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Abstract: Data-driven models are widely used in the field of water level prediction due to their
generalizability and predictive abilities. In long-series prediction, however, data-driven models
degrade rapidly due to the uncertainty and constraints of model data and parameters. To address the
problem of inaccurate continuous water level prediction, this study introduced a data assimilation
technique, the unscented Kalman filter (UKF), and embedded support vector regression (SVR) into
the framework and applied it to Dongting Lake, the second largest freshwater lake in China. The
results demonstrated that the assimilation model is significantly better than the non-assimilation
model in predicting water levels and is not affected by the characteristics of lake level changes, with
the R2 increasing from 0.975–0.982 to 0.998–0.999 and the RMSE decreasing from 0.436–0.159 m to
0.105–0.042 m. The prediction lead time also increased with the increase of continuous assimilation
data. Further analysis of the assimilation model showed that when there was an assimilation cycle,
the prediction remained stable for successive sets of two or more assimilated data, and the prediction
lead time increased with successive assimilated data, from 4–8 days (one successive assimilation data)
to 9–12 days (five successive assimilation data). Overall, this study found that the data assimilation
framework can improve the prediction ability of data-driven models, with assimilated models having
a smaller fluctuation range and higher degree of concentration than non-assimilated models. The
increase in assimilated data will improve model accuracy as well as the number of days of prediction
lead time when an assimilation cycle exists.

Keywords: lake level prediction; data simulation; data-driven model; unscented Kalman filter

1. Introduction

In the last two decades, data-driven techniques have proven to be effective and
robust tools for modeling and prediction of various water resource variables [1,2]. These
techniques can generally be viewed as universal approximators that identify and generalize
the input–output relationship based on the limited information fed to them. Compared
to physically based models, data-driven models are relatively pragmatic as they do not
require a full understanding of the underlying physics, detailed topographical data and
long computational time for calibration and application [3,4]. Data-driven techniques
commonly used by the hydrological community include different forms of artificial neural
networks (ANNs) and support vector regression (SVR) [5,6]. SVR based on statistical
learning theory has been considered a better choice than ANNs for lake level prediction,
e.g., as noted in refs. [7,8]. The primary reason is that SVR has an advantage in terms of
generalization capability due to the use of structural risk minimization [9]. In addition,
SVR has fewer free parameters to estimate than most ANNs.

As suggested by Maier and Dandy [10], different sources of uncertainties should
be taken into account in developing data-driven water resource models. In data-driven
modeling and forecasting, there are three primary categories of uncertainty: structural,
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parametric, and data uncertainty. In the case of model structure, an insufficient degree of
freedom of the approximator used can lead to potentially large prediction errors [11,12].
Moreover, the time lagged values of input variables must be selected with care. The
inclusion of irrelevant or redundant inputs only adds noise to the model and increases the
dimension of the problem, while the omission of relevant inputs most likely makes the
model unable to describe the system behavior [13]. Since the parameters of data-driven
models have no physical interpretation, they need to be estimated from the training samples;
this means that different training data sets could probably lead to different parameter
estimates [14,15]. In addition, the training samples must be representative of the entire
data, in case the approximator is required to extrapolate beyond the range of the training
data [16]. Parameter estimation can be performed by applying optimization techniques.
However, even though powerful global optimization techniques are within easy reach,
they still cannot guarantee globally optimal parameters [17]. In some situations, different
parameter sets result in a similar model performance (i.e., the equifinality problem), and it
is impossible to identify the best set among them. Furthermore, a data-driven model can
be overtrained and thus capture not only the desired input-output mapping but the noise
contained in the training data (i.e., the overfitting problem). Apart from model structural
and parameter uncertainties, the imperfect data used to calibrate and validate the model
can also introduce some degree of uncertainty. First, observations of the system input
(forcing) and output are always noise corrupted. Second, the field observation within a
limited period of time cannot obtain complete data about the physical system.

The model calibration procedure normally attempts to find the “optimal” estimates
of the parameters to fit the model to the data over a long period of time. This proce-
dure, however, attributes all prediction uncertainty to parameter uncertainty but largely
ignores the uncertainties associated with model structure and measurements of the sys-
tem [18]. In such a case, the calibrated model may not have satisfactory performance in the
prediction stage [4].

Due to the unpredictability and limitations of data-driven models, their performance
in long-term forecasting degrades rapidly in comparison to that of traditional physical
models [16]. In meteorological, atmospheric, and hydrological sciences, data assimilation
(DA) approaches have been widely used to reduce prediction uncertainty and make optimal
predictions [19]. DA refers to the integration of all available information (i.e., dynamic
model predictions and observed data) to produce the best estimates of system states or
model parameters [20]. Instead of using all the observations simultaneously, sequential DA
methods have been developed to recursively update the probability distribution functions
(PDFs) of different quantities of interest each time a new observation becomes available [18].
In this manner the model is optimally initialized for a new prediction, meaning that
the model’s predictive skill can be improved, especially under real-time conditions [21].
Sequential DA adopts Bayes’ theorem that the posterior PDFs of various quantities can be
inferred by conditioning on the corresponding observations [22]. It represents a general
framework, where different sources of uncertainties can all be addressed. A deterministic
data-driven model (e.g., SVR lake level model) can be embedded in the sequential DA
framework, with model and observation uncertainties described as random noises [4]. Such
a framework is an improvement on the conventional calibration procedure that searches
for a single set of model parameters, in the sense that the uncertainties in the model and
observations can be explicitly accounted for [17].

It is acknowledged that incorporating data-driven models into the DA framework
can increase the predictive capacity of the models in applications and greatly delay their
rate of deterioration. This paper aims to exploit the potential of combining SVR with an
established sequential DA method, the unscented Kalman filter (UKF), in the prediction of
lake water level. The hybrid method, SVR+UKF, is applied to the Dongting Lake, the second
largest freshwater lake in China. The SVR water level prediction models for each of the
three representative stations in Dongting Lake were embedded into the DA framework and
applied to the case. The measured water level at the lake hydrological stations were set to be
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continuously assimilated to the water level prediction models. This was done by predicted
water level at one time step using SVR for each of three stations with inputs of remote river
discharges and local water levels at the preceding time steps. The lake level observations
are assimilated into SVR models using UKF at every time step to study the improvement of
the models’ performance over SVR without DA. Given that the lake levels might not be
continuously available in practice, the impact of different assimilation/non-assimilation
cycles on the models’ prediction accuracy is also investigated. The investigation can
provide useful information about the acceptable lead time of the lake level prediction. The
combination of data-driven models with DA approaches for lake water level forecasting
has not, to our knowledge, been reported in the literature. Therefore, this study contributes
to our understanding of the hydrological uses of this hybrid technique.

2. Materials and Methods
2.1. Study Area and Data Collection

Dongting Lake is located in the middle reaches of the Yangtze River in China, it is the
second largest freshwater lake in China and one of the two major river-connected lakes in
the Yangtze River Basin. Dongting Lake receives water from four major tributaries, namely
the Xiang River, Zi River, Yuan River, and Li River, and the incoming water flows into the
Yangtze River at Chenglingji after being impounded by the lake, creating a complicated
confluence of lakes and rivers in the middle sections of the Yangtze River. It plays a
significant part in Yangtze River flood storage: when the water level of the Jing River is
low, the water of Dongting Lake will flow into the Yangtze River, resulting in the “dry
effect”; when the water level of the Jing River is high (mainly occurring in the flood season),
the outlet of Dongting Lake is supported by the Yangtze River, and the drainage of the
lake area is restricted, resulting in the “block effect”. Therefore, water level prediction
research in Dongting Lake is crucial for preventing extremely low water level in the lake,
ensuring the safety of the lake’s water supply and enhancing Dongting Lake’s ecological
environment. This study focuses on the daily water level prediction at three representative
hydrological stations in Dongting Lake: Chenglingji, Yingtian, and Xiaohezui. The study
area is shown in Figure 1.
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Figure 1. Map of the study area, showing (a) its location and (b) the Yangtze River–Dongting Lake
water system. #1—Xiangtan, #2—Taojiang, #3—Taoyuan, #4—Shimen, #5—Gezhou Dam.

Utilizing physical simulation models as prediction tools requires the calibration of
numerous parameters. An alternative way would be a robust data-driven model based
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on evaluating the data about a system and determining links between the system state
variables (input, internal, and output variables) without explicit knowledge of the physical
behavior of the system. In order to simulate the water level of a lake connected to the river,
historical data including inflow, outflow and pre-lake water level are necessary for the
development of a data-based model.

All data-driven models must be trained with acquired data before being evaluated
for simulation. The data used for water level prediction in this study are the average daily
flows of the main tributaries of Dongting Lake, including the Xiang River, Zi River, Yuan
River, and Li River, the average daily flow of the Yangtze River (the sum of the outflow from
Gezhou Dam and Gaobazhou Dam), and the daily 8:00 water levels at the five hydrological
stations in Dongting Lake. Table 1 describes the data characteristics of the water levels in
Dongting Lake, and Figure 2 depicts the time series of river flows. According to the graph,
the hydrological data obtained spans four years (2009–2012). Data from 2010 and 2012
(731 observations in total) had higher flood flows and were utilized to train the model, while
the data from 2009 and 2011 were used to evaluate the performance of the data assimilation
technique; such a data spilt approach enhances the generalization of the model.

Table 1. Statistical characteristics of Dongting Lake water levels.

Station Dataset a Minimum
Value (m)

Maximum
Value (m)

Mean
Value (m)

Standard
Deviation

(m)

Chenglingji Training 20.21 33.40 25.66 3.95
Testing 20.43 30.86 24.13 2.94

Yingtian Training 21.21 33.67 26.69 3.66
Testing 21.32 31.15 25.05 2.75

Xiaohezui Training 27.89 34.93 29.99 1.68
Testing 27.91 31.91 29.27 1.02

Notes: a Training period: 2010 and 2012; testing period: 2009 and 2011.
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2.2. Problem Formulation

Support vector regression-based water level simulation predictions involve multiple
sources of uncertainty, including model structure uncertainty, parameter uncertainty, and
data uncertainty. Sources of uncertainty in data-driven modelling and prediction are shown
in Table 2. To reduce these uncertainties and achieve data assimilation, a model that evolves
over time is required. In discrete time, a state-space model is characterized by a formulation
(or representation) where the model’s state at time t is completely determined by its state at
the preceding time t–1 and (the effect of) external system forcings.

Table 2. Sources of uncertainties in data-driven modeling and prediction.

Type Source

Structural uncertainty Insufficient degree of freedom of the approximator used
Unreasonable input variable selection

Parameter uncertainty Dependency of parameter values on data division
Absence of representativeness of training samples
Difficulty in finding globally optimal parameters

Equifinality problem
Overfitting problem

Data uncertainty Input and output measurement noise
Lack of representativeness

To deal with the time-delayed states, the extended state vector is taken, and the
dynamic equation of the extended state vector is used in the unscented Kalman filter (UKF).
The state of the system (water level) at time t depends on the state of the system at one or
more previous time steps as well as the present or preceding forcing of the system, where
time steps are in days and t is the discretized time.

The water level at a hydrological station can be described as follows:

Lt = fSVR(D1
t−m1

, D1
t−m1−1, . . . , D1

t−n1
, . . . ,

DN
t−mN

, DN
t−mN−1, . . . , DN

t−nN
, Lt−m0 , Lt−m0−1, . . . , Lt−n0)

(1)

where fSVR(•) is a mapping based on support vector regression; Lt is the water level at the
site on day t; Di

t–j (i = 1, . . . , N; j = mi, . . . , ni) is the measured flow at river site #i on day
t−j; Lt–j (j = m0, . . . , n0) is the water level at the site on day t−j.

Lt = fSVR(Lt−1, Lt−2, . . . , Lt−n0 , Dt−1) (2)

where

Dt−1 =
(

D1
t−m1

, D1
t−m1−1, . . . , D1

t−n1
, . . . , DN

t−mN
, DN

t−mN−1, . . . , DN
t−nN

)
,

the corresponding water level dynamics are modelled as

xt = f(xt−1, Dt−1) + qt−1 (3)
Lt

Lt−1
...

Lt−n0+1

 =


fSVR(Lt−1, Lt−2, . . . , Lt−n0 , Dt−1)1 0 0 0

0
. . . 0 0

0 0 1 0

 •
 Lt−1

...
Lt−n0


+


qt−1

0
...
0

 (4)

the corresponding measurement model is

yt = [1 0 · · · 0]xt + rt (5)
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where xt ∈ <n is the state of the system at time step t, qt−1 is the process noise at time step
t—1, rt is the measurement noise at time step t.

In the following study, the SVR model is embedded in the unscented Kalman fil-
ter (UKF) to improve the efficiency of the assimilation simulation at each step, starting
with a brief introduction to the SVR and UKF methods; the flow chart of the study is
shown in Figure 3.
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2.3. Support Vector Regression

Support vector machine regression (SVR) is a model for the application of support
vector machines (SVMs) to regression problems [23]. Let vector (xj, yj), jε{1, 2, 3, . . . , N}
represent the set of observed input and output data. The aim of a data-based model such
as SVR is, in general, to search for a function f (x) as an approximation of the value yi with
minimum risk using only the available independent and identically distributed data. In the
SVR algorithm, the estimation function is determined by a small subset of training samples,
namely support vectors. In this algorithm, a specific loss function called ε-insensitive
loss is also developed to create a sparseness property for SVR. This means that instead
of reducing the empirical error across the training data, SVR minimizes a controlled risk
function, which states that in order to achieve the least risk, simultaneous management
of the model’s complexity and the error due to training data is required (principle of the
structural risk minimization theory). Using SVR for regression analysis, we need to find
a hyperplane; the residual of the data points defining the area within the target is 0, and
the distance from the data points (support vectors) outside the region to the boundary is
the residual (ζ). Similar to the linear model, we want these residuals (ζ) to be minimal.
Therefore, in general, SVR involves identifying the best band region (2εwidth) and then
regressing the points outside of that region, which was shown in Figure 4
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2.4. Unscented Kalman Filter

The Kalman filter (KF) is a well-known data assimilation scheme originally introduced
by Kalman for linear systems [24]. The classical Kalman filter deals with state estimation
for linear processes by updating model predictions using measurements and consists of
two steps: prediction and update.

In the prediction step, the KF algorithm uses linear dynamics to predict the state at
the current time step based on the state estimate from a previous time. In the update step,
the predicted state is refined through weighted combination with observations based on
relative errors. This optimal state is then used to advance to the next step, and so on.

In practice, the Kalman filter is a commonly applied procedure for sequential data
assimilation and has been successfully used to assimilate observations into existing models.
Significant contributions to applications and improvements of KF have been made by many
researchers from various backgrounds, e.g., environmental sciences, oceanography, and
meteorology [13,18,19]. Variations on the original KF algorithm have made it suitable for
use with non-linear problems such as hydrological modelling, leading to the extended
Kalman filter (EKF) [22,25].

In the EKF algorithm, local (tangent linear) approximation of the nonlinear state and
measurement equations is performed each time data assimilation is conducted. However,
the EKF may produce instability or even divergence due to the neglect of the second and
higher order derivatives of the model. Evensen introduced the ensemble Kalman filtering
(EnKF) algorithm as an alternative to the EKF to address difficulties arising from high-
dimensional nonlinear filtering problems [26]. The applicability to nonlinear problems
and easy implementation of the EnKF method has led to extensive applications of this DA
technique in hydrology, meteorology, and other fields [17,21].

In the EnKF method, the Kalman gain matrix is calculated from the error covariances
provided by an ensemble of possible model states that are propagated according to the same
deterministic water quality model. EnkF is suboptimal, i.e., it doesn’t lead to the optimal
state estimate. However, it has the advantage that it is easy to handle large problems
and complex models. The EnKF has the following advantages compared to the KF and
EKF: (1) implicit propagation of the state error covariance, making it suitable for large-scale
problems; (2) does not require model linearization; (3) a limited number of model states are
used and convergence is much faster.

There is another extension of the KF that is widely known: the unscented Kalman filter
(UKF) [27]. The UKF has been developed to overcome the deficiencies of the linearization
in the EKF. It provides a direct and explicit mechanism to transform mean and covariance
information and has been previously shown to be a superior tool to EKF in various aspects,
especially in strongly nonlinear systems [28].

The unscented transformation (UT) is a method for calculating the statistics of a
random variable that undergoes a nonlinear transformation. Like the Taylor series-based
approximation, the unscented transform can be used to form a Gaussian approximation
to the joint distribution of the random variables x and y. One advantage of the unscented
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transform over the Taylor series approximation is that the former is able to better capture
the higher order information of the non-linear transformation. In addition, the unscented
transformation does not require the calculation of Jacobi or Hessian matrices.

The prediction and update schematic for the UKF is shown in Figure 5, where the
prediction steps calculate the predicted state means and covariances:

Xk−1 = [mk−1 · · · mk−1] +
√

c
[
0
√

Pk−1 −
√

Pk−1

]
(6)

X̂k = f(Xk−1, k− 1) (7)

m−k = X̂kwm (8)

P−k = X̂kW
[
X̂k
]T

+ Qk−1 (9)

where Xk is the matrix formed by the sigma points, mk and Pk are the mean and covariance
of the state estimated at time step k (after obtaining the measurement information); wm and
W are process vectors and matrices, respectively; Qk−1 is the process noise at time step k–1.
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The UKF addresses nonlinear problems by using a deterministic sampling approach.
The state distribution is approximated by Gaussian Random Variables (GRVs) but is now
represented using a minimal set of carefully chosen sample points. These sample points
completely capture the true mean and covariance of the GRV and, when propagated
through the true nonlinear system, capture the posterior mean and covariance accurately
to the third order (Taylor series expansion) for any nonlinearity. The EKF, in contrast,
only achieves first-order accuracy. Remarkably, the computational complexity of the UKF
is the same order as that of the EKF. The EKF can be viewed as providing “first-order”
approximations to the optimal terms. These approximations, however, can introduce
large errors in the true posterior mean and covariance of the transformed (Gaussian)
random variable, which may lead to sub-optimal performance and sometimes divergence
of the filter.

Comparing the EnKF and UKF, it has been found that the former has certain limitations
in practice: (1) the EnKF requires the existence of a Jacobi or Hessian matrix, which may
not be satisfied in practical problems; (2) in many cases, the Jacobi or Hessian matrix is
very difficult to compute and is error-prone. Due to these shortcomings of the EnKF, the
UKF has weaker assumptions than the EnKF and achieves better theoretical performance.
Based on the above considerations, this study uses the UKF for the assimilation prediction
of water level data in Dongting Lake.

3. Results and Discussion

In this study, the UKF was employed as the underlying model, and the Dongting
Lake water level data from 2010 and 2012 was chosen as the training set for simultaneous
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parameter optimization. The performance tests with the SVR embedded in the data assimi-
lation framework therefore used data from the test period, i.e., from 2009 and 2011. The
water level prediction models for each of the three representative stations in Dongting Lake
were embedded into the data assimilation framework and applied to both years. Addi-
tionally, the measured water levels at the lake stations were configured to be continuously
assimilated into the water level prediction models.

3.1. Data Assimilation Model Prediction Results

To reflect the improved performance of the Dongting Lake water level prediction
model under the data assimilation framework, the predicted output of the data assimilation
model (labeled SVR+UKF) was compared with the continuous water level prediction results
(labeled SVR) using the model predictions replacing the next one-step measured values for
a continuous period of one year. The comparisons for the three representative stations in
Lake Dongting are shown in Figures 6–8.

From Figures 6–8, the results of the support vector regression’s continuous predic-
tion of water level at each station in Dongting Lake for a continuous period of one year
correspond well with the measured values. Based on the extent of divergence from the
projected water level readings, the Xiaohezui model has the best prediction ability, followed
by the Chenglingji model, while the Yingtian station has the largest prediction error. The
performance of the non-assimilative model for the continuous prediction of Dongting Lake
water levels fluctuated throughout the year. Generally, the accuracy of the non-assimilative
model is better in the low-flow period and the rising and receding water level periods,
while the model accuracy is slightly worse in the high-flow period. As can be seen from
the scatter plots in Figures 6–8, the predictions from the non-assimilation model are rarely
systematically over- or underestimated and deviate ‘stochastically’ from the measured
values across the range of water levels.

The assimilation model achieves better prediction accuracy than the non-assimilation
model, and the performance improvement is significant. The water levels predicted by
the assimilation model are close to the 100% coincidence line, with minimal deviation.
Among the assimilation models for various stations, the Xiaohezui model has the most
accurate predictions, followed by the Chenglingji model, and the Yingtian model has the
least accurate predictions. The above model performance ranking findings are comparable
to the non-assimilation model ranking results, indicating that the higher the accuracy of
the dynamic models in the data assimilation framework, the more accurate the output of
the data assimilation predictions. The prediction accuracy of all the assimilation models
did not vary significantly within the year, indicating that the characteristics of lake level
changes during the prediction period had a relatively weak effect on the performance of the
assimilation models, which could provide stable predictions of the Dongting Lake water
level at different times of the year.

Multiple performance indicators were chosen to assess the accuracy of the assimilated
and non-assimilated Dongting Lake water level prediction models, including the coefficient
of determination R2, the root mean square error (RMSE), and the mean relative error (MRE):

R2 = 1−
n

∑
i=1

(yi − ŷi)
2
/ n

∑
i=1

(yi − y)2 (10)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (11)

MRE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (12)

where yi is the observed value; ŷi is the predicted value; y is the average of the observed
values; and n is the number of observation records.
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Figure 8. Comparisons between Xiaohezui water levels predicted with SVR and SVR+UKF.

To ensure that all variables receive equal weights during the training process, it is
necessary to normalize the raw data. All the data will be normalized between 0 and 1,
so that all the parameters could be assigned equal weights. One popular approach is to
assume that the errors are zero-mean white noise sequences with a normal (i.e., Gaussian)
probability distribution. In addition, it is typically assumed that the model error and
observation error are uncorrelated in order to obtain optimal estimates.
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Table 3 presents the performance assessment results of the assimilated and non-
assimilated Dongting Lake water level prediction models. It can be seen that the prediction
accuracy of the non-assimilated model is in an acceptable range, with the coefficient of
determination R2 varying from 0.975 (Yingtian) to 0.982 (Chenglingji) at different stations,
the RMSE varying from 0.159 m (Xiaohezui) to 0.436 m (Yingtian), and the MRE in the
range of 0.004 (Xiaohezui) to 0.013 (Yingtian). Among the three representative stations in
Dongting Lake, Xiaohezui has the highest prediction accuracy, followed by Chenglingji,
and Yingtian has the lowest, which is comparable to the error distribution of predictions
obtained using the SVR model alone.

Table 3. Performance comparisons between SVR and SVR+UKF.

Station SVR SVR+UKF

R2 RMSE (m) MRE R2 RMSE (m) MRE

Chenglingji 0.982 0.395 0.012 0.999 0.068 0.002
Yingtian 0.975 0.436 0.013 0.999 0.105 0.003

Xiaohezui 0.976 0.159 0.004 0.998 0.042 0.001

The model prediction performance was significantly improved when the actual wa-
ter level measurements at each station were continuously assimilated into the Dongting
Lake water level prediction model using the UKF. According to Table 3, the coefficient of
determination R2 varies from 0.998 (Xiaohezui) to 0.999 (Chenglingji and Yingtian), the
RMSE varies from 0.042 m (Xiaohezui) to 0.105 m (Yingtian), and the MRE varies from
0.001 (Xiaohezui) to 0.003 (Yingtian). The performance ranking results of the assimilation
models for the different sites according to both the RMSE and MRE metrics are consistent
with the previous results.

As the above comparison between the two models was carried out for the long-term
time series of water levels, the models also needed to be evaluated in the short-term series;
in addition, the difference in peak values was an important indicator for model validation.
Therefore, input data from the high water level period (June to August) was selected to
re-run the model and compare predicted and measured values. The comparisons for the
three representative stations in Lake Dongting are shown in Figures 9–11.

The performance evaluation results of the assimilated and non-assimilated Dongting
Lake water level prediction models for the peak water level period are presented in Table 4.
The prediction accuracy of the non-assimilated model is within an acceptable range, with
the coefficient of determination R2 ranging from 0.949 (Chenglingji) to 0.984 (Xiaohezui)
at different stations, the RMSE ranging from 0.103 (Xiaohezui) to 0.487 (Chenglingji),
and the MRE in the range of 0.003 (Xiaohezui) to 0.017 (Chenglingji). Among the three
representative stations in Dongting Lake, Xiaohezui has the best prediction accuracy,
Yingtian has the second highest, and Xiaohezui has the lowest, which is equivalent to the
error distribution of predictions produced using the SVR model alone.

When the actual water levels at each station were continuously incorporated into
the Dongting Lake water level prediction model utilizing the UKF, the performance
of the model prediction was greatly enhanced. According to Table 4, R2 ranges from
0.998 (Yingtian) to 0.999 (Chenglingji and Xiaohezui), RMSE ranges from 0.037 (Xiaohezui)
to 0.116 (Yingtian), and MRE ranges from 0.001 (Xiaohezui) to 0.004 (Yingtian). It is worth
mentioning that the phenomenon that the determination coefficient R2 of the Xiaohezui
model is slightly smaller than that of the models at the remaining two sites is related to the
smaller range of water level fluctuations at these two sites.

From the perspective of the error probability (Figure 12), the prediction errors for the
data assimilation model fluctuate in a smaller range and are more concentrated than those
for the non-assimilation model. For the non-assimilated models at Chenglingji and Yingtian,
the prediction error range is approximately −1 m to 1 m, while for the non-assimilated
model at Xiaohezui, the error range narrows to −0.5 m to 0.5 m. The prediction error
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fluctuation range for the assimilated models at the three aforementioned stations is further
significantly reduced, with the maximum range for the assimilated model at Yingtian being
−0.3 m to 0.3 m.
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Table 4. Performance comparisons between peak water levels with SVR and SVR+UKF.

Station SVR SVR+UKF

R2 RMSE (m) MRE R2 RMSE (m) MRE

Chenglingji 0.949 0.487 0.017 0.999 0.073 0.002
Yingtian 0.961 0.412 0.016 0.998 0.116 0.004

Xiaohezui 0.984 0.103 0.003 0.999 0.037 0.001
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The mean values for the non-assimilated models at Chenglingji and Yingtian are
0.160 m and 0.110 m respectively, while the mean value for the Xiaohezui model is smaller
at 0.060 m. For the assimilated model, the positive and negative distribution of errors
is more even, with the mean value of errors at all sites not greater than 0.024 m. Given
the small fluctuation range of errors for the assimilated model, the standard deviation of
errors is also smaller. The standard deviation of the error is also smaller than that of the
non-assimilated model. The maximum values of the standard deviation of errors for the
assimilation and non-assimilation models were 0.104 m and 0.422 m at the three stations,
respectively, and the model with the largest standard deviations was the Yingtian model.

3.2. Further Model Testing

The data-driven model requires further analysis of the performance from different
perspectives after it has been built due to the rapid deterioration and lack of stability. An
important aspect for water level prediction is the ability to respond to missing data. For
example, when a water level monitoring instrument fails to transmit data to the model
and it can’t be repaired immediately, the lack of data will continue for some time; the
model’s performance in this case also represents its ability to maintain stable prediction in
extreme circumstances.

We define Ta as the number of data that can be assimilated at one time in a cycle
and Tnon as the number of missing data after one assimilation in a cycle (e.g., 1 for data
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transmission, 0 for no data transmission, Ta = 2 and Tnon = 1 when the data is transmitted in
the format 110110110 . . . , and Ta = 3 and Tnon = 2 when the format is 111001110011100 . . . ).
During the application period of the model, predictions are made for each day and the
model is specifically pre-warmed up using the Ta/Tnon cycle.

Figures 13–15 provide the error analysis for the three representative stations with
varying values of Ta and Tnon. The results show consistent patterns and trends: when Ta
is certain, the prediction accuracy decreases as Tnon increases, i.e., as more missing data
are transmitted in a cycle, the overall accuracy of the model will continue to decrease;
when Tnon is certain, the prediction accuracy increases as Ta increases, i.e., when the more
data are continuously transmitted for assimilation in a cycle, the more the accuracy of
the model will increase. Notably, the performance of the model with Ta = 1 (green line)
is significantly worse than with Ta ≥ 2, and it fluctuates dramatically, indicating that the
periodic transmission of only one datum is unfavorable to the assimilation model and that
it is essential to ensure that two or more data are transmitted to the assimilation model.
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Figure 13. SVR+UKF performance under different assimilation/non-assimilation cycles at Chenglingji.
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Figure 14. SVR+UKF performance under different assimilation/non-assimilation cycles at Yingtian.
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Figure 15. SVR+UKF performance under different assimilation/non-assimilation cycles at Xiaohezui.

Another indicator that is vital for water level prediction is the prediction lead time,
which enables management to make decisions in advance. For each day of the model
application period described above, Ta data were assimilated before the prediction, and
after the prediction was completed for that day, the data were not assimilated and the
forecast values were utilized to continue the prediction. For each of the three sites, the error
evaluation criteria were set according to their prediction error characteristics, i.e., the upper
quartile of prediction error reached 0.1 m/0.2 m/0.2 m before the model was able to run
for several time steps (days) with different assimilated data; Figure 16 demonstrates that
the time lead time for all three sites exhibited a significant positive correlation with Ta. The
Xiaohezui model can achieve a lead time of approximately 10 days, with an upper quartile
of prediction error of less than 0.1 m, followed by the Chenglingji model with an upper
quartile of prediction error of less than 0.2 m. The lead time for Ta ≥ 2 is 6–9 days, and the
Yingtian model performed poorly, with a lead time of 5–7 days for conditions where the
upper quartile of prediction error was less than 0.2 m (Ta ≥ 2).
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Figure 16. Lead time of SVR+UKF for Dongting Lake water level prediction.

Data-driven approaches are potent tools for fitting links between design variables
and prediction targets, employing fewer conditions and fitting them more effectively than
conventional physical models. The accuracy of data-driven models is affected by structure,
parameters, and data uncertainty, which causes data-driven models to degrade rapidly in
comparison to classic physical models when predicting lengthy series [29,30]. Recurrent
neural networks (RNNs) and data assimilation (DA), among other data-driven methods, are
frequently employed to overcome this challenge. RNNs may formulate weights using past
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data and have an advantage when learning non-linear sequence characteristics. However,
due to the gradient explosion or gradient disappearance problems, RNN cannot have too
long a time series, resulting in RNN networks that can only support short-term but not
long-term memory [14,31]. It was found that embedding data-driven models into DA
techniques can significantly improve predictions and reduce the rate of deterioration [21].
The unscented Kalman filter is one of the DA techniques based on the unscented transform,
discarding the traditional approach of linearizing non-linear functions and employing
a Kalman linear filtering framework that does not linearly ignore higher order terms in
advance, resulting in a more precise computation of non-linear distribution statistics [28].

In this study, the SVR model was added to the DA framework to significantly improve
the prediction accuracy. According to the performance evaluation results of the assimilated
and non-assimilated Dongting Lake water level prediction models in Table 3, it can be
seen that from the non-assimilated model to the assimilated model, the coefficient of
determination R2 improved from 0.982 to 0.999 for Chenglingji, from 0.975 to 0.999 for
Yingtian, and from 0.975 to 0.998 for Xiaohezui; Chenglingji’s RMSE decreased from 0.395 m
to 0.068 m, Yingtian from 0.436 m to 0.105 m, and Xiaohezui from 0.159 m to 0.042 m, all
of which significantly improved the model’s predictive capability in practical application
scenarios. This data assimilation method is equally applicable to other artificial neural
network (ANN) methods and can be extended by coupling them.

Although DA+SVR has made significant improvements to prediction model accuracy
and prediction days, DA+SVR is still in the realm of data-driven methods, and the underly-
ing model is still SVR, which has applicability for systems with constant (relatively static)
laws, with the drawback that, consistent with traditional ANNs, it does not respond well
to changing systems, and in realistic situations there may be long periods of non-existence
of the expected assimilated data.

4. Conclusions

This study chose to embed the SVR into the UKF model to evaluate its potential for
modeling lake water levels, comparing lake level estimates with the model employing only
the SVR and drawing the following conclusions: (1) The SVR+UKF model outperformed
the SVR model regardless of the assimilated time scale. (2) The prediction performance of
the assimilated model is unaffected by the characteristics of lake level variations during the
prediction time period and is able to retain its consistency. (3) The assimilation model’s
prediction error has a narrower fluctuation range and a larger concentration than the non-
assimilation model. (4) For assimilation, it is preferable to have at least two consecutive
data, which is advantageous for error indicators and prediction lead time. The results show
that the data assimilation method provides an alternative for coupling data-driven models
that can improve the predictive capability of the model in practical application scenarios.
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