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Abstract: Flooding occurrence is one of the most common phenomena that impact urban areas, and
this intensifies during heavy rainfall periods. Knowing the areas with the greatest vulnerability is of
paramount importance as it allows mitigating actions to be implemented in order to minimize the
generated impacts. In this context, this study aimed to use Geographic Information System (GIS)
tools to identify the areas with greater flooding vulnerability in Espírito Santo state, Brazil. The study
was based on the following methodological steps: (1) a Digital Elevation Model (DEM) acquisition
and watersheds delimitation; (2) maximum and accumulated rainfall intensity calculations for the
three studied periods using meteorological data; (3) a land use and occupation map reclassification
regarding flood vulnerability and fuzzy logic application; (4) an application of Euclidean distance
and fuzzy logic in hydrography and water mass vector variables; (5) a flood vulnerability model
generation. Based on the found results, it was observed that the metropolitan and coastal regions
presented as greater flood vulnerability areas during the dry season, as in these regions, almost
all of the 9.18% of the state’s area was classified as highly vulnerable, while during rainy season,
the most vulnerable areas were concentrated in Caparaó and in the coastal and immigration and
metropolitan regions, as in these regions, almost all of the 12.72% of the state’s area was classified as
highly vulnerable. In general, by annually distributing the rainfall rates, a greater flood vulnerability
was observed in the metropolitan and coastal and immigration regions, as in these areas, almost all
of the 7.72% of the state’s area was classified as highly vulnerable. According to the study, Espírito
Santo state was mostly classified as a low (29.15%) and medium (28.06%) flood vulnerability area
considering the annual period, while its metropolitan region has a very high flood vulnerability risk.
Finally, GIS modeling is important to assist in decision making regarding public management and
the employed methodology presents worldwide application potential.
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1. Introduction

Flooding can be characterized by the rising or overflowing of a water flow. It is
considered a natural and severe phenomenon, such as droughts and hurricanes, and it
is influenced by regional characteristics such as soil and vegetation types and weather
conditions [1]. This phenomenon is considered a “natural disaster” since it occurs in areas
where human presence predominates, thereby causing great devastation, economic impacts
and lives being loss [2,3].

Flooding usually occurs after heavy rainfall and causes damage mainly in urban
locations where there is disorderly occupation as well hazardous areas. Cities are proximal
to rivers due to the human physiological need for water resources [4].

Since the earliest civilizations, humans sought to build their cities near rivers in search
of water for irrigation, animal desedentation and fertile land. Thus, urban areas face the
flood risk challenge not only due to climate change, but also as an urbanization process
consequence [5].

A flood is an extreme weather event [6], which puts at risk the population that lives
mainly in the watercourses vicinity and areas with fewer slopes. In recent years, there
have been flooding reports in countries within the Indu River basin, such as in 2010 in
Pakistan, in the mountainous region of Brazil in January 2011 which incurred landslides,
and in March 2019, in the Indonesian province of Papua [2]. In addition, it is known that
both natural and anthropogenic processes impact the hydrological dynamics of floodplains,
rivers and coastal regions, as it alters the surface runoff and infiltration of water [7].

In Brazil in 2013, Espírito Santo and Minas Gerais states were affected by the strongest
rainfall event of the last 90 years. According to meteorologists, the Espírito Santo rain-
falls have cost the public coffers around $260 million, caused 30 deaths and left around
50,000 people homeless [8]. Thus, it is important to study and identify the main flood
risk areas in the state in order to provide mitigation and preventive measures against
major floods.

It is of fundamental importance to implement methodologies to prevent the floods
occurring in order to mitigate the losses that are caused by them. In this sense, there is a
wide variety of techniques that seek to generate a flood vulnerability model, and among
them are the use of geotechnologies, with the aid of fuzzy logic, and the Analytic Hierarchy
Process (AHP). Both methodologies enable the study of flood vulnerability. Several factors
influence flood vulnerability, such as relief characteristics, the watershed compactness
coefficient, rainfall intensity and distribution, land use and occupation and soil types. A
Geographic Information Systems (GIS)-based approach makes it possible to identify the
most susceptible areas to flooding, thereby assisting in decision-making that is aimed at
mitigating the flooding impacts [9,10].

Fuzzy logic is used to standardize the criteria on a scale from 0 to 1, with values that
are close to 0 being considered the least favorable ones and values that are close to 1 being
the most favorable ones [11–13]. The AHP method, in turn, measures each variable’s
importance using hierarchy levels through a pairwise comparison, and thus provides
support for the decision making [14].

Some developed research studies demonstrate the importance and applicability of
the geotechnology use combining Fuzzy logic and the AHP method. Some studies can be
highlighted such as those that were developed by the authors of: [15], who evaluated the
risk of flooding in the subway system using the original AHP method and the AHP method
based on triangular fuzzy numbers; [16], who used the AHP and AHP-Fuzzy method to
map the potential groundwater recharge zone in the arid areas of Ewaso Ng’iro–Lagh Dera
River Basin, Kenya; [17], who elaborated a flood susceptibility mapping of the West Ghat
coastal belt using the AHP method.

Flood risk mapping is an important and widely used tool for disaster alert and pre-
vention [3]. Therefore, the prediction of flooding scenarios in urbanized areas and their
understanding are of great importance to assist in decision making that is related to flood vul-
nerability factors, which may contribute to urban planning and avoid the main consequences
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of these disasters [18]. It is possible to create measures that reduce flooding vulnerability
and promote the infiltration and storage of water through urban planning, such as the
implementation of areas with green coverage and rainfall water reuse technology [19].

Climate change is strongly associated with increased flood vulnerability, especially in
coastal cities, due to the possibility of sea level rises occurring [20]. Those rises, associated
with growing urbanization and extreme rainfall events occurrence, puts the populations
in coastal and riverside areas at risk, which generates significant social, financial and
economic impacts [21]. Given this scenario and the need to work with a more robust
methodology for flood vulnerability mapping, this study aimed to apply a GIS-based
approach, combining fuzzy logic and the AHP method, to study the seasonal rainfall
influence on flood vulnerability in Espírito Santo state.

2. Materials and Methods
2.1. Study Area
2.1.1. Climatic Characterization

The study area comprises Espírito Santo state, Southeastern Brazil, which has a total
area of 46,052.64 km2, and is located between parallels 17◦53′29′′ and 21◦18′03′′ south
latitude and meridians 39◦41′18′′ and 41◦52′45′′ longitude west of Greenwich, bordering
the Atlantic Ocean to the east, Bahia state to the north, Minas Gerais state to the west, and
Rio de Janeiro state to the south (Figure 1).
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Figure 1. Study area geographic location containing the Köppen climate classification. Figure 1. Study area geographic location containing the Köppen climate classification.

According to Köppen climate classification, the state has seven climate types: Af,
humid tropical climate; Am: humid or humid tropical climate; Aw: humid tropical climate
with dry winter; Cfa: humid temperate climate with hot summer; Cfb: humid temperate
climate with temperate summer; Cwa: humid temperate climate with dry winter and hot
summer; Cwb: humid temperate climate with dry winter and temperate summer; Cwc:
humid temperate climate with dry winter and short, cool summer.

Rainfall in Espírito Santo is concentrated in the summer, and the state has an average
maximum rainfall of approximately 40.2 mm (Figure S1, Supplementary Materials) through-
out the year, reaching 31.3 mm during dry periods and 51.6 mm during rainy periods. The
annual accumulated rainfall is approximately 1453.1 mm, reaching 477.4 mm during dry
periods and 1014.7 mm during rainy periods (Figure S1, Supplementary Materials).
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2.1.2. Geomorphological Characterization

Most of the state’s area is characterized as a plateau, with altitudes ranging from 0 to
2862.5 m (Figure S2, Supplementary Materials). It also has a rugged relief, with slope
values ranging from 0 to 75% (Figure S3, Supplementary Materials). The predominant soil
types are: Oxisols (48.6%), Ultisols (26.0%), Inceptisols (12.1%), Entisols (4.2%), Gleysols
(2.8%), Nitisols (2.3%), Phaeozem (0.9%), Spodosols (0.8%) and Histosols (0.1%) (Figure S4,
Supplementary Materials).

The state is included in its entirety in the Atlantic Forest biome, an important Brazilian
biome, which is distributed throughout the country as a continuous strip along the Atlantic
coastal plain [22]. Despite the state being part of this considerable biome, only 15.18% of
the original native vegetation of the Atlantic Forest is intact (Figure S4, Supplementary
Materials). The predominant land use and occupation class in the state is pasture, occupying
approximately 41.97% of the area.

2.1.3. Socioeconomic Characterization

According to the 2010 Brazilian demographic census, Espírito Santo’s total population
was 3,514,952 inhabitants, and its average demographic density was 76.25 people/km2

(Figure S6, Supplementary Materials) [23]. The municipalities with the highest demo-
graphic densities are Vitória, Vila Velha, Serra, Viana, Cariacica and Guarapari, which are
recognized by the state government as the Metropolitan Region.

The state has other regions that deserve to be highlighted, namely: Capixaba Mountains
Region; Immigrants Region; Caparaó Region; Green and Water Region; Doce Pontões
Capixabas Region; Coffee and Valleys Region; Doce Terra Morena Region; Stones, Bread and
Honey Region; Coastal and Immigration Region, the latter comprising the municipalities of
Alfredo Chaves, Anchieta, Iconha, Itapemirim, Marataízes and Presidente Kennedy [24].

The main economic activities that have been developed in the state are agriculture,
livestock and mining [25], with there being an emphasis on the production of coffee, banana,
sugar cane and coconut in agriculture (Figure S5, Supplementary Materials).

2.2. Methodological Steps

Step 1—Relief

Digital elevation model was obtained using Shuttle Radar Topographic Mission
(SRTM) data with a spatial resolution of 30 m, and it was made available by National Insti-
tute for Space Research (INPE) (www.inpe.br (accessed on 15 September 2021)). Through
the DEM, state watersheds were delimited and the watershed compactness coefficient (Kc)
was obtained.

Kc = 0.28× P√
A

(1)

where Kc is the compactness coefficient (dimensionless), P is the perimeter (km) and A is
the watershed area (km2). This coefficient is a dimensionless number that varies with basin
shape, regardless of its size. Thus, the more irregular it is, then the greater compactness
coefficient is [12].

Step 2—Meteorological data

Rainfall data were acquired from 21 automatic stations in Espírito Santo state and its
neighboring regions, and they were made available by the Meteorology National Institute
(INMET) (portal.inmet.gov.br (accessed on 25 September 2021)). Use of data from neigh-
boring regions was justified to enable us to perform statistical interpolations. Obtained
data from seasons were used to calculate annual average maximum rainfall, dry and rainy
periods average maximum rainfall, annual accumulated rainfall, dry and rainy periods
accumulated rainfall values. After calculating average maximum rainfall and accumulated
rainfall values for both periods, the station data were integrated into a point vector file.
Each point was spatialized according to its geographical coordinates in the Transverse
Mercator Projection (UTM) using ellipsoid WGS 84.

www.inpe.br
portal.inmet.gov.br
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After average maximum rainfall and accumulated rainfall data spatialization, files
were interpolated, reclassified, and at end of this step, fuzzy logic was applied.

Step 3—Land Use and Occupation and Soil Classes

The vector files of land use and occupation and soil classes were obtained from the
Integrated System of Geospatial Bases of the State of Espírito Santo (Geobases) (geobases.
s3.es.gov.br/minio/public/ (accessed on 22 September 2021)).

The land use and occupation map was obtained from the interpretative analysis
(photointerpretation) and the manual vectorization of the limits between the land use and
the land cover classes of the orthophotomosaics. The orthophotomosaic was generated
from the multispectral aerophotogrammetric survey covering the entire state with a spatial
resolution of 25 cm [26].

Espírito Santo’s soil recognition map was based on the soil map that was published by
Projeto Radam Brasil, which is available on the IBGE website (www.ibge.gov.br (accessed
on 20 September 2021)), and it has been updated based on soil mapping units [27]. The maps
were reclassified according to the flood vulnerability, and then, fuzzy logic was applied.

Step 4—Hydrography

The vector files of hydrography and water masses were obtained from Geobases
(geobases.s3.es.gov.br/minio/public/ (accessed on 22 September 2021)). The entire state
hydrography mapping was carried out using stereoscopic restitution processes on oriented
models with the objective of extracting, from the aerophotogrammetric survey (25 cm
spatial resolution), specific features such as watercourses, lakes and ponds, among others.

Watercourses such as rivers, streams and channels were restored by stereocompilation
processes to be polylines, aiming to build a structure of a single-line network that is
topologically consistent in terms of connectivity with a defined orientation from source to
mouth in a graph (tree) format and without discontinuities or double confluences. Water
masses such as lakes, ponds, dams and rivers or canals were rendered by stereocompilation
processes to be polygons [26]. The Euclidean distance procedure has been applied to the
hydrography image following the logic whereby, the farther away the area is from the
hydrography, then the lower the flood vulnerability will be, and this was one of the image
processing steps.

Step 5—Flood Vulnerability Model

Variables were grouped into two large groups as follows: Group 1 (the basin com-
pactness coefficient, slope, digital elevation model, annual average maximum rainfall,
dry period average maximum rainfall, rainy season average maximum rainfall, annual
accumulated rainfall, dry season accumulated rainfall, rainy season accumulated rainfall
and proximity to hydrographies elements); Group 2 (the land use and occupation, soil
classes and proximity to water masses elements). Then, we used the Analytic Hierarchy
Process (AHP) that was developed by [28] which proposes the solving of the problem by
hierarchical levels, which generated coefficients that were used a posteriori to calculate the
flood vulnerability model [29].

Flood vulnerability model was calculated using field calculator function that associ-
ated the coefficients that were generated by AHP method with fuzzy logic variables in
their respective groupings, thus generating three vulnerabilities: two of them were for
Group 01 (Vul1), corresponding to dry and rainy periods, and one of them was for Group
02 (Vul2) (Equations (2) and (3), respectively).

Vul1 = β1×V1 + β2×V2 + β3×V3 + β4×V4 + β5×V5 + β6×V6+
β7×V7 + β8×V8 + β9×V9 + β12×V12

(2)

Vul2 = β10×V10 + β11×V11 + β13×V13 (3)

where V1 is the basin compactness coefficient, V2 is the slope, V3 is the Digital Elevation
Model (DEM), V4 is the annual average maximum rainfall, V5 is the dry period average
maximum rainfall, V6 is the rainy season average maximum rainfall, V7 is the annual

geobases.s3.es.gov.br/minio/public/
geobases.s3.es.gov.br/minio/public/
www.ibge.gov.br
geobases.s3.es.gov.br/minio/public/
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accumulated rainfall, V8 is the dry period accumulated rainfall, V9 is the rainy period
accumulated rainfall, V10 is the land use and occupation, V11 is the soil classes, V12 is the
proximity to hydrographies, V13 is the proximity to water masses and β1 to β13 are the
coefficients that were obtained for each variable after applying the AHP method.

Then, three vulnerability maps were obtained through fuzzy logic use, associating the
Group 01 maps with the Group 02 map. In the end, the three maps were vectorized.

The methodological flowchart containing the necessary steps for the flood vulnerability
model development for Espírito Santo state is presented in Figure 2.
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3. Results

Fuzzy logic is a form of multivariate logic that is used to standardize the criteria on
a scale ranging from 0 to 1 [13]. It allows, in turn, one to analyze data that present some
kind of inaccuracy and are characterized by a membership function in which each variable
of interest is associated with a pertinence value [30]. In fuzzy logic, 0 value represents a
falsehood and 1 is considered to be an absolute truth [31].

Regarding flooding, the closer to 0 that the value is, then the lower the flood vulnera-
bility is, while the closer that the value is to 1, it means the opposite. Adjusted membership
functions for each studied variable are presented in Figures 3 and 4.
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Figure 3. Membership functions applied to the flood vulnerability model variables. (a) Compactness
coefficient; (b) slope; (c) Digital Elevation Model (DEM); (d) annual average maximum rainfall; (e) dry
period average maximum rainfall; (f) rainy period average maximum rainfall.

The annual average maximum rainfall, dry period average maximum rainfall, rainy
period average maximum rainfall, annual accumulated rainfall, dry period accumulated
rainfall and rainy period accumulated rainfall variables were adjusted by increasing the
linear function. DEM, the proximity to hydrographies and the proximity to water masses
variables were adjusted by decreasing the linear function. The slope variable was adjusted
by decreasing the sigmoid function (small), and the basin compactness coefficient showed
increasing sigmoidal behavior (large).

Representative histograms of pixel frequency percentage in each fuzzy class (0.0–0.25;
0.25–0.5; 0.5–0.75; 0.75–1.0) are shown in Figures 5 and 6.
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(a) Annual accumulated rainfall; (b) dry period accumulated rainfall; (c) rainy period accumulated
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According to the Group 01 pixels frequency results, the slope variable presented the
highest pixels percentage (98.3%) in the less prone to vulnerability fuzzy class (0.0 to 0.25),
which was followed by the dry period average maximum rainfall variable (45.1%). The
other variables presented values that are below 29.9% for the less prone to vulnerability
fuzzy class.

The compactness coefficient and proximity to hydrographies variables presented the
highest equivalent percentage values, 99.9% and 98.1%, respectively, for the most prone to
vulnerability fuzzy class (0.75 to 1), which were followed by the Digital Elevation Model
variable (70.7%). The other variables presented values lower than 27.8% for the same
fuzzy class.

Regarding the pixels frequency for Group 2, the soil classes variable (Figure 4) pre-
sented the highest percentage (52.9%) for the less prone to vulnerability fuzzy class, while
the proximity to water masses variable presented the highest percentage for the most prone
to vulnerability fuzzy class, corresponding to 76.2%. The land use and occupation variable
presented the highest percentage value for the 0.25 to 0.5 fuzzy class, which was equivalent
to 55.3%.
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Figure 5. Pixels frequency for each fuzzy class. (a) Compactness coefficient; (b) slope; (c) Digital
Elevation Model (DEM); (d) annual average maximum rainfall; (e) dry period average maximum
rainfall; (f) rainy period average maximum rainfall; (g) annual accumulated rainfall; (h) dry period
accumulated rainfall; (i) rainy period accumulated rainfall; (j) proximity to hydrographies.
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Flood Vulnerability in Espírito Santo State

In Espírito Santo state, some sites are more susceptible to the flooding negative impacts
than others are. Flooding occurs mainly in areas where the population is located near
watercourses and in less sloping places. The flood vulnerability spatialization for the study
area regarding the dry season is presented in Figure 7.
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Espírito Santo state has a large area corresponding to a low flood vulnerability class,
with a value of 30.91%, which is followed by medium flood vulnerability class, with a value
of 25.04%. Most of these areas correspond to the state’s western region.

The areas that were classified as having a very high flood vulnerability represent 9.18%
and they are located in coastal and metropolitan state regions, including the municipalities
of Serra (483.85 km2), Vitória (79.87 km2), Vila Velha (195.70 km2), Guarapari (565.46 km2),
Anchieta (403.62 km2), Piúma (71.23 km2) and Iconha (184.14 km2) (Table S1, Supplementary
Materials), which are classified as very high flood vulnerability class practically throughout
the entire extension of the municipalities.

For the rainy season (Figure 8), the medium flood vulnerability class presents the
largest area, corresponding to 33.73%. The greater rainfall presence provides differences in
relation to the dry season flood vulnerability classification. For instance, the municipalities
in the northern region that were previously classified as having a low flood vulnerability are
now classified as having a medium flood vulnerability during the rainy season, particularly
the Ecoporanga, Montanha and Mucurici municipalities.
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Figure 8. Rainy period flood vulnerability for Espírito Santo state.

The municipalities of Alegre, Guaçuí, Jerônimo Monteiro, São José do Calçado, Bom
Jesus do Norte, Dores do Rio Preto, Ibitirama, Muniz Freire, Divino de São Lourenço,
Cachoeiro de Itapemirim, Apiacá and Muqui are classified as having a very high flood
vulnerability. Among these municipalities, Guaçuí (342.28 km2), Alegre (685.34 km2),
Jerônimo Monteiro (151.07 km2), São José do Calçado (198.78 km2) and Bom Jesus do
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Norte (51.66 km2) stand out since they also present the same flood vulnerability class in
approximately all of their territorial extensions.

Similarly, some coastal and metropolitan municipalities that were already in the very
high flood vulnerability class the during dry season remain with the same classification
for the rainy season practically throughout their entire territorial extension, such as Serra
(514.97 km2), Vitória (84.00 km2), Anchieta (359.81 km2), Iconha (163.41 km2) and Piúma
(61.13 km2) (Table S1, Supplementary Materials). These very high flood vulnerability
regions coincide with the areas presenting lower altitudes and lower slopes, which provide
a greater susceptibility to flooding.

The annual flood vulnerability, shown in Figure 9, is similar to the dry season vulnera-
bility. Approximately 29.15% of the areas are classified as having a low flood vulnerability,
which is followed by 28.06% of them having a medium flood vulnerability and 25.98%
of them having high flood vulnerability. In general, the medium flood vulnerability cat-
egory includes most of the municipalities in state southern region, while the very high
flood vulnerability category includes the municipalities in the coastal and metropolitan
state regions.
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Among the municipalities that are classified as very high flood vulnerability, there
are Serra (444.74 km2), Vitória (70.75 km2), Anchieta (342.46 km2), Iconha (167.23 km2)
and Piúma (68.97 km2), with approximately the entire extension of their territories being
classified as this, in addition to a considerable part of the Santa Leopoldina (333.98 km2)
and Alfredo Chaves (301.38 km2) municipalities (Table S1, Supplementary Materials).

The very low vulnerability class during the rainy period (8.74%) encompasses the
same municipalities as they do during dry and rainy periods, which are São Domingos do
Norte (278.31 km2), Governador Lindemberg (344.77 km2), Marilândia (297.30 km2) and
Colatina (1081.81 km2) (Table S1, Supplementary Materials).

4. Discussion

Based on the obtained results, it was observed that areas with the greater degree
of flood vulnerability during the dry season are concentrated in the state metropolitan
and coastal regions. The results differ for the rainy season, with the places that were
previously considered as low risk migrating to the high to very high risk categories, such
as in the southern region. In the annual period, the high and very high risks are distributed
throughout the state’s central and southern regions, and together, they account for 33.7% of
the flood vulnerability, while northwestern region presents a low risk.

It is possible to observe that in the three assessed scenarios (the dry, rainy and annual
periods), the metropolitan regions always fall into the very high risk class. This result
may be linked to significant land use and occupation changes in these regions, with
growing urban expansions, that are often disorderly, which consequently hinder the water
infiltration process. The authors of [32] believe that the advances in urbanization, especially
in improper areas, increase the disaster danger and risk.

According to [5], other factors may influence the flood vulnerability in urban areas,
such as the continued densification of residential areas, infrastructure development and
urban sprawl. The authors of [33] also state that socioeconomic growth is a dominant factor
for flood vulnerability increase.

The results of this work corroborate those that were found by the authors of [34], who
evaluated the flood risk in China. According to the authors, the areas that are at greatest
risk are those that have the highest amount of rainfall and are distributed on low, flat terrain
and are close to rivers and the coast.

In general, urban areas are the ones that suffer the most from flood occurrence due to a
combination of rapid urban growth, heavy rainfall, overflowing dams and construction on
floodplains or in the lower areas of cities [35]. According to [15], rapid urbanization causes
an increase in the flood risk due to drastic changes in the land use/cover in these areas [36].

Another factor that may be associated with and may contribute to the increase in the
flood vulnerability is global climate changes, which are caused mainly by meteorological
phenomena arising from anthropogenic impacts on the globe, in addition to the presence of
climatic events such as El Nino and Lã Nina, that cause a series of changes that are related
to temperature and rainfall, therefore, directly influencing floods occurrence. The authors
of [2] corroborate that climate changes have a significant impact on flood vulnerability due
to the changes in weather patterns, such as rising sea levels, which make areas that are
close to the coast even more vulnerable to flooding phenomena.

However, the regions that are further away from the coast also draw attention to
the need of mitigating these impacts to reduce the damage and risk of possible flooding
phenomena. As each municipality has been assessed individually, thereby obtaining the
areas of flood vulnerability for the three studied periods, the municipalities of Alegre and
Cachoeiro de Itapemirim stand out, both with significant riparian occupations and with
high rates of flooding-vulnerable areas during the rainy periods. The relief factor may
be exerting greater influence in relation to flood vulnerability, coinciding with expressive
areas that present floodable perimeters, such as the coastal and metropolitan regions, which
present a greater degree of flood vulnerability and that also are located at low altitudes and
low slopes.
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São Domingos do Norte, Governador Lindemberg, Marilândia and Colatina munici-
palities are classified as having a very low risk during the dry, rainy and annual periods.
These municipalities presented lower values for accumulated rainfall during the dry, rainy
and annual periods and they possess the Oxisol soil class. Oxisols are well-weathered soils
that are associated with good permeability and present low moisture retention [37]. These
soil physical properties, specifically the good soil infiltration capacity combined with the
low annual accumulated rainfall, may explain them having very low flood vulnerability
for the three assessed periods.

Flooding is a catastrophic event that can occur anywhere in the world. In addition,
these catastrophes are the result of a combination of natural factors and human actions,
such as infrastructure development and urban sprawl [5,36]. In this sense, prediction
models are important strategies for knowing the areas that are the most susceptible to
flooding [34,38] and to assist in public management decision making that is aimed at
preventing and mitigating the risks and consequences of floods for the populations that are
living in the areas that are considered to be at risk.

5. Conclusions

Considering the three scenarios, it is concluded that Espírito Santo state presents,
in most of its area, as having a low (29.15%) and medium (28.06%) flood vulnerability.
However, both the metropolitan region (Vitória, Vila Velha, Viana, Serra and Cariacica) and
part of the coast and immigration region (Piúma, Anchieta and Iconha) represent almost the
entire area that was classified as very high flood vulnerability throughout the year (7.72%).

This work results demonstrate the importance of applying geotechnologies on flood
vulnerability zoning. In this context, it is concluded that vulnerability mapping is a
fundamental auxiliary tool in decision making by government agencies, aiming to minimize
the risks and consequences of floods. Zoning also allows the public policy creation for
better urban planning and investment in environmental education. In addition, the used
methodology has potential for its application and adaptation to other areas of study around
the world.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14223731/s1, Figure S1: Rainfall distribution for Espírito Santo
state, Brazil. (a) Annual average maximum rainfall, (b) dry period average maximum rainfall, (c) rainy
period average maximum rainfall, (d) annual accumulated rainfall, (e) dry period accumulated
rainfall (f) rainy period accumulated rainfall; Figure S2: Digital Elevation Model for Espírito Santo
state, Brazil; Figure S3: Slope classes for Espírito Santo state, Brazil, as proposed by EMBRAPA,
(1979); Figure S4: Soil types for Espírito Santo state, Brasil; Figure S5: Land use and occupation
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