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Abstract: Subjective behavior of decision makers (DMs) is paramount when modeling information
and communication technology (ICT) adoption choices in irrigated agriculture. Here, efficient ICT-
aided irrigation plans often involve a certain degree of uncertainty, and differential attitudes toward
it can cause uncoordinated actions between actors. Some DMs will implement ICT information, while
others will not because they do not trust ICT reliability. This risks undermining the achievement of
ICT benefits in terms of water saving at the irrigation district level. By distinguishing between differ-
ent sources of uncertainty, taking the form of risk and ambiguity, in the present paper, we developed
a new decision model to assess the impact that subjective behavior and learning processes have on
the efficiency of ICT-aided irrigation plans. A case study was selected to implement the model in
simplified settings. The results revealed the potential of ambiguity to limit ICT information implemen-
tation and to hinder water governance. Implications mainly concern the development of uncertainty
management policies to favor DMs becoming familiar with the new ICT with lower ambiguity.

Keywords: water management; ICT; DSS; ambiguity; risk; learning

1. Introduction and Objectives

Under the perspective of farmers and water authorities (WAs), one of the major is-
sues of climate change (CC) is in the increased uncertainty brought about by unpredicted
variability in weather patterns [1]. In irrigated agriculture, this translates into two main
sources of uncertainty: (i) uncertainty on the availability of water resources and (ii) un-
certainty on crop water demand (CWD). In general, the former uncertainty occurs before
the irrigation season and affects land allocation, while the latter uncertainty occurs during
the irrigation season and affects water allocation [2]. At the farm level, both sources of
uncertainty also contribute to decisions on technologies and irrigation adoption [3]. To
face these issues, there is a strong need for new irrigation governance paradigms based on
climate information to lower uncertainty and support efficient decisions [4,5]. ICT-based
supports can be powerful tools to this purpose, and numerous platforms have been devel-
oped to aid decisions at the level of farmers and WAs (Cavazza et al., 2018). However, the
simple information provision is not sufficient to achieve the expected benefits from ICT
development initiatives [6]. If DMs receive an ICT but do not implement it, such as putting
ICT information into action, there are no economic benefits from ICT development. This
is true even with high quality information [7] and is testified by numerous examples in
the literature that show behavioral barriers in ICT implementation [8–13]. This is often
caused by a lack of knowledge on information reliability: if technologies providing relevant
information are extremely useful in lowering climate uncertainty, they raise uncertainty in
their reliability. The latter uncertainty can be identified as ambiguity over information relia-
bility [14,15]. Ambiguity is common with the adoption of a new technology and rises from
a lack of knowledge of its performance [16,17]. In the case of new ICT technologies, DMs
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frequently perceive a certain degree of ambiguity because they have never experienced
information reliability. As a result, ambiguity risks limiting information implementation.
Furthermore, with time, DMs might be able to try the ICT and test information without
necessarily implementing it. If so, DMs would gain experience with the technology and
might solve their ambiguous perceptions in the so-called process of familiarity. This favors
technology adoption [18], but it can take a fairly high amount of time [19], which might
cause inefficiencies and further discourage information implementation.

The objective of this paper is to study the effects of ambiguity and learning in ICT
implementation decisions for water use efficiency in irrigation districts. To do so, we
developed a behavioral model representing the choice between inefficient but riskless
irrigation plans or ICT-aided efficient irrigation plans with uncertain outcomes. At this
end, ambiguity perception plays a key role, but it evolves with familiarity. Therefore,
we addressed the issue of learning on ICT reliability and developed a new learning rule
representing the update of ambiguous beliefs. Finally, we considered an empirical example
of a simplified irrigation district located in Northern Italy. Here, we implemented the
model to quantitatively estimate how water use (WU) and water productivity (WP) vary
after the introduction of a new ICT. These indicators are used to estimate ICT impacts on
the district’s efficiency and its evolution in time. The empirical implementation helped to
highlight issues in the governance system that lower the district’s efficiency in the time lag
between the first time DMs receive the ICT until when they are familiar with it. Findings
will support irrigation districts in the implementation of efficient ICT-aided management
plans as well as uncertainty management policies in fostering ICT diffusion.

The behavioral model developed in this paper proposes two main novelties: (i) the
first is in providing as output both the farmers’ and WAs’ water demand from ICT-aided
irrigation plans; (ii) the second is in developing a new learning rule to describe how DMs
become familiar with a new ICT as they gain new insights on its reliability. By considering
water demand as a function of DM’s behavior and by accounting for the governance
system, the model highlights how poor coordination in water use can further undermine
ICT benefits. To the best of the authors’ knowledge, this issue was untackled in the literature.
The learning rule is innovative because it helps describe how a DM revises their prior beliefs
on ICT reliability as new evidence on its performance becomes available with the use of the
ICT itself.

The remainder of this paper is organized as follows: in the next section (Section 2), we
briefly review the literature of uncertainty on technology’s reliability and its dynamics as
DMs gain experience in it. Then, we describe the theoretical model developed (Section 3);
in Section 4, we implement the model to highlight the impacts that ambiguity has on
WU and WP. In Section 5, we provide an empirical example of a simplified irrigation
district to highlight the relative governance issues. In Section 6, we present the results.
Finally, in Sections 7 and 8, we discuss the main findings and draw conclusions and
policy implications.

2. State of the Art
2.1. Ambiguity and New Technologies Adoption

Technology adoption in agriculture is widely reviewed by the literature. One of
the most cited papers is that from Caswell and Zilberman [20]. These authors carried
out a literature review on determinants of technology adoption and found that risk and
uncertainty frequently had a significant role. Specifically, they highlighted the importance
of a subjective risk caused by farmers being unfamiliar with the new technology. However,
they do not deepen the issue and, given the time of publication, do not consider those
technologies providing information such as ICT.

To assess the potential impact that a lack of knowledge on technology reliability
has on the adoption of the same new technology, the concept of ambiguity can be a
powerful tool [21]. Ambiguity was first introduced by Ellsberg [22] and can be defined
as: “uncertainty about probability, created by missing information that is relevant and could be
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known” [23]. Similarly to Risk Aversion (RA) which occurs when the probability of an
event is known (i.e., dice games), Ambiguity Aversion (AA) manifests when probability
estimations are doubted or are not available at all (i.e., bets on horses).

The role of ambiguity in agricultural decision problems was first addressed by Engle
Warnick, Escobal and Laszlo [24], who highlighted that both RA and AA affect farmers’
choice between the technological status quo and a new technology. Specifically, they consider
that AA might limit the adoption of new crop varieties because their performance is
unknown. Later, Ross et al. [25] confirmed these findings and underlined that, more
than RA, it is AA that reduces the probability of technology adoption. Through a series
of decision-making experiments, supported by visual aids to assist the respondents in
developing a clear understanding of probability settings, they elicited preferences for
coin tosses over self-assessed ambiguous probabilities. Building upon these results, they
expressed the need to have policies ensuring farmers have access to information on the
technology’s performance to lower their perceptions of ambiguity. Contrary to these
findings, Barham et al. [16] showed a case where AA increases the likelihood of farmers to
implement a new technology. They considered genetically modified corn seeds, which help
reduce crop exposure to pests. Given the resistance genetic trait that reduces the ambiguity
of pest damages for adopters, the more AA corn farmers have, the higher their willingness
to implement the new seeds. Similar, Alpizar et al. [26] found AA favoring the adoption of
technologies against extreme CC-related events. Here again, the technology protects DMs
against events whose occurrence are ambiguous because of the unmeasurability of CC [26].
Finally, Ward and Singh [17] considered a new technology that does not alter ambiguity
distributions. As expected, they found that AA did not favor the technological status quo
nor the adoption of the new technology.

Even if the above studies take into consideration different technologies and none
address the issue of ICT information implementation, their findings are extremely useful
to our context. Specifically, by comparing results, it is evident that the impact of AA in
determining technology adoption is specific to the effect the technology has on unmea-
surable uncertainty. If a new technology is expected to lower variance in the distribution
of ambiguous events, its adoption will be favored by AA as found by Alpizar et al. [26]
and Barham et al. [16]. Otherwise, if it will raise ambiguity due to lack of knowledge on
its reliability, and ambiguity-averse individuals will be reluctant in implementation. The
latter case is found by Engle-Warnick et al. [24] and Ross et al. [25] and is expected to be
more frequent because the technological status quo is known to the DM, as opposed to a
new technology whose performance is uncertain [26].

If we take into consideration those type of technologies providing information, such
as ICT, no paper is found by the authors to be addressing the role of AA. There are
numerous ICT platforms and climate services assessing the probability of upcoming events.
Here, studies address the topic of risk reduction, but not the role of ambiguity in such
probabilistic information [4]. However, Nocetti [14] and Snow et al. [15] analyzed the
relationship between AA and the value of new pieces of information. Again, the relationship
depends on the type of information considered. Risk-reducing information is positively
valued by risk-averse DMs, while ambiguity-reducing information is positively valued
by ambiguity-averse DMs [15]. If we apply this concept to the case of an ICT delivering
climate information, we ascertain that it will lower the share of climate uncertainty that
is risk. Here, the new piece of information will narrow variability in the risk distribution
of climate events. Therefore, the ICT will deliver risk-reducing information and will be
positively valued by risk-averse DMs. These will find higher expected utility from ICT-
informed decisions than in the uninformed settings. However, if we consider that the same
ICT is a new technology, another share of uncertainty will rise in the form of ambiguity,
which is due to a lack of knowledge on ICT reliability. This issue will cost an ambiguity-
averse individual to lower their expected utility from the same ICT-informed decision.
Nocetti [14] further deepened this phenomenon and highlighted that it is the share of
ambiguity remaining after information is received that mostly affects its value. This does
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not depend on the message itself, but it is due to a lack of knowledge on the reliability of the
message service [14]. Overall, risk-reducing information provided by an ambiguous ICT
will have a positive value for a risk- and ambiguity-averse DM only in cases of a positive
tradeoff between risk reduction and ambiguity rise.

As a result, ICT implementation will only occur when risk reduction is prevailing over
ambiguity rise and the DM puts into actions the ICT information received. This occurs only
in some situations, but the tradeoff evolves in time as ambiguity lowers due to the process
of familiarity described in the following section.

2.2. Familiarity and Learning Patterns in Technology Adoption

In the previous subsection, we highlighted how, when approaching a new ICT, DMs
have personal beliefs on the technology’s reliability expressing ambiguity over information
received. Ambiguity is then updated as the DM gains experience helping them to assess
whether information can be trusted or not [27]. This phenomenon is described as familiarity,
which takes place as a learning process where the DM updates ambiguous beliefs on the
basis of new insights.

In the economic literature, the topic of DM’s learning behavior in technology adop-
tion is deeply analyzed. Here, learning is defined as “the evolution of assessed subjective
probabilities, as new information becomes available over time” [19] and allows DMs to become
familiar with the new technology. One of the first to analyze learning under ambiguity
was Marinacci et al. [28], who modeled how ambiguity disappears as the number of draws
from an Ellsberg’s urn coincides with the number of balls in the urn. Later, Epstein and
Schneider [27] considered more complex settings and proposed a learning rule that is one
of the most relevant to model decisions under ambiguity [29]. they modeled ambiguity
as variability in a set of risk distributions over future states of the world. This set is then
updated during the learning process, and variability shrinks as the DM becomes familiar
with the new environment [27]. Because they found Bayesian update to be too extreme
under ambiguous settings, they developed a model to account for more intuitive choices.
Despite being reliable, the model proposed by Epstein and Schneider [27] is referred to
data-generating problems where the only repetition of draws allows one to solve ambi-
guity [30]. However, such kinds of problems are not directly applicable to the learning
behavior occurring with new technologies. Accordingly, while betting in an urn, the num-
ber of alternatives building risk can be objectively measured and objectively updated with
the repetition of draws; with new technologies, this is not always possible. This is mainly
due to the fact that new insights on the technology’s performance are often available in the
form of noisy parameters [21] that are subjected to the DM’s own perceptions.

Barham et al. [19] tested three learning rules applied to new technology adoption
in agriculture: (i) Bayesian learning; (ii) First-1 and (iii) Last-1. In all alternatives, prior
ambiguity perceptions are assumed to be uninformative. Bayesian learning is identified
when a rational DM observes the performance of the technology over time and weighs
each observation equally, while in the First-1 and Last-1 learning rules, the DM respectively
considers only the first or the last observation. Between these three, the only Bayesian
rule is the least representative, and farmers tend to follow a mix of this rule with First-1 or
Last-1 rules [19]. These results highlight the need to develop and test new learning rules
for technology adoption. These should include elements of rationality from the Bayesian
update, but they allow at the same time some degree of intuitive choice as suggested
by Epstein and Schneider [27]. Moreover, when considering the specific case of a new
technology providing weather-related information, as the one analyzed in the paper, there
are further obstacles in the application of existing models. While the performance of other
technologies can be generally measured in terms of production, with weather-related ICT,
the DM is not able to quantitatively assess the extent to which information received is
reliable. Many climate parameters are hard to measure, and quantitative comparisons
between forecasts and observations are difficult for end-users to measure. This underlines



Water 2022, 14, 3760 5 of 28

the need to model adaptive behavior, where the DM updates his/her beliefs on the reliability
of a given technology on the basis of his/her past experiences.

3. Methodology
3.1. Overview of the Theoretical Model

In the previous section, we showed that the introduction of a new ICT in decision prob-
lems raises ambiguity issues, mainly due to a lack of experience/familiarity. The behavioral
model developed in this section aims at representing the decision between implementing a
riskless and inefficient Precautionary Plan (PP) and an efficient ICT-informed Risky Plan
(RP) for irrigation. Further, we consider how such decision evolves with time, in the period
between the first time the DM approaches the new ICT until when they become familiar
with it. To do so, the model accounts for risk and ambiguity as two separate sources of
uncertainty with the same implications in adoption decisions. However, as addressed
above, we consider risk as an exogenous source of uncertainty that cannot be modified
by the DM and ambiguity an endogenous source of uncertainty that can be solved with
familiarity. In dealing with familiarity, we developed a learning rule consistent with the
context here analyzed. This allows one to model how the decision evolves as the DM gains
experience on the technology.

In Section 3.2, we will define the decision environment. Here, two farmers and a WA
are the actors managing water allocation in an irrigation district. In the business-as-usual
settings, uncertainty forces all actors to manage irrigation by implementing an inefficient
but riskless PP. Then, in Section 3.3, we consider how irrigation management can gain
efficiency due to information provision by the ICT. Here, both ambiguity and risk occur.
Ambiguity rises because the ICT is a new technology, while risk rises because the same
ICT provides probabilistic information. The impacts of AA and RA on the information
implementation decision is analyzed in Section 3.4. Finally, in Section 3.5, we assess how
DMs’ behavior changes with time as they become familiar with the ICT. Finally, the model
is applied to a case study to assess how ICT-informed water demand translates into WU
and WP to estimate the districts’ efficiency (in Section 5).

3.2. Context: Three Actor Districts

In this section we introduce the simplified settings in which we define the decisional
environment and developed the model. Suppose there is a WA managing water allocation
for an irrigation district with two farms: farm 1 and farm 2. Here we assume that decisions
by all actors are driven by short to medium term consequences. The two farms are compa-
rable in size but have different crops; both have to make decisions on the right amount of
water to apply for irrigation. The only difference is in their location: farm 1 is upstream
along the irrigation network and farm 2 is downstream Figure 1. This way, farm 1 is the
first to access the resource and farm 2 receives the remaining water. No external regulation
exists to avoid excess use of water by farm 1. Therefore, farm 2 is less favored, and farm
1 owns a position rent at the expenses of farm 2. This condition is a frequent issue with
common pool resources where differences in accessibility can cause uneven distribution of
benefits [31].
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The model considers ordinary settings when reservoirs are full, but excess use causes
environmental issues, unnecessary costs and might increase susceptibility to unexpected
droughts occurring later in the season. Here, the WA has to decide how much water to
pump in the irrigation network without knowing farmers’ water demand. This condition
brings the WA to supply water following a PP where we assume that the irrigation network
is filled to its operational capacity, with flows being higher than the sum of the volumes
each farm apply at the maximum. Thus, possible excess use of the resource by farm 1
would not affect water availability at farm 2. Also at the farm level can be identified a PP;
here, we assume that the farmer irrigates with volumes so as to keep the field capacity, at
a level that guarantees no water stresses (X fi

). The implementation of such PP is driven
by two elements: (i) farmers are unsure about CWD and (ii) suppling less water than the
required amount might result in production losses.

Both PPs are riskless and their payoff functions (g(·)) are represented in Equation (1)
and Equation (2), respectively, for the WA and farmers:

g(XA) = V(XA)− cAXA (1)

g
(

X fi

)
= V

(
X fi

)
− c fi

X fi
∀i (2)

where V
(

X fi

)
represents the maximum revenues achieved when water demand is fully

satisfied (at the cost of excessive water supplied and used). Considering that the WA is not
cultivating crops but aims to maximize farmers’ profits at the cost of the water supplied,
we represent its revenues as follows (Equation (3)):

V(XA) = V1

(
X f1

)
+ V2

(
X f2

)
(3)

In Equations (1) and (2), we have two coefficients, c fi
and cA; these are positive and

represent the volumetric cost of water faced by the different type of actors. Here, c fi
is

the volumetric cost needed to irrigate the field such as energy costs, resource costs and
labor; it includes only those costs that are proportional to the quantity of water used.
This simplification is driven by the fact that costs for machineries and in-farm delivery
systems are fixed in the short term and will not be considered during the implementation
decision. On the other hand, cA represents the volumetric cost of water under the WA
perspective. This includes costs for energy, water and external costs attributed by the WA to
the resource (opportunity costs and environmental costs—opportunity costs are connected
to the allocation of the resource to different actors or sectors while environmental costs
derive from resource depletion or degradation).

3.3. Information Provision

Now, suppose a new ICT provides information: (i) to farmers, on the average water
demand from crops cultivated in their field (x fi

), and (ii) to the WA, on the average water
demand from crops cultivated in the whole district (xA). Under perfect information condi-
tion, the new piece of information would allow farmers to irrigate so as to distribute the
exact amount of water needed by crops. The WA can then pump into the network the water
volumes really needed by farmers. However, the ICT does not provide perfect estimates of
water demand because of errors in weather forecasts and in crop soil parameters. Therefore,
farmers and the WA might decide not to follow the message provided by the technology,
keeping irrigation as usual.

To simplify the decision environment, there can be identified three classes of elements:
messages, actions and states. Messages are the ones delivered by the ICT on the amount
of water needed by each DM. Actions are represented by the amount of water used by
farmers or supplied by the WA in a specified irrigation plan. Here, there are two irrigation
plans: the business-as-usual one, where irrigation water is used at the maximum (X) and
the one based on the ICT, where water volumes are reduced up to x. Although being
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resource-efficient (x < X), this plan is risky if compared to irrigating at the maximum level.
This is because the ICT is not capable of providing perfect information; therefore, errors
in water requirement estimations are possible, and several states of water demand can
occur. In detail, each state (s) identifies a specific event (i.e., climatic condition) to which it
corresponds to a given water demand (x). Then, the state-space defined by S identifies the
set of feasible states of water demand from crops (s = {s1, s2, . . . , s ε S} ).

To help DMs facing this issue, besides the estimation of water demand (x), the ICT
delivers the probability density function (PDF) of the corresponding water requirement
(π(s)) in the same state. In other words, with the message, the DM knows the water
volume needed by crops and the PDF of revenues achievable if they irrigate as specified
in the message. The probabilistic nature of such a kind of ICT message helps DMs to
account for uncertainty in state variability and to plan their actions consistently with it
(Arnal et al., 2016). In this paper, we assume that the PDF of states is normally distributed,
where the average or expected payoff coincides with the difference between the maxi-
mum revenue achieved in the PP (V(X)) and the costs of water applied with irrigation
(Equation (4)).

Eπ(s) f (s|x) =
∫

π(s) f (s|x)ds (4)

where:
f (x) = V(s|X)− cx ∀ ε S s ∼ N(µ,σ)

This equation assumes that ICT information can implement an irrigation plan in which
the farmer can achieve the maximum revenue (V(X)) as with the PP, but with less water
(x < X). However, the payoff of this output is subjected to the uncertainty estimated in
π(s) Therefore, we label this irrigation plan as RP; its uncertainty elements will be treated
in depth in the next section.

3.4. Risk and Ambiguity

In the previous subsection, we highlighted how information provisions by the ICT
can lower uncertainty on water demand and can move from a PP that is inefficient but has
uncertain outcomes for an efficient RP whose payoff is risky. This comes with a cost of
putting at risk the decision payoff. If the DM is risk-averse, they will find lower expected
utility (EU) from the RP than a risk-neutral DM. To understand the DM’s choice, it will
be necessary to estimate their EU for the uncertain payoff f (s|x). If we consider only the
probability estimation (π(s)) provided by the ICT, EU for the RP (EU) is defined with
the following formulation (Equation (5)) developed on the basis of Savage’s postulates
(Savage 1954):

EUr = u
[
Eπ(s) f (s|x)

]
=
∫

S
u[ f (s|x)]π(s)ds (5)

where u(·) is a von Neumann–Morgenstern utility function, and Eπ(s) is the expectation
operator for the risky environment. Because the expected payoff coincides with the optimal
revenue at the costs of water used (Equation (4)), Equation (5) is simplified as follows
(Equation (6)):

EUr =
∫

S
u[V(X)− cx]π(s)ds (6)

Despite the ICT providing a full probabilistic picture of risk, another share of uncer-
tainty is unmeasurable and generates ambiguity. This is due to the fact that the ICT is
new to DMs and they do not know if the probabilistic estimations received are reliable.
Apart from the PDF specified by the ICT, other probability functions are feasible. As a
result, we have a set, ∆, describing the set of feasible first-order probability estimations
(π j(s) =

{
π1(s), π2(s), . . . : π ε ∆, S→ ∆

}
). To describe variability in ∆, DMs have per-

sonal beliefs identifying a distribution of first-order probabilities (µ[π(s)]). This is a II
Order PDF assigning a weight to each I Order distribution in ∆.

Since the two farms cultivate different crops, each will receive a different message
specifying water demand for their farm and the relative PDF. The two distributions will
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have the same standard deviation because errors are unrelated with the value estimated
and depend only on the technology-generating information. Both the I and II Order PDF
are assumed to be normally distributed.

If DMs are ambiguity averse, they perceive disutility from this variability in first-order
probabilities. Therefore, to reliably assess their EU, it is necessary to account for ambiguity
and ambiguity aversion as well. The formulation adopted in this paper follows the smooth
model of ambiguity-sensitive preferences developed by Klibanoff et al. [32] (Equation (7)).

EUr, a =
∫

∆
φ

[∫
S

u(V(X)− cx)π(s)ds
]
µ[π(s)]dπ(s) (7)

Similar to Equation (6), φ(·) is a von Neumann–Morgenstern second-order utility
function expressing preferences over first-order probabilities. The model has a double
expectational form that allows for the separation between ambiguity, which is a belief of
the DM, and ambiguity aversion that expresses their attitudes. Due to this feature, beliefs
and attitudes are then treated separately, where to the first class belongs risk perception
and ambiguity perception, while attitudes are RA and AA.

For ease of understanding, it is often useful to consider the certain equivalent (CE) of
an uncertain payoff rather than its EU. This is defined for a DM as the “ . . . sum of money
’for sure’ that would make that person indifferent between facing the risk or accepting the sure
sum.” [33]. It is obtained by the inverse utility function of the EU of an uncertain payoff.
Its practicality will be helpful to compare the sure payoff of the PP with the uncertain
payoff of the RP. To assess the CE of the RP, we considered negative exponential utility
functions for payoffs and probabilities. To represent the first-order utility function, we have:
u (·) = −e−r(·), while for the second order utility function describing ambiguity attitudes,
we assume the following equation: φ (·) = −e−a(·). Here, r and a are respectively the risk
aversion coefficient and the ambiguity aversion coefficient; both are positive and range
from 0 to 1 with higher aversion. The KMM model of Equation (7) is used to assess the
CE of the risky plan, which is simplified as follows, given the assumptions of normality in
both first- and second-order PDFs (Equation (8)):

CE[ f (s|x)] = E∆

{
ES[ f (s|x)]− 1

2
rσ2

π(s)

}
− 1

2
aσ2

µ(π(s)) (8)

The proof is given in Appendix A: Simplification for the CE computation.

3.5. Update of Ambiguous Beliefs

While ambiguity attitudes can be assumed as constant in time [34], the perception
of ambiguity decreases as the DM gains experience on ICT reliability. This phenomenon
frequently results in a slow and progressive implementation of new technologies to support
decision making. In Section 2, we highlighted the need to adapt existing learning patterns
to the context of the study. In this section, we propose a variation of the First-1 learning
rule proposed by Barham et al. [19]. Here, the prior probability remains constant in time,
but differently from the First-1 learning rule, it is updated every time the DM receives new
pieces of information on ICT reliability.

Until now, we considered a single decision event, but decisions for water allocation
are repeated periodically along the irrigating season and in every season. We identify
with time frame (TF: t ∈ T) every period beginning when the ICT delivers the message
and ending when the decision pays off. In the first period (t = 1), the ICT information is
received for the first time, and the DM has no experience on its reliability. DM’s beliefs
prevail on the actual reliability of the technology. Such beliefs are updated with the time as
the DM gains experience with the technology.

To describe the updating process, we assume that, at the end of each TF, states are
manifested and DMs can assess whether is it worth to follow the RP using the ICT or to
maintain the PP not using the ICT. The learning process is modeled with the DM obtaining
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a binary signal from the environment (ht = h+t ; h−t ), describing whether information has
been correct (h+t ) or not (h−t ). Both the sum of the positive signals (∑ th+t ) and the sum of
the negative signals (∑ th+t ) are weighted by a positive coefficient, named updating rate
(w). This is a number between 0 and 1 and reflects DM’s subjective inclination to revise
their prior beliefs in light of new evidence; the higher the coefficient, the faster the learning
will be. The updated model is described by the following step function (Equation (9)):

µ[π(s)|t] =


µ[π(s)]

1+w ∑t h+t
1+w ∑t h−t

µ[π(s)] i f ∑
t

h+t > ∑
t

h−t
1 i f ∑

t
h+t ≤ ∑

t
h−t

(9)

The first time the DM approaches the new ICT (t0), the only element helping them to
build their ambiguity distribution is their prior belief (µ[π(s)|t]). Then, from the second TF
on, ambiguity will be described by a posterior PDF, where the prior is updated on the basis
of the signals received, as described in the equation above. Even after the third TF, the prior
distribution to be updated remains the one built by the DM the first time they approach the
ICT (t0).

Because the updating process consists of scaling the prior PDF, all posteriors remain
normally distributed. The only exception occurs if ∑t h+t ≤ ∑t h−t , where the prior trans-
forms into a uniform distribution. If so, we reach the highest level of ambiguity, where
variance is equal to infinity, and all the I Order distributions are feasible and equally prob-
able. In such settings, ambiguity is at its maximum and will likely cause the DM to not
implement information received. Instead, if ∑t h+t > ∑t h−t , as new positive signals are
received and they outnumber negative signals, variability in µ[π(s)|t] lowers, while means
remain unchanged. To explain this phenomenon, as the DM receives new positive signals,
we can consider that the probability of I Order distributions in the tails lowers. Therefore,
the set of feasible distributions in first-order probabilities shrinks (∆1 > ∆2 > ∆T) as the
DM observes that some distributions are unfeasible. The process continues as the ratio
between positive and negative signals rises, until the point when the only distribution
remaining in the set is the one provided by the ICT. At this point, ambiguity is solved.

As a result of the familiarity process, EU from the RP evolves, because perceptions are
altered; the updated CE is computed as follows (Equation (10)):

CE( f (s|x)|t) = E∆t

{
ES( f (s|x))− 1

2
rσ2

π(s)

}
− 1

2
aσ2

µ(π(s)|t) (10)

If we consider an ICT capable of estimating all errors in the I Order PDF, meaning that
π(s) is always the correct distribution, a DM familiar with the ICT ( t→ ∞ ) will have the
following CE (Equation (11)):

lim
t→∞

CE[ f (s|x)] = ES[ f (s|x)]− 1
2

rσ2
π(s) (11)

This simplification is made possible because variance in II Order PDF is null and results
in a CE that is equal to the one of an ambiguity-neutral DM (a = 0). Otherwise, if ambiguity
remains because of errors in probability estimations, it will still affect expectations as shown
in Equation (10).

4. Identification of Water Demand

In the previous section, we modeled how ambiguity affects expected utility from
ICT-informed decisions and how this phenomenon evolves at the end of a TF, when the
DM gains new insights on ICT reliability. Still, in each of these TF, it defines the impact that
ambiguity has on WU. Specifically, we saw each actor having to choose between a PP that
is riskless but inefficient and an ICT-informed efficient RP, subjected to risk and ambiguity.
Here, the DM will switch from the PP to the RP only when expected utility of the first
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plan is lower than expected utility of the second. Only in such conditions does the DM
implement the ICT and put information into action to save water; otherwise, information
provision will be useless. However, it is to be underlined that the decision variable is the
volume of water used, which is a continuous quantity. Therefore, we will further develop
the model to help identify not only the switching point between the PP and the RP, but also
the optimal water volume to be used under the DM’s behavioral perspective. This will
build the actor’s water demand and will be key to understanding issues in governance,
which undermine ICT potential benefits.

4.1. The Cost–Loss Model in Presence of Ambiguity

To help understand when the DM will switch from the PP to the RP, we develop the widely
adopted cost–loss model proposed by Thompson and Brier (Thompson and Brier 1955). The
model helps to define when to take a PP and face a sure cost (C) instead of implementing
a RP and risk a loss (L) with a probability (p) defined by a forecast. The model ignores
ambiguity and assumes risk-neutral behavior. It suggests to DMs to take protective actions
when the expected value of the RP is lower than the PP ( C

L > p). As shown in the
representation of Figure 2 the issue is complicated in the presence of ambiguity: even if
C
L > p, it is not clear which action to take if the ratio falls within the II Order PDF [35].
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To answer this issue, we follow the same principle of the cost–loss model and extend
it to the DM’s behavior. We consider that the DM will move from the PP to the RP when
the CE of the RP will be greater than the CE of the PP. In our example, this translates into
the CE of the RP being greater than the sure payoff of the PP, given that the latter plan is
riskless (Equation (12)):

g(X) ≤ CE[ f (s|x)] (12)

When the two elements in Equation (14) are equivalent, we reach an equilibrium
where the DM is indifferent between being exposed to uncertainty and taking the RP or
avoiding risk and ambiguity and implementing the PP. Other things equal, information
will only be implemented when ambiguity is as low as to let the DM be indifferent between
being exposed to uncertainty in the RP or receiving a sure payoff from the PP. This is likely
to occur only when the DM has gained enough familiarity with the ICT to lower their
doubts on its reliability.

4.2. Management of the Input Variable: From a Discrete Choice to a Continuous Decision

The model described until now represents a situation in which the DM is faced with a
discrete choice among two different management plans. However, the DM has to decide
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the continuous quantity of water to use in order to maximize their EU. Even if not applying
the volume specified by the ICT, DMs could implement information and decide to raise x fi
or xA to remove part of the uncertainty, if not all. Therefore, we consider that the DM will
raise the water volume specified by the ICT until it will grant reaching the equilibrium in
Equation (14). The result of this problem will define the optimal water quantity, building
water demand for farmers or the WA (Equation (13)):

xd = x +

1
2 rσ2

π(s) +
1
2 aσ2

µ[π(s)|t]
c

(13)

where the proof can be found in Appendix B: simplification for the computation of the
optimal water volume.

If considering neutrality to uncertainty, the equation is simplified, and the opti-
mal water quantity is the one specified by the ICT (xd = x). Accordingly, the element
1
2 rσ2

π(s)+
1
2 aσ2

µ[π(s)|t]
c can be interpreted as the cost of water, additional to requirements, that is

employed by the DM to remove part of the uncertainty, or x is the optimal water volume
for an uncertainty-neutral DM. As evident, an uncertainty-averse DM will raise the water
volume specified by the ICT up to their demand (xd) to account for their dis-utility com-
ing from being exposed to risk and ambiguity. This will heavily impact water allocation
efficiency in the first TFs. However, with the passing of time, as the standard deviation
of the second-order PDF lowers, water demand tends to coincide with the water volume
specified by the ICT. This phenomenon will be better explained in the empirical example of
the following section.

5. Empirical Example

In the previous section, we developed a theoretical model capable of simulating
decisions on the water volume each actor wishes to use or supply. In this section, we
implement the model to test its capability and highlight issues in irrigation governance
that contribute to undermine ICT benefits due to differential behavior among actors in
the district. Accordingly, because perceptions and attitudes are subjective, there will be
differences in the extent to which actors will implement information to save water. As a
result, virtuous choices of some who decide to implement ICT information to use less water
can be undermined by others who do not (yet) rely on the same piece of information. For
example, if farmers rely on information received and try to save water, but the WA does
not, there will be water waste because of excessive volumes pumped into the network.
Even worse, it can happen that the WA pumps in the network lower water volumes versus
with the PP, but farmers might not rely on the ICT and may wish to implement the PP. This
results in no water availability and drought losses in those farms located at the bottom of
the irrigation network. These two are the main issues that can cause strong inefficiencies
after the introduction of a new ICT for irrigation management. To analyze and estimate
their impact singularly, we will carry out two scenario analyses, each corresponding to one
of the issues highlighted above.

In this empirical application and in both scenarios, we consider a situation in which
all actors in the irrigation district are given a new ICT. Then, they can decide whether to
implement information received and put into action efficient and risky irrigation plans or
not. Furthermore, they observe ICT performance, and after each TF, they gain experience
on information reliability. To simplify the model implementation, we analyze the specific
situation in which all uncertainty around the ICT message is included in the PDF received
by each DM. This means that π(s) is always capable of correctly estimating the likelihood
of states. Therefore, when all DMs will be familiar with the technology, they will solve their
ambiguity and act consistently. However, the process of familiarity can be long; this will
cause very heterogeneous timing in information implementation. In this time lag, there
will be inefficient water management.
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In the following subsections, we provide a general overview of the case study, describ-
ing the context in which we fit the model and how we collect data. Then, we take into
consideration each scenario singularly and highlight their implications and issues for water
governance. Finally, we analyze the role familiarity plays in this context and highlight
how, apart from governance regulations, it is the only element capable of granting efficient
ICT-informed water management.

Case Study

The area considered for the case study is represented by the reclamation and irrigation
board of Consorzio di Bonifica di Piacenza, which is located in Po Valley, province of
Piacenza, northern Italy. Here, several irrigation districts can be identified, each having
independent water sources managed by a single WA. Basso Piacentino Monte and Basso
Piacentino Valle are two sub-districts selected as the case study. They include different
farms; however, for the purpose of this paper, we consider each sub-district to be managed
by a single DM, as if it was a single farm. Because Basso Piacentino Valle is located at
the top of the irrigation network, it corresponds to Farm 1 in our model; Basso Piacentino
Monte instead corresponds to Farm 2. Further details on data collection and case study
characteristics are provided in Appendix D while the assessment procedure of yields and
CWD are described in Appendix E.

Due to the use of economic data, together with crop productivity, we were able to
assess net revenues as function of water used (V

(
X fi

)
). Finally, to estimate the dynamics

of the district’s performance in the time lag when actors’ actions are not coordinated in
information implementation, we analyze the evolution of WP (Equation (14)):

WP =
V(XBM) + V(XBV)− cAXA

XA
(14)

This is an indicator expressing the farm revenues per volume of water pumped in the
network by the WA. Its use allows one to analyze the evolution of the district’s performance
from the time when the ICT is firstly introduced until when all actors are familiar with it.

In the district, choices for the irrigation plan are not made daily due to technical
restrictions in water delivery and in-farm irrigation systems. To account for this issue and
to simplify the analyses, results are considered on a two-month basis. The two-month
periods in which the irrigating seasons are divided are: March–April; May–June; July–
August; September–October. All the results derive from data of the 2018 irrigation season.
An example of the simulated I Order distributions is provided in Figure 3, which denotes
the share of risk affecting seasonal revenues in the period March–April. This uncertainty is
estimated by the ICT in the form of a normal PDF and describes how seasonal revenues in
the whole district are distributed if irrigation follows the advice of the ICT in the period
considered. Results are determined in absolute terms and on a per-hectare basis. In the
district, the seasonal average revenue (7,769,648EUR–2,563 EUR/ha) is constant between
periods, while standard deviations vary, depending on the impacts that irrigation in one
period has on the revenues of the whole season. In other words, the expected seasonal
revenue is one, but its variability is conditioned by the time of the season the decision is
taken. This is evident from Table 1 reporting standard deviations in the simulated PDFs of
revenues at the district level. Here, in the periods of May–June and July–August, variability
is higher because of the key role that irrigation has in these periods when crops are most
sensitive to droughts. Accordingly, missing irrigation requirements in May–June and
July–August have higher impacts than in other periods where the share of crop production
subjected to uncertainty is lower.
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Table 1. Parameters of the I Order PDF representing risk in the district for one period.

Average Standard Deviation

€ €/ha € €/ha

I order PDF of seasonal revenues

March–April 7,769,648 2563 652,969 215
May–June 7,769,648 2563 1,058,601 349

July–August 7,769,648 2563 1,053,017 347
September–October 7,769,648 2563 561,071 185

Since we did not have information on actors’ perceptions, the Monte Carlo simulation
was used to simulate the II Order PDFs (Figure 4). Here, averages correspond to the
expected value in the relative I Order PDF, as assumed by Klibanoff et al. [32]. Standard
deviations were determined assuming that the range of feasible distributions (∆) varies
within 30% of the I Order PDF. This assumption implies that errors in probability estima-
tions are up to 30%; such errors are considered equal between actors. From Table 2, we can
see that standard deviations are significantly higher than the correspondent I Order distri-
bution due to the assumptions made on the range of feasible distributions. With regard
to differences in ambiguity between periods, these reflect the differences in the I Order
distributions: with higher variability in the I Order PDF, we will have higher variability
in the II Order PDF as well. The simulated II Order PDFs, obtained for each actor and for
each period, are then updated following the learning rule expressed in Equation (11). This
allows for mean-preserving contractions in the distributions, resulting in a lowering in
standard deviation with time (Figure 5). Given the specific case considered, where the ICT
is capable of correctly estimating all uncertainty in π ICT(xs), standard deviation lowers
after each TF, until ambiguity is solved.
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Table 2. Parameters of the II Order PDF representing ambiguity in the district.

Average Standard Deviation

€ €/ha € €/ha

II order PDF of Seasonal Revenues

March–April 7,769,648 2563 1,108,993 366
May–June 7,769,648 2563 1,224,099 404

July–August 7,769,648 2563 1,119,908 369
September–October 7,769,648 2563 965,435 318
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Finally, we applied Equations (13) and (14), which gave as output the numerical
estimations of the actor’s demand for water in absolute terms and on a per-hectare ba-
sis. Because the developed model determines WD as a function of variability in the II
Order PDF, as standard deviation lowers, WD also lowers in the learning process. To
better understand the model’s output, we assessed the extent to which the simulated
behavior differs from a situation in which the actor always implements the PP or the RP.
As a result, in Figures 6 and 7, we have WD of one actor that always implements the PP
(WD_Precautionary)—the simulated WD (WD_Simulated) and WD of an actor that is neu-
tral to uncertainty and always implements the RP (WD_Neutrality). From both figures, it is
evident how, with the learning process, the lowering in variance can lower the simulated
water demand due to the progressive information implementation. The simulated behavior
sees the actor implementing the PP in the first TFs; then, as ambiguity lowers, they start
to implement information and reduce the water volumes they would use. Eventually,
when ambiguity is solved, the simulated WD is comparable to the uncertainty-neutral
actor’s one. However, as can be seen in the graphs, WD_Simulated never coincides with
WD_Neutrality. Although WD_Simulated becomes constant when the actor is familiar
with the ICT, it is always higher than WD_Neutrality. This is due to the elements of risk
aversion in the simulated behavior, which are absent in the uncertainty-neutral behavior.
Therefore, when an actor is familiar with the ICT, the difference between WD_Simulated
and WD_Neutrality represents a form of risk premium. This is expressed in m3 of water
the actor is willing to use in excess to remove part of the risk involved in the RP. Figure 6 is
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reported as an example to highlight how WD from one actor varies across periods; this is
due to the different water requirements from crops across periods. Instead, in one period,
there are differences in WD between Basso Piacentino Monte and Basso Piacentino Valle
(Figure 7) because of differential land use.
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6. Governance Issues and Scenario Analyses

By applying the above-described assessment procedure, we were able to identify
the water volume each actor wishes to use under their behavioral perspective. Now, to
understand how this affects WU and WP at the district level, we have to take into account
the relations between actors along the irrigation network. Accordingly, even in conditions
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of regular water availability, the volume an actor would use to irrigate might differ from
the one at their disposal. This might be due to the fact that, in the management of common
resources, the decision of an actor is capable of affecting resource availability of another.
This is the case of the irrigation management process described in the following paragraph.

The irrigation management process along the irrigating network can be represented
as follows. The WA decides the water volume to be pumped into the network according
to its demand (xd

A). In sub-district Basso Piacentino Valle, WU will correspond to xd
BV

if xd
BV ≥ xd

A; otherwise, the DM irrigates up to xd
A. In the first case, after water has

been used to irrigate in Basso Piacentino Valle, to Basso Piacentino Monte remains the
available water (xd

WA − xd
BV). In the second case, no water remains to Basso Piacentino

Monte. Furthermore, if the remaining water in Basso Piacentino Monte is higher than CWD,
there will be no impact from poor governance; otherwise, water unavailability will cause
revenues to be lower than expected. Finally, if WU in Basso Piacentino Monte is lower than
water availability (xd

BM + xd
BV ≤ xd

A), part of the water pumped into the network reaches
the end section of the district where it is discharged.

As made evident by the process described above, water demand is the key variable
to highlight governance issues. However, it depends on the actor’s subjective behavior,
on which we did not have any information. To overcome this lack of data, we developed
hypotheses on the behavioral coefficients and varied them in the following two scenarios,
which are the most representative in determining the dynamics of WP:

Scenario 1: the WA starts to implement information earlier than farmers;
Scenario 2: farmers start to implement information earlier than the WA.
In both, we consider an actor to start implementing information when the water

volume they decide to apply (xd
f armi

or xd
A) is lower than the precautionary one. These

two scenarios are selected because they highlight the main two problems that can arise from
poor coordination. Accordingly, despite the infinite number of combinations between actors’
behaviors, their impacts on the district’s efficiency can be divided into the two alternatives
described later in this subsection. The actors’ behavioral coefficients in the two scenarios
differ only for the coefficients of ambiguity aversion (a), where in Scenario 1 aA < aBM and
aBV = aBM; the opposite, in Scenario 2 aWA > aBM and aBV = aBM (Tables 3 and 4).

Table 3. Actors’ behavioral coefficients in Scenario 1.

Behavioral Coefficients

Risk Aversion (r) Ambiguity Aversion (a) Update Rate (w)

Actor
WA 2.0 × 10−07 6.0 × 10−05 2.0 × 10−01

Basso Piacentino Monte 2.0 × 10−07 6.0 × 10−04 2.0 × 10−01

Basso Piacentino Valle 2.0 × 10−07 6.0 × 10−04 2.0 × 10−01

Table 4. Actors’ behavioral coefficients in Scenario 2.

Behavioral Coefficients

Risk Aversion (r) Ambiguity Aversion (a) Update Rate (w)

Actor
WA 2.0 × 10−07 6.0 × 10−04 2.0 × 10−01

Basso Piacentino Monte 2.0 × 10−07 6.0 × 10−05 2.0 × 10−01

Basso Piacentino Valle 2.0 × 10−07 6.0 × 10−05 2.0 × 10−01

In the first scenario, we suppose that WA is the first actor to implement information
received because of its lower ambiguity aversion (Table 3). As a result, the WA pumps
into the network a water volume that is not sufficient for both farms if they implement the
PP and irrigate at field capacity. Because farmers’ actions are not coordinated, in Basso
Piacentino Valle, there will be excess use of water because of ambiguity perceived by the
DM and their AA. This will cause the available water in Basso Piacentino Monte to be lower
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than CWD. As a result, revenues will be lower than expected. If we analyze the occurrence
of such losses with the passing of TFs (Figure 8), we see that in the first place, no loss
occurs; because notwithstanding excess use in Basso Piacentino Valle, the remaining water
in Basso Piacentino Monte is sufficient. Then, as the WA reduces the pumped volumes,
losses occur; these are higher in the core of the irrigating season when crops are more
susceptible to droughts. After actors have gained familiarity, no losses in Basso Piacentino
Monte are manifested.
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The above-explained inefficiency in water governance does not allow for one to maxi-
mize farms’ revenues with the available water; this has strong impacts on WP. Accordingly,
if we analyze the evolution of the district’s WP over time (Figure 9), we see that in the first
TFs after the introduction of the ICT, WP is extremely low due to excess use of water and
production losses in Basso Piacentino Monte. However, in WP, there is a positive trend, and
as ambiguity is solved in the process of familiarity, WP reaches relatively high values. As
with WD, to better understand the model’s output, we also determined WP in a situation
where all actors implement the PP (WP_Precautionary) and where all actors are neutral to
uncertainty and always implement the RP (WP_Neutrality). Here again, the trend of WP re-
flects a progressive information implementation and, with it, a progressive achievement of
ICT benefits. In the first TFs, WP is low and coincides with the business-as-usual situation
when all actors implement the PP and the district’s efficiency is low. Then, WP rises as WU
lowers, and losses in Basso Piacentino Monte are less important; finally, WP reaches values
comparable with the settings when all actors implement the RP. Again, WP_Simulated
never coincides with WP_Neutrality, due to the remaining risk and the risk aversion in the
simulated behavior.
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In Scenario 2, we hypothesize that DMs in the two sub-districts are the first to im-
plement information because of their lower aversion to ambiguity (Table 4). Here, farms’
efforts to save water are wasted at the district level because the WA pumps water in excess.
Then, water will be wasted downstream the irrigation network, not being fully used by
farmers. This translates into low WP until the time when the WA starts to implement infor-
mation and progressively lowers water volumes pumped into the network. Accordingly,
in the graph of Figure 9, we see WP in the first TFs being extremely low. Then, as the WA
progressively reduces water volumes, WP rises with a non-decreasing trend.

In parallel with the assessment of the dynamics in WP, we estimated how, with the
passing of TFs, water savings at the district level evolve (Figure 10). These are determined
considering the simulated use of water in the district, having as a benchmark WU with the
PP. Reflecting the trend in WP, in the beginning, no savings are achievable at the district
level because actors decide to implement the PP. Then, the process of familiarity can lower
water demand (Figure 9) and, with it, WU in the district.

Both in the assessment of WP and water savings, between the two scenarios, values
are similar. However, we can see that in Scenario 1, higher levels in the district performance
reach few TFs earlier than with Scenario 2. This interesting pattern reflects the dominant
role of the WA driving water use efficiency in the whole district. Decisions at the WA
level are key because they not only condition water availability at the farm level, but they
also determine water use for the district. Accordingly, if farmers implement information
but the WA does not (Scenario 2), there will still be water waste at the end section of the
irrigation network.

A specific consideration must be made in the estimated values of WP. Here, the main
highlights are: (i) in the periods March–April and September–October, WP is much higher
than in the rest of the season; (ii) in the first TFs of the periods May–June and July–August,
WP has negative values. The first highlight reflects the fact that CWD in the core of the
irrigation season is much higher than in the shoulder season, given the same production
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levels. Negative WP values uncover the assumed nature of volumetric costs of water at the
WA level, which include resource and environmental costs. Under the private perspective,
having negative WP means that irrigation has negative impacts on production levels, and
actors would spontaneously avoid water use in such circumstances. However, we raised
the cost that WA has to face to pump water into the network to represent external costs.
Therefore, a negative WP should be interpreted as a signal that in the business-as-usual
conditions, irrigation is not sustainable under the societal perspective, even if it is profitable
for actors in the district. Nevertheless, because we made strong assumptions on the total
cost of water, such conclusions cannot be made, and WP values per se are not reliable; in
the scope of this research, the key focus is on the dynamics of WP.
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To further understand the effects of not including external costs in the decision en-
vironment, we ran a separate simulation. This helps to understand the differences in
decision dynamics between a situation where cost of water is the only bill the WA has to
pay and a situation with the assumed total cost of water. The results of the simulation are
compared to the WP when all actors implement the PP or the RP. As can be seen from
Figure 11, WP evolves with TFs as in the previous two scenarios. However, the maximum
WP values are far from being comparable to the RP. Accordingly, given the small cost of
water, the WA finds it more profitable to use water in excess than risking revenues and
implementing the RP. This is especially evident in September–October when information is
never implemented because it is never profitable under the actors’ private perspective.
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7. Discussion

In this paper, we developed a behavioral model capable of representing the decision
between inefficient but riskless irrigation plans or ICT-aided efficient irrigation plans with
uncertain outcomes. The complex uncertainty settings involved in new ICT information
implementation are framed distinguishing between risk and ambiguity. This can treat
separately the probabilistic estimations provided by the ICT, which are exogenous and
common between DMs, and the subjective perceptions on ICT reliability. This separation
opens the possibility to model the evolution of ambiguity over time as DMs become more
familiar with the new technology.

Because behavioral attitudes under uncertainty are subjective, there will be differences
among DMs in the time when they become familiar with the ICT and implement their
information. Until the time when every actor is not familiar with the ICT, differential
ambiguous perceptions will cause uncoordinated WU in the district. By applying the
model to a numerical example, we highlighted how this can undermine ICT benefits.
Specifically, we considered two main scenarios, assuming an accurate ICT and attitudes
toward uncertainties being constant in time. Scenarios revealed that poor coordination
among actors can not only cause allocative inefficiencies, but can also cause drought losses
at the farm level, with negative WP values. The issue is further exacerbated if we relax the
assumption of constant attitudes between actors.

In both scenarios, we see how ambiguity limits the implementation of a new ICT.
This issue is further exacerbated if the implementation decision is introduced in the multi-
level irrigation governance decisions. Here, poor coordination between AA actors can
undermine ICT benefits even when information is implemented. However, this is true only
in the first TFs when actors have few or no insights on ICT reliability. If they were allowed
to gain experience, considering the learning behavior hypothesized, eventually, they would
observe the same performance. As a result, actors’ actions will become coordinated by
information provision on its own. This way, high WP values can be reached due to efficient
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ICT-aided irrigation plans. However, the learning process takes some time, an issue that
will cause inefficiencies in the use of water at the district level. Further, with the modeled
behavior, WU and WP never reach the optimal values achievable when all actors implement
the RP, because even after they become familiar with the ICT, RA remains. This makes
actors willing to use water in excess to remove part of the risk specified by the ICT.

The limitations of these results are in the model’s assumptions and simplifications.
These are required by the complexity of the uncertainty settings. The first limitation is in
the payoff function, which includes only volumetric costs. This simplification is driven by
the fact that costs for machinery and in-farm delivery systems are fixed in the short term
and cannot be reduced by efficient ICT-aided irrigation plans. Therefore, we assume that
they will not be taken into account in the implementation decision. This is true even at the
WA level, where fixed costs for irrigation network maintenance are mostly related to the
characteristic of the infrastructure itself and not to the operational volumes.

The research makes strong assumptions on behavioral coefficients. Here, risk and
ambiguity-aversion coefficients are hypothesized in absolute terms and are assumed to
be equal between actors. This simplifies reality because differences in behavior are not
only due to the mere differential perceptions, but are also due to differences in attitudes,
with some DMs being more averse to uncertainty than others. However, these assumptions
allowed us to focus on ambiguity, isolating the effects that AA has on decisions, rather than
uncertainty attitudes as a whole. Further, we assumed that learning behavior is dependent
only on subjective attitudes, and again, it is considered to be constant between actors.

Volumetric costs incorporate another limitation caused by the lacking available data.
At the farm level, we assumed the cost of water being known and proportional to the
quantity of water used. This is not always true, especially in settings where water use is
unmetered. However, other costs, such as fuel consumption, could be taken into account by
the farmer when deciding whether to use less water (in light of new pieces of information)
or not. As assumed in the model, at the WA level, costs for water should include resource
and external costs. However, such costs are difficult to be estimated, and the available
information was not sufficient; thus, we hypothesized them being 50% higher than the costs
at the farm level. Assuming that external costs of water are proportional to the in-farm
water cost is a significant simplification. Opportunity costs might be somehow related
to the in-farm water costs, but this is not likely for environmental costs. Therefore, the
assumption is simplistic and might lead to strong biases in the estimation of water costs
under the WA perspective. Nevertheless, it was not the purpose of this paper to focus on
common good assessment, and the main governance issues highlighted by the model are
still in place even with sensible variations in the full cost of water. In addition, we ran a
separate simulation to highlight the differences in decision dynamics between a situation
where the cost of water is made only by the water bill and a situation with the assumed
total cost of water.

The main limitation of the model is in assuming that DMs can judge if informa-
tion received was correct and in simplifying this judgment with a binary signal. With
weather-related ICT, the DM might find difficulties in the ex-post assessment of infor-
mation reliability. Climate parameters are hard to measure by DMs: multiple sources of
information might be misleading, and quantitative comparisons between forecasts and ob-
servations are frequently impossible at the end-user level. This can cause relevant elements
of subjectivity in DMs’ judgements on the signals received after each TF. However, this
phenomenon will only be relevant in the first TFs and, as the number of TFs increases, its
impact will be negligible. Therefore, we can still consider that, when DMs are completely
familiar with the ICT, their judgements on ICT reliability will be comparable. Moreover,
in the case of differences in judgements, the issues of poor governance highlighted in this
paper will be further emphasized.

Finally, the model considers ordinary settings for water management, with no con-
straints in terms of water availability. It would be interesting to develop the model by
including DMs’ behaviors with extreme events such as droughts. In these conditions,
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decision payoffs are characterized by heavily tailed distributions where knowing only
the expected state would lead to strong underestimation of downside risks. At this end,
information on distribution skewness would allow DMs to be better able to plan their action
consistently with the climate risks [36]. In such settings, it is evident how ICT would play
a significant role; however, the impact of ambiguity can be expected to be significant too.
Accordingly, the DM would not only doubt the probability of the average state, but also
the shape of the whole distribution, given its relevance for the decision. This would require
further development of the model to relax the assumptions of normality in I and II Order
PDFs as well as account for negatively skewed distributions of payoffs with climate shocks.

8. Conclusions and Policy Advice

Despite being simplified, the model developed is capable of providing a complete
picture of the impacts that subjective behavior under ambiguity has in undermining ICT
potentials for efficient water management in irrigation districts. Ambiguity is found to limit
ICT implementation because ambiguity-averse DMs find disutility from being exposed to
the unmeasurable uncertainty generated by not knowing ICT reliability. Further, through
an empirical example, we showed that if actors’ decisions on ICT implementation are
not coordinated, allocative inefficiencies and production losses can occur. Both of the
above issues can only be solved due to the process of familiarity. By allowing the DM to
gain experience on ICT reliability, they would solve their ambiguous perceptions and put
information into action. Then, when all actors become familiar with the ICT due to the
learning process, their actions will become coordinated according to their observations.
However, the process of familiarity can take time; this period might further discourage ICT
uptake. Accordingly, if in a TF, the DM implements information to save water, but their
efforts become vanished due to those who decide to implement the PP, in the next TF, they
will be more unwilling to take the RP. This would hinder a vicious circle and underline the
need for policy interventions.

Uncertainty-management policies would be needed to lower ambiguity on ICT relia-
bility, speeding up the process of familiarity. This can be achieved by providing ambiguity-
reducing information on the technology’s performance [25] and by allowing DMs to directly
experience the reliability of the ICT through demos and demonstration events. Being hands-
on with new technology, without necessarily implementing it at the DM’s own expenses,
would allow users to gain information on ICT reliability.

Given the risk of the sector to not exploit ICT because of these barriers, we believe it
to be a priority to further invest in ICT development to maximize the capabilities of these
tools and to further disseminate their potentials. This would help to foster ICT uptake
with a bottom-up approach, given the absence of policy tools to impose regulations for
information implementation.
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Acronyms

AA ambiguity aversion
CC climate change
CE certain equivalent
CWD crop water demand
DM decision maker
EU expected utility
ICT information and communication technology
PDF probability density function
PP precautionary plan
RA risk aversion
RP risky plan
TF time frame
WA water authority
WP water productivity
WU water use

Appendix A. Simplification for the CE Computation

In this section, we provide the extensive proof behind the simplification used to
determine the CE of the RP, starting from the expected utility equation of Klibanoff et al. [32]:
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For simplicity in notation, we have the following elements: xs = s; xICT = x. In the
first step, we assume negative exponential utility functions and normal distributions for
both risk and ambiguity. By making explicit the distribution function of π(s), with σs being
the standard deviation and µ the average, we obtain the following set of equations:

EUr( f (s|x)) =
∫
−e−r f (s|x)π(s)ds

EUr( f (s|x)) =
∫
−e−r f (s|x) 1√

2πσs
e−

1
2 (

f (s|x)−µ
σs )

2

ds

EUr( f (s|x)) = −
∫ 1√

2πσs
e
− f (s|x)2+µ2−2 f (s|x)µ+2rσ2 f (s|x)

2σ2
s ds

EUr( f (s|x)) = −
∫ 1√

2πσs
e
− f (s|x)2+µ2−2 f (s|x)(µ−rσ2

s )+(µ−rσ2
s )

2−(µ−rσ2
s )

2

2σ2
s ds

EUr( f (s|x)) = −
∫ 1√

2πσs
e
− ( f (s|x)−µ+rσ2

s )
2
+µ2−(µ−rσ2

s )
2

2σ2
s ds

EUr( f (s|x)) = −
∫ 1√

2πσs
e−

( f (s|x)−µ+rσ2
s )

2
+µ2−(µ2+(rσ2

s )
2−2µrσ2

s )
2σ2 ds

EUr( f (s|x)) = −
∫ 1√

2πσs
e−

( f (s|x)−µ+rσ2
s )

2−rσ2(rσ2
s −2µ)

2σ2 dx

EUr( f (s|x)) = −e−r(µ− 1
2 rσ2

s )
∫ 1√

2πσ
e−

1
2 (

f (s|x)−(µ−rσ2
s )

σ )
2

dx

EUr( f (s|x)) = −e−r(µ− 1
2 rσ2

s ) = −e−r(ES f (s|x)− 1
2 rσ2

s )

Now, because the inverse of the risk preference function is the certain equivalent
associated with the risky outcome, the CE is determined as follows:
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CEr( f (s|x)) = ES f (s|x)− 1
2

rσ2
s

Now, we also consider ambiguity and repeat the same procedure to determine ex-
pected utility under risk and ambiguity:

EUr,a( f (s|x)) = −e−a(ES f (s|x)− 1
2 rσ2

s )

This is followed by the associated certain equivalent:

CEr,a( f (s|x)) = E∆

(
ES f (s|x)− 1

2
rσ2

s

)
− 1

2
aσ2

∆

Appendix B. Simplification for the Computation of the Optimal Water Volume

In this section, we provide the extensive proof behind the simplification that is used to
assess the optimal water volume to be used under the DM’s behavioral perspective. The
simplification starts by considering the formulation of the CE determined in the previous
section. To aid in comprehension, we follow the same notation of the previous section and
the following: R = 1

2 rσ2
π(s); A = 1

2 aσ2
µ[π(s)|t]; m = µ[π(s)]; p = π(s); V∗f i = v; c fi

= c. This
helps to obtain the equation:

CE( f (s|x)) = E∆

(
ES f (s|x)− 1

2
rσ2

s

)
− 1

2
aσ2

∆ = E∆[ES( f (s|x))− R]− A

Now, because the model of Klibanoff et al. [32] is based on the assumption that second
order acts in the space ∆ yield, the same CE as the first order acts in the space S, and
we have:

E∆[ES( f (s|x))] = f̂ (s|x) = V(X)− cx

Therefore, we obtain the following CE:

CE( f (s|x)) = V(X)− cx− R− A

Now, if we consider the equilibrium where the DM is indifferent between the RP and
the PP, we have:

g(X) = CE( f (s|x))

V(X)− cX = V(x)− cx− R− A

X = x +
A + R

c
where X can be interpreted as the water demand from the DM, accounting for uncertainty
and their behavior toward it. By employing the above equation, we can obtain the following
simplifications considering different alternatives of perceptions and attitudes:

Uncertainty-neutral DM:
X = x

Ambiguity-neutral DM:

X = x +
R
c

Appendix C. Relationship between Irrigation and Crop Production

To estimate the relationship between irrigation and crop production, we firstly consider
evapotranspiration (ET) being a function of irrigation (x). Although studies in agronomics
proved the polinomial nature in the relationship between the two quantities [37], we assume
a linear and constant relationship. This is a strong approximation forced by the lacking
available data. To determine crop production as a function of irrigation, we employ a
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simple modification of the classic production function introduced in FAO Irrigation and
Drainage Paper No. 33 [38]:

Yt(xt) = Y∗t [1− kyt(1−
ETt(xt)

ET∗t
)]

Yt−1(xt−1)

Y∗t−1

where: xt e xt−1 are the decisional variables; that is, respectively, the quantity of irrigation
water at time t and the quantity of irrigation water at time: t− 1; Yt(xt) and Yt−1(xt−1)
are, respectively, crop productions at time t and time t − 1; Y∗t e Y∗t−1 are respectively
optimal crop productions at time t and time t− 1; kyt is the crop coefficient that helps to
convert evapotranspiration into crop production; as said, ETt(xt) represents the crop’s
evapotranspiration at time t; ET∗t represents the crop’s evapotranspiration at time t but
without stresses from lacking irrigation. The proposed equation differs from its original
form because it accounts for the impacts that prior drought stresses have on optimal crop
production in the current stage.

Appendix D. Case Study, Data Collection and Assessment Procedure

The data used for the empirical application described in this section were collected with
the help of the Consorzio di Bonifica di Secondo Grado per il Canale Emiliano Romagnolo

The district selected to implement the model was named Basso Piacentino. It covers
a flat area of around 3000 hectares and was selected for its representativeness of the
irrigation context. The main crops cultivated in the district are corn, tomato for industrial
processing, alfalfa and forage. All crops are irrigated, but corn and tomato are the most
water-demanding crops. The irrigation season starts in March–April and ends in September–
October. The only water source in the district is the Po river, which is the major water
source for irrigation in the entire Po Valley. To favor irrigation management, the district is
divided into two separate sub-districts: Basso Piacentino Monte and Basso Piacentino Valle
(Figure 6).
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The two sub-districts are comparable in size and cultivated crops as, shown in Figure 7:
Land use. The only water source in the district is an inlet from the Po River, which is
located at the border of Basso Piacentino Valle and is managed by the WA. Through the
inlet, water is pumped from the river to the irrigation network, which distributes water first
in Basso Piacentino Valle and then in Basso Piacentino Monte. In the simplified conditions
simulated in this paper, the WA can manage water volumes to be pumped from the river to
the district but has no tool to manage water use within Basso Piacentino Valle. Therefore,
we hypothesize that Basso Piacentino Monte receives only the remaining water after the
use of water by irrigating farmers in Basso Piacentino Valle.
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Appendix E. Assessment Procedure

To gather inputs for the assessment of WU and WP, we collected data for the case
study on water supply systems, land use and water availability. With regard to agro-
meteorological information, we employed the Italian ICT named IRRIFRAME (https:
//www.irriframe.it/, accessed on 01 November 2022) developed by the WA named Con-
sorzio di Bonifica per il Canale Emiliano Romagnolo (CER), which provided us with daily
estimations of CWD [39,40]. To run its agrometeorological models, IRRIFRAME needs
inputs on soil; precipitation; crop productivity and irrigation systems. Then, with the
use of a modified version of the equation presented in the FAO Irrigation and Drainage
Paper No. 33 [38] (detailed description is reported in Appendix C: Relationship between
irrigation and crop production), we estimated crop productivity as a function of the share
of CWD satisfied by irrigation.

Because IRRIFRAME provides deterministic information, to account for the proba-
bilistic nature of the ICT messages hypothesized in this paper, we applied Monte Carlo
Simulation. This technique is used to generate normal distributions having as input the
average and standard deviation of the samples. For each period and for each sub-district,
we ran one simulation with 500 iterations, using the software Palisade @Risk. Averages
and standard deviations for the simulations are determined from the range of variability
in revenues derived from the input data provided by the WA. The resulting distribu-
tion represents the variability in payoffs from the ICT-aided irrigation decisions in the
period considered.

The WA also provided an estimation of the average volumetric cost of irrigation water
at the farm level (c f armi

) and output prices. Regarding the volumetric cost of water at the
WA level (cWA), this should include resource and external costs, as assumed in the model.
Such costs are difficult to be estimated, and the only available information was relative to

https://www.irriframe.it/
https://www.irriframe.it/
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the bill that the WA has to pay to the provider per each volume of water pumped from
the reservoir. Therefore, we developed hypotheses considering cWA as a function of costs
at the farm level. Specifically, we hypothesized cWA being 50% higher than the weighted
average volumetric cost of irrigation in the two sub-districts. To assume that external
costs of water are proportional to the in-farm water cost is a significant simplification.
Opportunity costs might be somehow related to the in-farm water costs, but this is not
likely for environmental costs. Following the purpose of this paper, we want to highlight
that if the WA considered higher water costs other than the private ones, this would affect
water management. At this end, precise estimations of the total cost of water would be
helpful, but at the same time, these would not change the decision dynamics that are
the focus of this research. In addition, we will run a separate simulation to highlight the
differences in decision dynamics between a situation where the cost of water is made only
by the water bill and a situation with the assumed total cost of water.
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