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Abstract: Mapping and prediction of inundated areas are increasingly important for climate change
adaptation and emergency preparedness. Flood forecasting tools and flood risk models have to
be compared to observe flooding patterns for training, calibration, validation, and benchmarking.
At the regional to continental scales, satellite earth observation (EO) is the established method for
surface water extent (SWE) mapping, and several operational global-scale data products are available.
However, the spatial resolution of satellite-derived SWE maps remains a limiting factor, especially
in low-lying areas with complex hydrography, such as Denmark. We collected thermal imagery
using an unmanned airborne system (UAS) for three areas in Denmark shortly after major flooding
events. We combined the thermal imagery with an airborne lidar-derived high-resolution digital
surface model of the country to retrieve high-resolution (40 cm) SWE maps. The resulting SWE
maps were compared with low-resolution SWE maps derived from satellite earth observation and
with potential flooded areas derived from the high-resolution digital elevation model. We conclude
that UASs have significant potential for SWE mapping at intermediate scales (up to a few square
kilometers), can bridge the scale gap between ground observations and satellite EO, and can be used
to benchmark and validate SWE mapping products derived from satellite EO as well as models
predicting inundation.

Keywords: surface water extent; satellite earth observation; unmanned airborne systems

1. Introduction

Frequency and severity of extreme flooding events are expected to increase around
the world because of human-induced climate change. Flood risk assessment and flood
forecasting are essential tools for climate change adaptation. Such tools operate over a wide
range of scales, spanning from the local or city scale [1] to the regional–continental [2] or
even global [3,4] scales. Input data and model parameterization have significant impacts on
the simulated flooding patterns produced by such tools [5]. The most sensitive input dataset
is the digital elevation model (DEM) of the terrain, but highly sensitive model parameters
also include the hydraulic roughness of river channels and surrounding floodplains [6].
The best currently available global DEMs have a spatial resolution of around 30 m and a
vertical accuracy of a couple of meters [7,8], which is insufficient for accurate simulation of
overland flow in complex landscapes and floodplains. Hydraulic roughness is generally
not directly observable and is typically determined using hydraulic inverse modeling
workflows [9].

It is thus essential to train, calibrate, and/or validate flood risk assessment tools and
flood forecasting models against observed surface water extent maps. Here, we use the
term surface water extent for all water on the land surface, including permanent water
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bodies and flooded areas. However, direct ground-truth observations of surface water
extent are normally not available because inundated areas may be large and water bodies
may be scattered over large regions. Available SWE observations typically come either
from citizen science and crowdsourcing [10] or satellite EO. In the satellite EO domain,
two methods are mainly used to delineate SWE: multispectral imaging (MSI) and imaging
with synthetic aperture radar (SAR). MSI methods exploit the distinct spectral reflectance
characteristics of inundated areas (e.g., [11]) while SAR techniques exploit the flatness of
water surfaces, which results in a low backscatter values, as well as pronounced temporal
changes of backscatter values in flooded areas (e.g., [12]). MSI methods for flood mapping
are restricted to cloud-free conditions, which is a major disadvantage compared to SAR
techniques, especially in temperate climate zones with frequent cloud cover. On the other
hand, spatial resolution is often superior for multispectral images compared to SAR imagery
(e.g., 10 m for Sentinel-2 MSI versus 20 m for Sentinel-1 SAR). Over the past decade, a
number of global-scale surface water extent datasets derived from satellite EO datasets
have become available [13–15]. While such datasets have been impactful and effective in
order to understand and quantify surface water status at the continental to global scales,
their coarse spatial resolution limits applications at the local–regional scale, especially in
low lying areas with complex hydrography that are characterized by small ephemeral
water bodies forming in response to extreme rainfall events.

Remote sensing methods using unmanned airborne systems (UAS) are a promising
monitoring option at local–regional scales because they can deliver sub-meter spatial
resolution and can be scheduled flexibly in space and time at relatively low cost [16]. Two
UAS sensing techniques are relevant for SWE mapping: optical imaging and thermal
imaging. Applications of optical imaging for flood extent mapping are reported in the
literature (e.g., [17]). Limitations of this method include dependence on daylight conditions,
and limited ability to detect water under vegetation canopies. UAS thermal imaging is a
mature technique that has been used for many applications, including utility mapping [18],
vegetation/agriculture status assessment [19,20], and river flow tracking [21]. To our
knowledge, use of UAS thermal imaging for flood extent mapping has not been described
in the published literature.

Potential flooded areas can also be delineated from digital elevation models (DEM)
using DEM hydro-processing techniques [22]. Such approaches are based on a number
of simplifying assumptions (e.g., impervious land surface and no evapotranspiration)
and actual flooding will therefore only occur on a subset of the potentially flooded areas
outlined by such methods.

This paper presents a SWE mapping method based on UAS thermal imagery. The
workflow is demonstrated for three areas in Denmark, in which flooding occurs at small
spatial scales. UAS SWE maps are compared with SWE maps derived from satellite EO
and with potential flooded areas derived from a high-resolution digital elevation model.
Advantages and disadvantages of the two alternative mapping methods are discussed in
view of typical application scenarios and end user requirements.

2. Materials and Methods

We first provide an overview of the survey sites and flooding events selected for this
study. Subsequently, we describe the SWE mapping workflow based on UAS thermal
imagery, which was applied at the sites. Finally, we present the SWE mapping workflow
based on satellite EO datasets.

2.1. Sites and Flooding Events

Figure 1 provides and overview of localities mapped with UAS thermal imagery and
satellite EO. The Rødehus Kanal and Øland areas are located in the Danish Jammerbugt
municipality. The UAS surveys were flown on 26 February and 28 February 2022, respec-
tively. February 2022 was a wet month in Jammerbugt municipality (Figure 2, top panel).
The monthly rainfall was 105.8 mm (long-term average for February in Denmark: 48 mm).
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The cumulative precipitation in the 7 days prior to the UAS thermal surveys was 33.2 mm,
and the cumulative precipitation in the 14 days prior to the survey was 73.5 mm.
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Figure 1. Overview of thermal survey sites and dates. Inset map shows the location of the study sites
in Europe: Rødehus Kanal (approx. Lat: 57.226, Lon: 9.558), Øland (approx. Lat: 57.118, Lon: 9.554)
and Haraldskær (approx. Lat: 55.695, Lon: 9.425). All processed flood maps are provided as geotiff
raster files in the Supplementary Materials of this paper.

The Haraldskær area is located in the Danish Vejle municipality. The UAS survey
was flown on 19 March 2019. March 2019 was a wet month in Vejle municipality (Figure 2,
bottom panel). The monthly rainfall was 139.9 mm (long-term average for March in Den-
mark: 52 mm). The cumulative precipitation in the 7 days prior to the thermal survey was
66.9 mm, and the cumulative precipitation in the 14 days prior to the survey was 112.8 mm.
Flooding was informally observed on the ground in late February 2022 in Jammerbugt
municipality and, in March 2019, in Vejle municipality by citizens and local media.
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Figure 2. Daily rainfall time series for Jammerbugt and Vejle municipalities in February 2022 and
March 2019, respectively. Red lines indicate long-term average precipitation. Data provided by the
Danish Meteorological Institute through their “Vejrarkiv” web interface (www.dmi.dk/vejrarkiv/
accessed on 25 October 2022). Vertical blue lines indicate dates of UAS thermal surveys, vertical green
lines indicate Sentinel-1 acquisitions, and vertical yellow lines Sentinel-2 acquisitions.

2.2. Surface Water Extent Mapping with UAS Thermal Imagery

RGB and thermal mapping using UAS have become mature surveying techniques
providing ground resolution at the cm level and flexible spatial and temporal coverage.
Flooding can be delineated from both RGB and thermal imagery. Here, we opted for a ther-
mal mapping workflow because thermal mapping is independent of daylight conditions,
which pose severe restrictions on survey schedules in Denmark in winter, and because
thermal mapping can reliably detect shallow flooding below low-density vegetation, for
instance, in grasslands and agricultural areas.

Drone Systems collected thermal imagery using a FLIR Tau-2 thermal camera (Tele-
dyne FLIR, Wilsonville, OR, USA) equipped with a TeAX thermal capture system (TeAX,
Wilnsdorf, Germany). Surveys were flown using a Matrice 600 Pro (DJI, Shenzhen, China)
platform. Survey flight height was 110–120 m above ground, which resulted in a 15 cm
ground resolution of the thermal imagery. Thermal imagery was corrected for drift and
sensor non-uniformity artifacts, mosaicked, and subsequently georeferenced using terrain
features that could be detected on both the thermal scene and high-resolution airborne
imagery. The thermal mapping workflow used here is equivalent to the Drone Systems
commercial surveying service [23]. An example of the output of the thermal mapping
workflow is provided in Figure 3 for the Rødehus Kanal area.

www.dmi.dk/vejrarkiv/
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Figure 3. Thermal anomaly map (in Kelvin) for the Rødehus Kanal area. Temperature anomaly is
defined as temperature at each pixel minus average temperature of the scene.

In Figure 3, warmer areas are detected in flooded areas and open water as well as on
buildings and vegetated areas. This is common for flooding events occurring during the
cold season. However, it is also evident that warm temperature anomalies occur not only on
flooded areas but also on vegetated areas and buildings, i.e., whenever the thermal camera
does not record the ground surface temperature, but the temperature of an intermediate
surface, such as the top of the canopy or the rooftop of a house. Buildings are typically
warmer than the surroundings in the cold season because they are heated. We also observe
warmer temperature on canopy surfaces, possibly because of the rainwater storage on
the canopy, or due to their higher elevation of canopy surfaces and strong temperature
gradients in the atmospheric surface layer.

In order to mask buildings and areas covered by vegetation canopy, we used the
Danish national elevation model (Danmarks Højdemodel, [24]), which is derived from
airborne laser scanning surveys covering the entire country. The raw laser point cloud,
consisting of 415 billion individual points, was processed into a digital surface model (DSM)
at 0.4 m spatial resolution [25], which is publicly available on the internet. The digital
surface model was further processed into a digital terrain model (DTM, [26], also at 0.4 m
spatial resolution), by removing buildings, vegetation, etc., from the DSM and interpolating
the underlying terrain elevation from neighboring points. We calculated the elevation
difference between the DSM and the DTM. Whenever this difference exceeded 1 m, we
assumed that the thermal camera did not map ground temperature and, consequently,
we masked the corresponding area and excluded it from the surface water extent map,
setting the pixel value to undefined (NaN). The flooding status of the masked areas cannot
be determined from airborne thermal imagery. We calculated the local sensitivity of the
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masked area to the 1 m elevation difference threshold and found a limited sensitivity of
26.2 m2 of masked area per square kilometer of terrain per m of threshold change for the
Rødehus Kanal area (16.3 m2/km2/m for Vejle and 2.5 m2/km2/m for Øland). For this
reason, the 1 m threshold in elevation difference can be considered as robust for the areas
investigated in this study, and we applied it consistently throughout the analysis. We
suggest that the sensitivity of the threshold value is re-checked whenever the UAS thermal
SWE mapping workflow is applied to new areas of interest.

Finally, we manually set the threshold for the masked temperature image in order
to obtain a binary SWE map. Pixels that are warmer than the threshold are assigned
the flooded status (1) and pixels that are cooler than the threshold are assigned a dry
status (0). Masked areas and areas not covered by the thermal imagery were assigned
undetermined flooding status (NaN). The temperature threshold was set based on the
observed temperature of permanent water bodies (streams and lakes) located in the thermal
image. Alternatively, automatic thresholding algorithms, e.g., Otsu thresholding, could
be used, but because of the low proportion of flooded pixels in the thermal scenes, we do
not observe a clear bimodal distribution in the histograms of pixel temperature values. For
the areas investigated here, it was straightforward to pick the temperature threshold from
observed permanent water bodies located in the thermal scenes. A flowchart of the UAS
SWE mapping workflow is presented in Figure 4.
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Figure 4. Flow chart of the surface water extent mapping workflow based on UAS thermal imagery.

2.3. Surface Water Extent Mapping with Satellite EO

The SWE mapping using satellite EO data was carried out following the methodology
reported in [27]. The approach uses a multivariate logistic regression model to estimate
surface water probability from a combination of optical imagery from the Sentinel-2 mission
and synthetic aperture radar (SAR) imagery from the Sentinel-1 mission. Prior to water
classification, all acquired data are subject to essential pre-processing, including standard
processing routines for orthorectification, radiometric and atmospheric correction, and
cloud masking, as well as terrain and radar shadow masking and noise filtering. For
further information about the development of the logistic regression model, the reader is
invited to refer to Druce et al. [27]. In the original approach by Druce et al. [27], the input
data are processed into monthly composites, but specifically for Danish conditions, we
modified the algorithm to output the results by individual sensor and acquisition date
without re-training, thereby enabling the SWE products to correspond with the time of
the flooding/drone activity. Cloud free, optical data were prioritized due to the ability
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to identify smaller features than Sentinel-1. This is explained by the characteristics of
the input data, with key spectral water detection bands from Sentinel-2 available in 10 m
spatial resolution, while the true spatial resolution of Sentinel-1 is understood to be closer
to 20 × 20 m, although data from the widely used Sentinel-1 Ground Range Detection
(GRD) product are delivered with a pixel spacing of 10 × 10 m [28]. In addition, SAR
imagery is typically spatially smoothed to reduce speckle noise; however, this was not
undertaken due to the small size of the flood extent. Nevertheless, optical data will often
not be available at the time of flooding due to the presence of clouds. After sensor selection,
the resulting water probability was inspected, and a user-defined threshold was applied
to create the binary surface water extent classification. For the Rødehus Kanal and Øland
areas, Sentinel-1 data dated 28-Feb-2022 and Sentinel-2 data dated 26-Feb-2022 were used.
For the Haraldskær area, Sentinel-2 data dated 19-Mar-2019 were used. Sentinel-1 data
were not available for the Haraldskær area during the period of flooding.

2.4. Validation against the Hydrographically Processed DEM

The Danish national elevation model was further processed by the Danish Agency for
Data Supply and Infrastructure into a so-called Bluespot product [29]. Each pixel value of
the Bluespot product indicates the amount of rainfall in millimeters that is required to flood
that pixel. This value is derived under the assumptions that the terrain surface is impervious
(i.e., zero infiltration, no drainage), that the rainfall is uniformly distributed in space, that
evapotranspiration is zero, and that water on the land surface moves instantaneously
against the terrain elevation gradient and accumulates in local depressions. The Bluespot
product thus indicates areas of potential flooding caused by rainfall, and it is therefore
useful to compare the product with the SWE maps derived from UAS and satellite EO.
However, it is important to note that the Bluespot product outlines areas of potential
flooding and that actual flooding is expected to occur only on a subset of Bluespot areas
because some of them may be located on soils with high infiltration capacity and/or drained
areas. Moreover, riverine flooding (i.e., flooding caused by river water flowing over the
riverbanks) will not be confined to Bluespot areas because it is not caused by local rainfall
and will not only occur in local depressions. We generally used a threshold of 10 mm to
outline potentially flooded areas from the Bluespot product, i.e., areas with a Bluespot
value between 0 and 10 mm were mapped as potentially flooded areas.

3. Results

In this section, we present the SWE mapping results for the three survey sites separately.
Figure 5 shows UAS and satellite EO SWE mapping results along with Bluespot

areas for the Rødehus Kanal site. It is evident that the UAS workflow delineates flooding
mainly along a small stream flowing across the site (Figure 5B); 50.1% of the inundated
area delineated from thermal imagery does not fall on Bluespot areas (Table 1). This is
consistent with the riverine origin of the flooding. The satellite SWE mapping workflow
classifies just four 10 m pixels falling within the boundaries of the thermal scene as flooded,
based on a Sentinel-1 SAR scene recorded on 28-02-2022 (Figure 5A,C). We only report
the results for Sentinel-1 SWE because the only pixel mapped as flooded by Sentinel-2
is located outside the thermal scene. In order to compare Bluespot and UAS flood maps
with 0.4 m spatial resolution to the satellite SWE mapping results with 10 m resolution,
we aggregate the binary Bluespot and UAS flooding maps to 10 m resolution using an
“any pixel” rule. This rule implies that the 10 m pixel is assigned a value of 1, if any
of the 0.4 m pixels falling on each 10 m pixel have a value of 1; otherwise, the pixel is
assigned a value of 0. All pixels classified as flooded based on satellite EO fall on Bluespot
areas. However, despite the use of the “any pixel” aggregation rule, which enlarges the
area classified as flooded compared to the native 0.4 m resolution, none of the four pixels
classified as flooded based on satellite EO fall on pixels that are delineated as flooded by the
UAS workflow. The flooded areas delineated using the UAS workflow are hydrologically
consistent, occurring mainly adjacent to the stream, which was likely flooded after the
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substantial rainfall in February 2022. In contrast, the flooded areas delineated by satellite
EO appear to be randomly located in the landscape and were not confirmed by informal
observations on the ground.
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Figure 6 shows UAS and satellite EO SWE mapping results along with Bluespot areas
for the Øland site. Unlike the Rødehus Kanal site, the Øland site includes two permanent
lakes, which are reliably classified as flooded by both the UAS and the satellite flood
mapping workflows (Figure 6B). It is evident from the results that the Sentinel-1 SAR-based
mapping delineates a smaller area of the permanent lakes than the mapping based on
Sentinel-2 multispectral data and that the Sentinel-2 multispectral results are in better
agreement with the UAS results than the Sentinel-1 SAR results. On Figure 6, panel B,
Sentinel-2 misclassifies some pixels located in the shaded area of the forest as water. We
see similar behavior in the Haraldskær area (see below). While the satellite EO mapping
workflow reliably maps the permanent lakes, it does not detect any flooded areas on open
fields. In contrast, the UAS mapping workflow identifies at least five hotspot areas of
flooding in the open agricultural fields. The majority of the areas mapped as flooded by
the UAS workflow fall on Bluespot areas, which supports the validity of the UAS mapping
workflow because these floods clearly are of pluvial origin. One sizeable patch of flooded
terrain in the UAS results does not fall on a Bluespot area (white circle in Figure 6C). This
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patch falls on a field on which the ploughing direction has changed between the date
when the national elevation dataset was acquired and the date of thermal mapping. It is
evident from the Bluespot dataset in this area that the field was ploughed in the north–
south direction at the time of laser scanning for the national elevation dataset, while the
UAS thermal mapping indicates ploughing in the east–west direction. This shows that in
flat terrain, minor changes in elevation can determine the location of pluvial inundation
patches. Table 2 provides contingency tables for the comparisons between UAS, satellite,
and Bluespot datasets. Bluespot and UAS results were upscaled to 10 m using an “any
pixel” rule as described for the Rødehus Kanal area.

Table 1. Contingency table for the Rødehus Kanal area. We only report contingency tables for
Sentinel-1 SWE because the only pixel mapped as flooded by Sentinel-2 is located outside the
thermal scene.

Bluespot vs. UAS SWE (0.4 m pixels)

Inside Bluespot Outside Bluespot

UAS flooded 6435 6468
UAS not flooded 281,799 1,917,380

Bluespot vs. Satellite SWE (10 m pixels)

Inside Bluespot Outside Bluespot

Sentinel-1 flooded 4 0
Sentinel-1 not flooded 2610 1199

UAS vs. Satellite SWE (10 m pixels)

Sentinel-1 flooded Sentinel-1 not flooded

UAS flooded 0 189
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Figure 6. Bluespot areas (blue, threshold 10 mm), UAS SWE (red) and satellite SWE (green: Sentinel-1,
28-02-2022, yellow: Sentinel-2, 26-02-2022) for the Øland area (A) and two zoomed-in sub-areas (B,C).
Background is spring airborne imagery and grey shading indicates areas without UAS flooding status.
White circle highlights patch of UAS-flooded pixels outside Bluespot area.
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Table 2. Contingency table for the Øland area.

Bluespot vs. UAS SWE (0.4 m pixels)

Inside Bluespot Outside Bluespot

UAS flooded 115,146 61,418
UAS not flooded 969,260 4,656,767

Bluespot vs. Satellite SWE (10 m pixels)

Inside Bluespot Outside Bluespot

Sentinel-1 flooded 8 0
Sentinel-1 not flooded 5306 4729

Bluespot vs. Satellite SWE (10 m pixels)

Inside Bluespot Outside Bluespot

Sentinel-2 flooded 63 3
Sentinel-2 not flooded 5251 4726

UAS vs. Satellite SWE (10 m pixels)

Sentinel-1 flooded Sentinel-1 not flooded

UAS flooded 8 2406
UAS not flooded 0 7629

UAS vs. Satellite SWE (10 m pixels)

Sentinel-2 flooded Sentinel-2 not flooded

UAS flooded 59 2355
UAS not flooded 7 7622

Figure 7 shows UAS and satellite EO SWE mapping results along with Bluespot areas
for the Haraldskær site. Haraldskær is the largest of the three sites, and both the satellite
EO and the UAS mapping workflows delineate sizeable areas of both pluvial and riverine
flooding (Table 3). We only report results for Sentinel-2 SWE because no Sentinel-1 results
are available for the date of the UAS thermal survey. In general, there is good agreement
between the flooded areas outlined by the satellite EO and the UAS workflow. Flooded
areas caused by riverine flooding outlined by the UAS workflow tend to be slightly larger
(Figure 7B) as the ones outlined by satellite EO. Similar behavior was observed on the
permanent lakes in the Øland area. Just as in the Øland area, Sentinel-2 risks misclassifying
pixels as flooded that are located in forested or shaded areas (Figure 7C,D). It is evident
from Figure 7E, that flooded areas tend to locate on Bluespot areas. However, only a
fraction of Bluespot areas become flooded, while others remain dry.

Table 3 reports the contingency tables for the comparisons between UAS, satellite
EO, and Bluespot areas. The majority of areas classified as flooded by both the UAS and
satellite EO workflow are located inside Bluespot areas. However, a sizeable fraction of the
flooded pixels falls outside the Bluespot areas, which is consistent with the riverine flooding
occurring in the downstream portion of the Haraldskær area (Figure 7B). Table 3 shows that
the flooded area mapped by UAS is significantly larger than the area mapped as flooded
from Sentinel-2. One reason is the “any pixel” rule used to resample the UAS flooding maps
from 40 cm resolution to 10 m resolution. Another reason is the Sentinel-2 under-estimation
of the flooded areas along the fringes of water bodies, which was observed both in the
Øland and Haraldskær areas.



Water 2022, 14, 3742 11 of 14

Water 2022, 14, x FOR PEER REVIEW 11 of 14 
 

 

Figure 7 shows UAS and satellite EO SWE mapping results along with Bluespot areas 

for the Haraldskæ r site. Haraldskæ r is the largest of the three sites, and both the satellite 

EO and the UAS mapping workflows delineate sizeable areas of both pluvial and riverine 

flooding (Table 3). We only report results for Sentinel-2 SWE because no Sentinel-1 results 

are available for the date of the UAS thermal survey. In general, there is good agreement 

between the flooded areas outlined by the satellite EO and the UAS workflow. Flooded 

areas caused by riverine flooding outlined by the UAS workflow tend to be slightly larger 

(Figure 7B) as the ones outlined by satellite EO. Similar behavior was observed on the 

permanent lakes in the Ø land area. Just as in the Ø land area, Sentinel-2 risks 

misclassifying pixels as flooded that are located in forested or shaded areas (Figure 7C,D). 

It is evident from Figure 7E, that flooded areas tend to locate on Bluespot areas. However, 

only a fraction of Bluespot areas become flooded, while others remain dry. 

 

Figure 7. Bluespot areas (blue, threshold 10 mm), UAS SWE (red) and satellite SWE (yellow: 

Sentinel-2, 19-03-2019) for the Haraldskæ r area and four zoomed-in sub-areas. Background is spring 

airborne imagery and dark grey shading indicates areas without UAS flooding status. Panel (A) is 

the overview of the Haraldskæ r area and (B–E) are zoomed-in sub-areas. 

Table 3 reports the contingency tables for the comparisons between UAS, satellite 

EO, and Bluespot areas. The majority of areas classified as flooded by both the UAS and 

satellite EO workflow are located inside Bluespot areas. However, a sizeable fraction of 

the flooded pixels falls outside the Bluespot areas, which is consistent with the riverine 

flooding occurring in the downstream portion of the Haraldskæ r area (Figure 7B). Table 

3 shows that the flooded area mapped by UAS is significantly larger than the area mapped 

as flooded from Sentinel-2. One reason is the “any pixel” rule used to resample the UAS 

flooding maps from 40 cm resolution to 10 m resolution. Another reason is the Sentinel-2 

under-estimation of the flooded areas along the fringes of water bodies, which was 

observed both in the Ø land and Haraldskæ r areas. 

  

Figure 7. Bluespot areas (blue, threshold 10 mm), UAS SWE (red) and satellite SWE (yellow: Sentinel-
2, 19-03-2019) for the Haraldskær area and four zoomed-in sub-areas. Background is spring airborne
imagery and dark grey shading indicates areas without UAS flooding status. Panel (A) is the overview
of the Haraldskær area and (B–E) are zoomed-in sub-areas.

Table 3. Contingency table for the Haraldskær area. We only report contingency tables for Sentinel-2
SWE because no Sentinel-1 results are available for the date of the UAS thermal survey.

Bluespot vs. UAS SWE (0.4 m pixels)

Inside Bluespot Outside Bluespot

UAS flooded 547,657 672,873
UAS not flooded 351,367 7,908,880

Bluespot vs. Satellite SWE (10 m pixels)

Inside Bluespot Outside Bluespot

Sentinel-2 flooded 1426 1168
Sentinel-2 not flooded 2471 13,049

UAS vs. Satellite SWE (10 m pixels)

Sentinel-2 flooded Sentinel-2 not flooded

UAS flooded 1984 3470
UAS not flooded 610 12,050

4. Discussion

Predicting flood risk and forecasting actual flooding become ever more important
with increasing frequency, severity, and impact of flood events. At the same time, mapping
surface water extent remains challenging, particularly for low-gradient environments with
complex hydrography and small-scale flooding patterns. Flood modelers thus often face
the problem that the true surface water extent is unknown and cannot be systematically
mapped at the appropriate scale and spatial resolution. This paper presents a UAS thermal
mapping workflow that can deliver surface water extent maps at a native spatial resolution
better than 10 cm, depending on the flight height. Based on comparisons with the Bluespot



Water 2022, 14, 3742 12 of 14

product derived from the national elevation model of Denmark and on independent
informal flood observations in the study areas (i.e., ground-based photography at flooded
locations), which were not used in the generation of any of the flood mapping results, we are
confident that the UAS mapping workflow delivers SWE maps that are close to the actual
inundation patterns on the ground, for areas without dense vegetation cover. However,
it is important to note that the results of the UAS thermal SWE mapping workflow were
not systematically compared to SWE ground truth in this paper because such ground truth
observations are unavailable at the scale covered by the UAS thermal surveys.

Despite the high fidelity of flood maps delivered by the UAS mapping workflow,
the workflow is not suitable for operational flood monitoring and surveillance at high
temporal resolution and wide spatial coverage. Using multirotor platforms, UAS mapping
workflows can cover areas of about a few square kilometers per day. Spatial coverage
can be significantly increased using fixed-wing platforms, but regional-scale operational
monitoring remains impractical. Thus, satellite EO and/or models will remain the methods
of choice for operational flood monitoring at the regional scale. However, models and
workflows based on satellite EO need to be validated and benchmarked against high-
fidelity datasets in order to assess and document their skill. UAS flood maps can play
a key role in this context because they provide reliable inundation maps at very high
spatial resolution. Our study showed that a flood mapping workflow based on public
data from the Sentinel missions reliably maps permanent water bodies in the chosen test
regions, while small-scale flooding caused by excess rainfall on grasslands and agricultural
fields was not identified with confidence. Sentinel-2 flood maps show a higher number of
true positives when compared to UAS flood maps than Sentinel-1 flood maps. However,
unlike Sentinel-1 SAR, Sentinel-2 spectral mapping is not possible under cloud cover,
which severely restricts the temporal resolution of flood maps. Overall, it seems that
UAS mapping reliably detects flooding in the right places, while the spatial resolution of
Sentinel datasets seems to be insufficient to detect small-scale flooding. Higher spatial
resolution commercial alternatives to the Sentinel missions exist (e.g., TerraSAR-X, [30])
but come at a higher cost. Depending on the specific application of the mapping workflow,
an appropriate data value analysis should therefore be carried out to ensure that additional
costs are justified in terms of the enhanced prediction skill. Such evaluations must be based
on the comparison of predicted flood maps with “ground truth” for selected events in
the historical record. UAS mapping workflows can play a key role in this context as they
can provide high-fidelity, high-resolution flood maps for selected areas and events. An
important consideration for choosing the SWE mapping method is cost: many satellite EO
missions provide free and open data, but data processing workflows require computational
infrastructure and expertise. UAS mapping workflows require significant data processing
resources and, additionally, resources for field surveys (UAV platform, sensor payloads,
operators, and logistics).

5. Conclusions

We conclude that UAS thermal mapping is an efficient surveying technique that
delivers SWE maps with high fidelity and high spatial resolution for intermediate scales
ranging up to a few square kilometers. Such high-fidelity flooding maps are useful to
calibrate, benchmark, and validate models and flood mapping algorithms based on satellite
earth observation.
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