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Abstract: Microfibers are the most prevalent microplastics in most terrestrial, freshwater, and marine
biota as well as in human tissues and have been collected from environmental compartments across
most ecosystems and species sampled worldwide. These materials, made of diverse compound
types, range from semi-synthetic and treated natural fibers to synthetic microfibers. Microfibers
expose organisms across diverse taxa to an array of chemicals, both from the manufacturing process
and from environmental adsorption, with effects on organisms at subcellular to population levels.
Untangling the physical versus chemical effects of these compounds on organisms is challenging and
requires further investigations that tease apart these mechanisms. Understanding how physical and
chemical exposures affect organisms is essential to improving strategies to minimize harm.

Keywords: aquatic; marine; microplastic; semi-synthetic; synthetic; terrestrial; virgin fibers; weath-
ered fibers

1. Introduction

Microplastics have been documented in nearly every environment on Earth, including
deep-sea trenches, freshwater lakes and rivers, groundwater, as well as the atmosphere inter
alia [1]. The majority of microplastic particles reported in marine, freshwater, and terrestrial
biota are microfibers. While there is currently no standard definition for ‘microfiber’, the
definition currently proposed by the US National Oceanic and Atmospheric Administration
(NOAA) is as follows: microfibers are polymeric fibrous particles (<5 mm) that have been
chemically modified and have a length to width aspect ratio of 3:1 [2]. Microfibers in the
environment can be composed of a variety of materials. Synthetic fibers account for nearly
14% of global plastic production [3], and approximately 60% of textiles are produced using
synthetic materials, such as polyester, nylon, polyamide, etc. [4,5]. These materials, similar
to other microplastics, are derived from fossil fuels and sometimes feedstocks consisting of
recycled content.

While a large proportion of microfibers reported in environmental samples are com-
posed of plastic or synthetic materials, an equally large (sometimes larger) proportion of
anthropogenic microfibers found are composed of semi-synthetic (i.e., rayon) and natural
materials (i.e., wool, cotton) [1]. Semi-synthetic fibers, while derived from natural materials,
are chemically processed and formed via extrusion, similar to synthetic fibers. ‘Natural’
textile fibers are also derived from natural materials, and, while they do not undergo
the same extrusion process as semi-synthetic fibers, they can contain a suite of chemical
additives—dyes and finishing agents incorporated during production and manufacturing
(discussed further below) [5–7].

Sources of these fibers to the environment can vary. It is currently hypothesized that a
majority of microfibers are shed from textiles (i.e., clothing, upholstery, carpeting) during
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production and manufacturing [7,8], consumer use (i.e., laundering and wear [1,9,10],
and following disposal [3,11]. Other sources of microfibers include derelict fishing gear,
tire wear, cigarette filters, geotextiles, and personal care products (e.g., wet wipes, face
masks) [12–15].

While most microplastics documented in environmental samples are microfibers, the
majority of experimental studies related to the effects of microplastics expose organisms to
microspheres (or beads), pellets, or fragments, which can be easily purchased at specified
sizes and polymer types [16]. Far fewer studies have used microfibers [16–19]. When the
effects of microfibers are compared to those of non-fibrous particles (i.e., spheres, fragments,
pellets), fibers tend to be more toxic [16]. Further, most studies on microfibers have focused
on the effects of synthetic fibers, whereas the impacts of natural and semi-synthetic fibers are
understudied. Yet, when investigated, natural and semi-synthetic fibers have comparable
effects to those of their synthetic counterparts [20,21]. Furthermore, many experimental
studies on fibers use exposure concentrations considerably higher than those found in the
environment and tend to expose organisms for short periods of time. Further, given the
discrepancy between the conditions used in experimental studies and conditions that occur
in the environment, it is difficult to make conclusions about the actual effects of microfibers
(Figure 1) [22].
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Weis and Palmquist, 2021. Open access.

Microfibers can vary in the polymeric materials of which they are composed, as well
as the suite of chemicals that are intentionally added during production (i.e., chemical
additives, dyes, and finishes) and unintentionally accumulated from the environment (i.e.,
persistent environmental contaminants) [23–26]. Many of these chemicals are known to
be carcinogenic, mutagenic, and/or endocrine-disrupting compounds (EDCs) and can
potentially leach from fibers to the surrounding environment [12,27]. Once in the envi-
ronment, persistent environmental contaminants, such as heavy metals, PCBs, PAHs, can
adsorb to fibers, causing “weathered” (or environmentally exposed) fibers to have differ-
ent associated chemical profiles and therefore different toxicity than “virgin” fibers [28].
Given their high surface area to volume ratio and demonstrated high sorptive capacity for
contaminants [24], microfibers may be a vector for chemical exposure in biota.
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In this paper, we summarize the effects of microfibers in an attempt to unravel the
impacts due to their physical nature versus those caused by their capacity to act as vectors
for chemical exposure.

2. Effects of Microfibers
2.1. Synthetic Fibers

Early observations from occupational exposure in industries, including textile pro-
duction and plastic manufacturing [29–33], indicated that exposure occurred in humans
and caused inflammation of the lungs; moreover, surgical exposure to microplastics can
decrease a patient’s immune response [32] (Melgert et al., 2021). Recent studies doc-
ument microplastic fibers in human intestinal tracts, placental tissue, blood, and lung
tissue, though effects on humans remain largely unknown [34–37]. Studies documenting
microplastic ingestion from food items and drinking water [38–41] and inhalation both
indoors and outdoors [42,43] demonstrate the ubiquitous nature of these contaminants.

The reported effects of synthetic fibers on aquatic and terrestrial organisms are grow-
ing, and our current knowledge indicates impacts that range from subcellular to community
levels [44] (Figure 2, Table 1). Effects have been documented in aquatic taxa including
fish, Crustacea, Mollusca, Echinodermata, and Rotifera [45], as well as terrestrial organ-
isms, including insects, Annelid worms, and Nematodes [46–48] (Table 1). Exposure to
synthetic fibers can affect subcellular and cellular level processes, including altered gene
expression and enzyme activity, DNA damage, and the retention of zinc [47]. For ex-
ample, both juvenile and adult sea cucumber, Apostichopus japonicus, experience altered
acid phosphatase and alkaline phosphatase activity levels—key biomarkers of immune
health—and oxidative stress after exposure to environmentally relevant concentrations of
synthetic microfibers [49]. Once in the bloodstream, microfibers can translocate to other
organs [50], affecting tissue and organ systems, but accumulation in the gut itself can
cause effects. For example, nylon microfibers (10–100 µm) can accumulate in the gut of
the shore mussel Mytilus edulis and affect the long-term clearance rate of phytoplankton
biomass from the water column, resulting in a 21.3% decrease in phytoplankton removal
ability after exposure to microfibers [51]. At the organismal level, synthetic fibers can cause
physical and neurological damage across an array of terrestrial, aquatic, and marine species.
Environmentally relevant concentrations (0.1 mg/L) of 500–10,000 µm polystyrene mi-
crofibers resulted in the decreased photosynthetic activity of symbionts in Acroporid corals,
triggering coral stress responses [52,53]. Though research on the biological consequences
of microfiber exposure is sparse, the diverse array of effects on subcellular to organ level
processes may be predictive of population- and community-level effects.
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However, reducing the effects of fibers in the environment is not as simple as switching
from synthetic to more natural alternatives. Evidence suggests bioplastics and natural
textile materials produce effects similar to synthetic plastics when degrading in the envi-
ronment [20,54,55].
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Table 1. Ecological and biological effects of fibers on organisms by species and material type. Modified
from Granek et al., 2022.

Level Type of Effect Organism Clade Genus/Species Plastic Material Type In Text Citation

Su
b/

C
el

lu
la

r

Adverse
Immune
Response

Annelid Worms, Bivalves, Corals

Eisenia andrei

Polyamide nylon, polyproplene [52,56]
(Cole et al. 2020);

Mytilus spp.

Acropora sp.

Seriatopora hystrix

Cellular
Response

Annelid Worms, Bivalves, Coral,
Crustaceans, Humans, Nematodes, Rodents

Lumbricus terrestris

Composite household lint, nylon,
polyester, polypropylene, polyethylene

terephthalate (PET)
[48,52,56–62]

Eisenia andrei

Mytilus galloprovincialis

Acropora sp.

Seriatopora hystrix

Nephrops norvegicus

Homo sapiens

Caenorhabditis elegans

Mus musculus

Oxidative Stress
Annelid Worms, Bivalves, Coral,

Echinoderms, Fish, Nematodes, Terrestrial
Snails

Lumbricus terrestris

Polyester, polyamide nylon,
polyethylene (80%), polyester (19%),

rayon (1%), polypropylene,
polyethylene terephthalate (PET)

[48–50,52,57,63,64]
(Cole et al., 2020);

Mytilus spp.

Acropora sp.

Seriatopora hystrix

Apostichopus japonicus

Dicentrachus labrax

Trachurus trachurus

Scomber colias

Danio rerio

Caenorhabditis elegans

Achatina fulica

O
rg

an

Growth
Development Bivalves, Crustaceans, Fish

Mytilus galloprovincialis

Composite household lint; ethylene
vinyl acetate (EVA); polypropylene,

polyethylene terephthalate
[20,60,65,66]

Emerita analoga

Artemia franciscana

Carassius auratus

Inflammation Fish; Rodents; Zooplankton

Carassius auratus

Ethylene vinyl acetate (EVA),
polypropylene, polyester, polyethylene

terephthalate (PET)
[29,63,65,67]

Danio rerio

Cavia porcellus

Artemia franciscana

Oxidative Stress Crustaceans, Fish
Homarus americanus Polyethylene terephthalate (PET),

polypropylene [63,68]
Danio rerio

Physical
Organ

Damage

Annelid Worms, Bivalves, Crustaceans,
Fish, Humans, Rodents, Terrestrial Snails,

Zooplankton

Eisenia andrei

Composite household lint;
polypropylene, polyethylene

terephthalate (PET), polyethylene (80%);
polyester (19%); rayon (1%)

ethylene vinyl acetate (EVA),
polycarbonate, polyamide, polyester

[20,29,34,50,56,58,60,62–65,67,69]

Mytilus galloprovincialis

Artemia franciscana

Nephrops norvegicus

Dicentrachus labrax

Trachurus trachurus

Oryzias latipes

Scomber colias

Carassius auratus

Danio rerio

Homo sapiens

Cavia porcellus

Achatina fulica

Artemia franciscana
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Table 1. Cont.

Level Type of Effect Organism Clade Genus/Species Plastic Material Type In Text Citation

O
rg

an
is

m

Adverse
Reproductive

Response

Bivalves, Crustaceans, Nematodes,
Terrestrial Vegetation, Worm, Zooplankton

Mytilus galloprovincialis

Polypropylene, polyethylene
terephthalate (PET), high-density

polyethylene (HDPE), polylactic acid
(PLA), polyacrylicnitrile (PAN)

[48,62,70–74]

Daphnia magna

Emerita analoga

Caenorhabditis elegans

Lolium perenne

Aporrectodea rosea

Ceriodaphnia dubia

Behavioral Change
Annelid Worms, Bivalves, Cnidarians,

Crustaceans, Nematodes, Terrestrial Snails,
Zooplankton

Lumbricus terrestris

Polyester, composite household lint,
nylon, polyethylene terephthalate (PET),

polypropylene, polyamide (PA)

[38,48,51,57,58,60,64,66,68,72,75–78]
(Kang et al., 2020); (Lahive et al., 2022)

Mytilus galloprovincialis

Mytilus edulis

Macomona liliana

Aiptasia pallida

Hyalella azteca

Calanus finmarchicus

Gammarus fossarum

Nephrops norvegicus

Caenorhabditis elegans

Achatina fulica

Daphnia magna

Tigriopus japonicus

Growth
Development

Bivalves, Crustaceans, Microphytobenthos,
Nematodes, Terrestrial Veg., Worm,

Zooplankton

Macomona liliana

Polyethylene terephthalate (PET),
polypropylene, high-density

polyethylene (HDPE), polylactic acid
(PLA)

nylon, polyester

[38,48,58,66–68,70–72,77–82]

Hyalella azteca

Emerita analoga

Carcinus maenas

Calanus finmarchicus

Nephrops norvegicus

Homarus americanus

Cyanobacteria

Caenorhabditis elegans

Allium fistulosum

Lolium perenne

Aporrectodea rosea

Lactuca sativa

Daucus carota

Daphnia magna

Artemia franciscana

Ceriodaphnia dubia

Neurological Fish

Dicentrachus labrax
Polyethylene (80%), polyester (19%),

rayon (1%) [50,83]Trachurus trachurus

Scomber colias

Survivorship or
Mortality

Annelid Worms, Crustaceans, Zooplankton

Eisenia andrei

Polypropylene, polyethylene
terephthalate (PET), polyester, lyocell [20,56,58,68,71–73,77,84,85]

Hyalella azteca

Emerita analoga

Palaemonetes pugio

Artemia franciscana

Nephrops norvegicus

Homarus americanus

Daphnia magna

Ceriodaphnia dubia

Po
pu

la
ti

on Adverse
Reproductive

Response
Crustaceans, Nematodes

Emerita analoga
Polypropylene, polyethylene

terephthalate [48,72]Caenorhabditis elegans

2.2. Semi-Synthetic and Natural Fibers

Despite being derived from natural materials, many studies report the widespread
presence of semi-synthetic and natural textile fibers in marine, freshwater, and terrestrial
biota [1] (inter alia). When reported, these fibers often constitute the majority of anthro-
pogenic microfibers present in a sample [86,87]. Once in the environment, natural fibers
can be biodegraded by factors such as naturally occurring microbes that consume cellulose,
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aerobic degradation, or enzymatic breakdown in soils [6,88,89]. Although natural and semi-
synthetic fibers degrade faster than their synthetic counterparts in the environment [90],
these fibers are sufficiently persistent to undergo long-range transport and accumulate
in sensitive ecosystems [1,87]. Additionally, the chemicals incorporated into non-plastic
fibers may prolong their persistence in the environment [12,91]. The decreased environ-
mental persistence of non-plastic fibers when compared to their synthetic counterparts
does not necessarily translate into reduced toxicity, given the potential for the physical
impacts of the fiber upon exposure [6,92–94]. Further, chemical treatments intentionally
applied during the production and manufacturing of cotton and wool textiles, such as
those discussed below, combined with a higher adsorption capacity for unintentionally
accumulated chemicals, could potentially mean an increased toxicity for natural fibers
compared to synthetic fibers [23–25,94–96]. To our knowledge, only three studies have
compared the toxicological effects of microfibers composed of natural and semi-synthetic
to synthetic materials [19–21], though others are ongoing. These investigations suggest
that the organismal effects of microfibers created from natural polymers (e.g., cotton) are
equivalent or only slightly reduced compared to synthetic fibers. However, more testing
involving a variety of natural, semi-synthetic, and synthetic polymers is needed to better
understand the role of polymer composition in toxicity. Given the physical properties of
natural fibers and their frequent detection in the environment, they may pose a risk to
organisms in natural systems and warrant further study.

3. Microfibers as Vectors for Chemical Exposure

While known effects of microfibers are described above, these studies do not delineate
physical effects of the fibers themselves from potential impacts of associated chemical
contaminants [97]. Microfibers, including semi-synthetic and natural materials, present a
complex mix of physical and chemical properties that can influence toxicity. These include
the material (i.e., polymeric) composition of the particle, the size, shape, density, and surface
properties of the particle, as well as the profile of associated chemical contaminants [98,99].

The textile industry is regarded as one of the most chemical-intensive industries on
the planet. Thousands of chemicals are registered for use in the production, assembly,
storage, and shipping of textile fibers, including dyes and finishing products [23,100,101].
Not only are chemicals intentionally incorporated into textile fibers during production
and use, chemical contaminants (e.g., PCBs, PBDEs) may also be unintentionally sorbed
from the surrounding environment [24,102,103]. Here, we explored a major outstanding
question pertaining to the ecological and human health impacts of microfibers: the capacity
of microfibers to act as vectors for toxic chemical exposure.

3.1. Chemical Usage and Accumulation on Textile Fibers

Chemicals are used throughout the textile production process, from the harvesting
of raw materials to finishing and storage. The application of synthetic materials used in
the production of plastic textile fibers begins with the extraction of fossil fuels and the
manufacturing of plastic monomers. Polymer products, used to create synthetic textile
fibers, are created from monomers via polymerization reactions. Following their creation,
it is possible for unreacted monomers and intentionally added substances (e.g., titanium
(III) chloride, antimony), which drive polymerization reactions, to remain on finished
polymer products. Additionally, non-intentionally added substances, including reaction
byproducts, degradation products, and contamination, may be incorporated into synthetic
polymer products. Despite being derived from natural sources, semi-synthetic and natural
textile fibers also undergo heavy chemical processing and thus cannot be considered
inherently natural or environmentally friendly [104]. These include substances used in the
cultivation of plant and animal fibers (e.g., herbicides, insecticides, rodenticides), as well as
the chemical processing used to create regenerated or semi-synthetic fibers [105].

While many chemicals are used in the cultivation and synthesis of textile fibers them-
selves, the bulk of chemicals used during production are applied to constructed garments.
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These include pigments and dyes, wrinkle-resistance finishing, antimicrobial agents, and
water and stain repellents [23,106]. Many of the finishing products that are applied to
textiles are persistent, bioaccumulative, and toxic (PBT) substances and were identified
as chemicals of concern due to their potential impacts on human and environmental
health [107]. The largest and most diverse group of chemicals applied to textiles during
production are pigments and dyes (i.e., colorants). Human health effects of these chemicals
vary and can include allergic reaction, growth and developmental impacts, as well as car-
cinogenic effects [108]. Further, through contact with skin, colorants such as azo dyes can
produce carcinogenic degradation compounds [109,110]. Azo dyes are the most dominant
dye class used in textile production, accounting for 60–70% of the global market [111].

Other known toxicants used in the production of textile fibers include per- and poly-
fluorinated alkylated substances (PFOS and PFAS), which are applied to textiles and other
consumer products (e.g., food packaging, cookware). Phthalates are another group of
chemicals commonly applied to textiles, most often used in polyvinyl chloride (PVC)
prints and the coatings of decorative images [112]. Phthalates are well known endocrine-
disrupting compounds (EDCs) due to their harmful impacts on reproductive health [113].
The relative importance of microfibers as a source and vector of these chemicals in the
environment is not yet quantified, but the textile industry is suspected to be a significant
source, e.g., via effluent and water discharge [7,8].

Finally, there are also chemical contaminants that may unintentionally accumulate on
our garments from the surrounding environment [24,102,103]. The sorption and desorption
of chemicals is dictated by their physical-chemical properties, as well as the physical-
chemical properties of the textiles [114]. Chemicals, including those not originally intended
for use in textiles, such as PBDEs, phthalates, organophosphate esters (OPEs), polycyclic
aromatic hydrocarbons (PAHs), and PCBs, have been documented to accumulate on cloth-
ing from contact with air, dust, and/or contaminated products. In fact, textiles have a
large sorption capacity for semi-volatile organic compounds (SVOCs) [24,102,103]. It is
estimated that the amount of clothing worn by an adult (2 m2) can sequester the equivalent
of approximately 100 m3 of air per day (Saini et al. 2016). Further, microfibers released
from textiles have been shown to adsorb chemicals, including PAHs and PCBs [115–117].

Although we primarily focused on microfibers derived from textiles here, other sources
of microfibers exist, but they are not as well characterized. These include carpeting and
personal care products [12–15]. Cigarette filters, composed of cellulose acetate, a semi-
synthetic fiber [12,118], are a major non-textile source of microfibers. It is estimated that
the 4.5 trillion cigarette filters littered annually generate approximate 0.3 million tons of
microfibers each year [12,119]. A suite of toxic chemicals is associated with cigarette filters,
including heavy metals, PAHs, etc., and cigarette filter leachates are well known to be
toxic [120–122]. Further, Belzagui et al. [12] found that negative effects of cigarette leachate
can be exacerbated by the physical effects of the fibers.

Bioplastics such as PLA are offered as a “green” alternative to synthetic and semi-
synthetic plastics due to their ability to biodegrade under certain industrial conditions [123]
and constitute another suite of understudied semi-synthetic materials for which little is
known about their environmental fate and effects. Though bioplastics have not been
heavily utilized in textile production, interest is growing among smaller producers such
as Xtep. Studying the effects of bioplastics is important to addressing emerging synthetic
alternatives and their environmental effects.

3.2. Microfiber-Mediated Chemical Release and Exposure

While chemicals associated with microfibers can broadly be categorized as those that
are (1) intentionally added during production and use and those that (2) unintention-
ally accumulate from the environment, most studies investigating the chemical sorption-
desorption dynamics of synthetic microfibers focused on the latter category of chemi-
cals. These include pharmaceuticals, heavy metals, and organic contaminants (e.g., PAHs,
PCBs) [115,124–126]. While most research on the sorption behaviors of environmental con-
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taminants to microplastics has focused on microplastic fragments or spheres [127–129], a
few studies demonstrated the sorption and release of chemicals from synthetic and natural
textile fibers [28,116,117,130,131].

Several factors likely influence the sorption and desorption of chemicals to microfibers,
including the physical properties (i.e., crystallinity, surface area, surface condition) and
chemical properties (i.e., polymer type, surface charge, hydrophobicity) of the fiber, as well
as the physical-chemical properties of the chemical and surrounding environmental me-
dia [116,132]. Additionally, the degree of physical weathering of a fiber in the environment
may influence its surface morphology and associated chemical profile [28]. Microfibers,
including natural, semi-synthetic, and synthetic fibers, degrade in the environment via
photo-degradation. Sait et al. [28] demonstrated that the degree of weathering (measured
as changes to surface morphology and fragmentation) varied among different types of
fiber (i.e., polyester, acrylic, wool). Further, they identified chemical leachates, including
monomers, additives, and degradation products, in both pristine and degraded fibers.

3.3. Toxicity of Virgin vs. ‘Weathered’ Particles

To date, empirical evidence demonstrating the potential importance of microfibers
as vectors and/or sources of chemicals to biota remains a major understudied question
in the microfiber and microplastics research fields (see [133,134]). Chemical profiles vary
between virgin and ‘weathered’ microplastics, including fibers [28,135,136]. While research
on the toxicity of virgin versus ‘weathered’ fibers is limited, this type of exposure study
is critical for delineating between the physical effects of the fibers and their associated
chemical profile. Nearly all ecotoxicological testing of this type has investigated the toxicity
of virgin versus ‘weathered’ non-fibrous particles, such as pellets and spheres. These
studies suggest that organisms respond differently when particles are exposed to the en-
vironment, such that ‘weathered’ particles sometimes cause greater toxicity compared to
virgin particles [137–141]. However, sorption-desorption can differ between non-fibrous
microplastics and fibers given differences in physio-chemical properties, sorptive capacities,
and chemical profiles [128]. Further, other factors that influence the uptake of chemicals
from ingested particles, such as gut residence time, can also vary between fibers and
other types of microplastics. Another important consideration for future investigations is
the bioavailability of microfiber-sorbed contaminants compared to other exposure path-
ways [136,142,143]. For example, Beckingham and Ghosh [142] demonstrated that the PCB
uptake from microplastic spheres into benthic worms was much lower than the uptake
from surrounding sediments. Further, Thaysen et al. [143] reported evidence of the bidi-
rectional transfer of PBDEs from ingested microplastics in seabirds, where in some cases
highly contaminated tissues may be a source of contaminants to ingested microplastics. In
these cases, microplastics were not a significant vector for chemical exposure. Given the
diversity of microplastics, microfibers, and their associated chemical contaminant profile,
generalization to this entire contaminant class requires further research.

4. Discussion

Microfibers from textiles are ubiquitous contaminants found in all niches on the planet.
They are persistent and are able to spread over long distances. While the current state of
knowledge concerning the impacts of microfibers on the environment is limited, current
evidence indicates that these contaminants have the potential to drive toxicity. Furthermore,
semi-synthetic and treated natural fibers are similar to synthetic microfibers, regarding
both their environmental fate and hazard properties. However, the persistence of plastic
in the environment suggests that synthetic microfibers will remain a problem for a longer
period of time than natural fibers.

How can scientists distinguish the chemical from the physical effects? The experi-
mental designs of most studies to date do not allow researchers to make that distinction.
Suggestions for improvements were discussed previously [97] and include considering
the complex nature of microplastics and categorizing effects as particle-driven hazardous
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impacts versus chemical toxicity and designing studies to better understand direct versus
indirect effects (e.g., food dilution). Choice of species, medium and exposure matrix, dura-
tion, and choice of controls can be improved to better our understanding as we accumulate
knowledge in this field.

However, studies comparing weathered vs. virgin microplastics help us understand
different drivers, and these studies often report more severe effects from weathered mi-
croparticles (see Section 3.3 above) due to the environmental contaminants adsorbed during
the weathering process. Dosing microplastics with specific chemicals and then exposing
different groups of organisms to dosed or undosed microplastics, in addition to unexposed
controls, can further our understanding of chemical toxicity effects. Studies should take
careful consideration of polymer type (e.g., rubbery versus glassy) and make use of non-
polymer control particles, as well as the physiochemical properties of chemical substances
(e.g., Log Kow) and exposure route (water, food, trophic transfer), as shown in studies by
Ašmonaitė et al. and Bour et al. [129,144]. Le Bihanic et al. [139] exposed marine medaka
Oryzias melastigma embryos and larvae to microplastics spiked with benzo(a)pyrene (MP-
BaP), perfluorooctanesulfonic acid (MP-PFOS), or benzophenone-3 (MP-BP3) for 12 days.
The particles agglomerated on the surface of the egg chorion and did not penetrate it or
contact the developing embryos. While embryos treated with virgin microplastics showed
no toxic effects, those treated with microplastics with PFOS had decreased survival and
did not hatch. Larvae exposed to microplastic particles with BaP or with BP3 had reduced
growth, developmental anomalies, and abnormal behavior. These investigators found that,
compared to equivalent waterborne concentrations, BaP and PFOS spiked on microplastics
appeared to be more embryotoxic than when chemicals were in seawater. These studies
used microbeads, rather than microfibers, and demonstrated effects from chemical toxicity.

Careful examination of organisms for microplastics in their tissues after exposure can
indicate chemical toxicity when ingestion or translocation are not observed. Zhu et al. [145]
fed Japanese medaka (Oryzias latipes) diets amended with 500, 1000, or 2000 µg/g 10 µm
fluorescent spherical polystyrene microparticles for 10 weeks during maturation from
juveniles to spawning adults. Microscopic examination, histologic sections, and scanning
electron microscopy showed no evidence of any translocation to other internal organs.
Nevertheless, females showed dose-dependent decreases in egg number, and histological
analysis showed changes in the kidney and spleen. Since no microplastics were found
in any tissues, they attributed effects to the leaching of chemical additives such as DEHP
(di(2-ethylhexyl)phthalate) from the particles.

Comparisons of synthetic versus ‘natural’ fibers (animal or plant, i.e., wool or cot-
ton) could provide indications of ‘particle’-driven effects, as can studies using particles of
different shapes. While we are gaining better understandings of the effects of exposure
to synthetic microfibers, the potential toxicity of anthropogenically modified natural or
semisynthetic microfibers remains understudied [1]. Microfibers are the shape most com-
monly identified in organisms, and the majority of studies detect effects on fibers, yet many
effect studies focus on spheres, which are infrequently detected in the environment [16].
Some efforts have compared the ingestion and egestion of fibers and spheres in two dif-
ferent species (brine shrimp and stickleback) and found differences between species and
particle shapes, e.g., Bour et al. [17]. Future studies trying to unravel these effects may need
to include a chemical analysis to ascertain which chemicals leached or desorbed from the
microplastic and entered the animals. One possible method for textile microfibers would be
to obtain them from white vs. dyed (identical) garments and compare effects. Such a study
could provide information about the toxicity of dyes used, though not the other additives
in the textiles. These steps are needed to unravel physical and chemical effects.

Even as microfibers from textiles are the dominant microplastic type in the environ-
ment, now ubiquitous in all niches, textile production is predicted to increase in the future,
and thousands of chemicals are used in production and in finished products. Plastics and as-
sociated chemicals are now recognized as planetary boundary threats [146], as the massive
quantities produced, largely uncontrolled with minimal transparency from the industry,
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are threatening our environment, our health, and our ability to thrive. Production outpaces
societies’ ability to conduct safety related assessments and monitoring. Improved under-
standing of the impacts of microfibers on the environment will inform risk assessments
and support mitigation strategies, together with a deeper understanding of sustainability
and increased circular approaches in the industry, allowing us to decelerate environmental
degradation and move back within a safe operating space for humanity [147].
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