
trained models; Table S2: The distribution of the predicted flood probability and the cumulative
pixels (derived from the multi-sites training random forest classification model) within the existing
flood hazard areas (FDRP and RVCA maps, used for training).
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lution elevation data can be found at https://maps.canada.ca/czs/index-en.html (accessed on
1 March 2021). Distance to river can be derived from the national hydro network data found
at https://www.nrcan.gc.ca/science-and-data/science-and-research/earth-sciences/geography/
topographic-information/geobase-surface-water-program-geeau/national-hydrographic-network/
2136 (accessed on 1 March 2021). Distance to road can be derived from the road network data for
Ontario (https://open.ottawa.ca/datasets/road-centrelines/explore) (accessed on 4 April 2021)
and Quebec (https://www.gatineau.ca/portail/default.aspx?p=publications_cartes_statistiques_
donnees_ouvertes/donnees_ouvertes/jeux_donnees/details&id=872107914) (accessed on 4 April
2021). Land cover data can be found at https://open.canada.ca/data/en/dataset/4e615eae-b9
0c-420b-adee-2ca35896caf6 (accessed on 1 March 2021). Surface geology data can be found at
https://doi.org/10.4095/295462 (accessed on 4 April 2021). The FDRP and NFHDL flood haz-
ard maps can be requested from Dr. Heather McGrath (heather.mcgrath@nrcan-rncan.gc.ca) at
Natural Resources Canada. The RVCA flood hazard map can be requested from Brian Stratton
(brian.stratton@mrsourcewater.ca) at Rideau Valley Conservation Authority.
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