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Abstract: Quantitative assessment of the frequency and magnitude of drought events plays an 

important role in preventing drought disasters and ensuring water security in river basins. In this 

paper, we modified a parsimonious two-parameter monthly water balance (TPMWB) model by 

incorporating the generalized proportionality hypothesis with precipitation and potential evapo-

transpiration as input variables. The modified TPMWB was then used to simulate the monthly 

hydrological processes of 30 sub-basins in the Han River basin. It is shown that the water balance 

model can satisfactorily simulate the hydrological regimes in the selected sub-basins. We derived 

the probability distribution functions of monthly runoff using the principle of maximum entropy 

to calculate the Standardized Runoff Index (SRI), and assessed the historical hydrological drought 

conditions. By investigating the correlation between four major drought characteristics (i.e., 

drought duration, drought severity, drought intensity, and drought inter-arrival time) and four 

dimensionless parameters representing the climatic and underlying properties of the basin, a con-

clusion can be drawn that the formation and development of hydrological drought in the Han 

River basin is mainly controlled by watershed storage factors, and the influence of climatic factors 

is also significant. The proposed approach provides a potential alternative for regional drought 

early warning and under changing environmental conditions. 

Keywords: hydrological drought; Standardized Runoff Index; two-parameter monthly water bal-

ance model; Han River basin 

 

1. Introduction 

Drought is a natural hazard that causes huge damage not only to aquatic and ter-

restrial ecosystems, but also to many economic and social sectors such as agriculture, 

transportation, and urban water supply. With persistent global warming, droughts have 

been dramatically increased in terms of frequency and intensity in many parts of the 

world [1–6]. Moreover, increasing pressure of water demand caused by growth in pop-

ulation and expansion of agricultural, energy, and industrial activities will doubtlessly 

aggravate water scarcity around the world [7–11]. 

To objectively quantify the characteristics of droughts (e.g., severity, duration, re-

turn period), much effort has been devoted to develop robust drought indices for opera-

tional use in drought monitoring and early warning [12]. Frequency analysis of 

drought-related meteorological or hydrological variables is the most convenient tool to 

provide information about drought magnitude and risk. The Standardized Precipitation 
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Index (SPI) is probably the most popular frequency analysis-based drought index across 

the world [13]. Following the framework, Tsakiris and Vangelis [14] and Vicente-Serrano 

et al. [15] proposed, respectively, the similar Reconnaissance Drought Index (RDI) and 

Standardized Precipitation Evapotranspiration Index (SPEI) to include the effects of 

temperature variability on drought assessment. When a lack of precipitation develops 

into a period with insufficient surface or groundwater resources, a hydrological drought 

is formed, which is likely to reduce the reliability of water supply for urban drinking, ir-

rigation, and hydropower generation, and threatens the survival of fish and hampers 

navigation [16]. The high dependence of ecosystem and socio-economy on available wa-

ter resources and the destructive consequences resulting from water shortage have 

promoted hydrological drought research [17–20]. Thus, a variety of hydrological drought 

indices have been derived by applying the same theoretical background of the SPI based 

on observed surface/sub-surface flow or water level data series, e.g., the Streamflow 

Drought Index (SDI) [21], the Standardized Streamflow Index (SSI) [22], and the Stand-

ardized Groundwater Level Index (SGI) [23]. 

Unlike the arid climate that controls the long-term climatic variation in specific re-

gions, it is currently widely accepted that drought is a temporary water shortage situa-

tion related to an unbalanced hydrological cycle, and may occur at any temporal and 

spatial scale. Thus, drought indices that proposed simply relying on single meteorologi-

cal or hydrological variables seem to be insufficient when depicting the dynamic evolu-

tion of droughts [24,25]. For mitigating the devastating impacts of droughts on the 

management of water resources, more attention must be given to understanding the 

triggering mechanisms, critical thresholds, and driving factors of droughts by tracking 

back to the hydrological processes. Owing to the fast development of various hydrolog-

ical models, rainfall–runoff simulation provides an alternative to constructing practical 

drought indicators by incorporating the water balance perspective. Palmer [26] first 

proposed the famous Palmer Drought Severity Index (PDSI) by comparing the actual 

precipitation with the estimated water demand, that is, the so-called “climatically ap-

propriate precipitation for existing conditions” based on a double-layer soil monthly 

water balance model. Shukla and Wood [27] claimed that modeled runoff is more suita-

ble to derive hydrological drought indices for quantitative drought identification and 

assessment, and proposed the Standardized Runoff Index (SRI), which is based on the 

same calculation procedure as SPI after accumulating daily runoff modeled by the mac-

ro-scale Variable Infiltration Capacity (VIC) model to several multi-month scales. More 

recently, Staudinger et al. [28] proposed a Standardized Snow Melt and Rain Index 

(SMRI) to jointly consider both rain and snowmelt deficits in snow-influenced catch-

ments. 

There are at least three advantages of these model-based drought indices. Firstly, 

future hydrological drought regimes can be forecasted considering both the seasonality 

and initial condition of runoff generation, which is exactly the shortcoming of most me-

teorological drought indices. Secondly, compared with most post-processing streamflow 

naturalization methods, applied to remove potential intervention such as human activi-

ties, calibrated hydrological models are more desirable for real-time simulation cases 

[27]. Lastly, by incorporating the meteorological inputs and runoff generation processes, 

model-based hydrological drought indices can be more suitable for investigating the 

impacts of climate or/and other changes on moisture shortage propagation and evolution 

across the hydrological cycle. 

The response time interval for the river system to meteorological anomalies and the 

minimum duration of droughts usually last to several months. Thus, rainfall–runoff 

models with a rough time scale, such as monthly water balance models, seem to be 

promising for regional hydrological drought assessment. During the last few decades, 

monthly water balance models have been proposed for different purposes with consid-

eration for achieving more physical soundness while preserving acceptable complexity 

[29–33]. Taking the advantages of their inherent parsimony in terms of data inputs, 
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model structures, and parameters, these monthly water balance models have been 

widely applied in water resources estimation, streamflow forecasting, climate change 

impact assessment, and hydraulic project design [34,35]. Though month-scale rain-

fall–runoff models generally do not separate the runoff generation and routing processes, 

it is acceptable for drought monitoring and assessment since it can remove most sto-

chastic effects existing in short-term hydrological simulation. Vasiliades et al. [36] and Li 

et al. [37] applied the UTHBAL model and a two-parameter water balance model, re-

spectively, to analyze the historical hydrological drought conditions of several 

sub-watersheds. However, the availability and effectiveness of such water balance mod-

el-based hydrological drought indices have not yet been widely tested. Further, few 

studies have focused on exploring the interrelations between drought characteristics and 

watershed features (both climate and underlying surface properties), which control the 

regional drought evolution. 

The aim of this paper is threefold: (1) to propose a parsimonious conceptual monthly 

water balance model for runoff simulation and test its applicability with a large set of 

watersheds, (2) to calculate retrospective hydrological drought index series and analyze 

historical drought characteristics for these watersheds, (3) to evaluate the correlations 

among major drought characteristics and several representative indicators representing 

the watershed climatic and underlying land surface features. The rest of this paper is 

organized as follows: in Section 2, the methods used in this study are presented, followed 

in Section 3 by a brief introduction of the study area and data set. The results and dis-

cussion are then provided in Section 4. The conclusion is given in Section 5. 

2. Methodology 

2.1. Modified TPMWB Model 

Provided the suitability of a monthly time scale for drought analysis, a revised ver-

sion of a parsimonious two-parameter monthly water balance model (TPMWB) proposed 

by Xiong and Guo [29] was applied to transform climatic inputs into runoff through 

catchment hydrological response. 

In the previous TPMWB model, two major modules, i.e., the estimation of actual 

monthly evapotranspiration (Equation (1)) and the generation of monthly runoff (Equa-

tion (2)), are integrated in the model as follows, yielding two parameters to be calibrated: 
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where Et, PEt, Pt, and Qt represent the monthly actual evapotranspiration, potential 

evapotranspiration, rainfall, and runoff at the t-th month, respectively. NSt is the gener-

alized effective/net water storage for generating runoff in the month, which can be cal-

culated as (GSt−1 + Pt − Et) with GSt−1 being the generalized water content at the end of the 

(t − 1)-th month and the beginning of the t-th month, all with a unit of millimeter. tanh(∙) 

is the hyperbolic tangent function. After the runoff generation, the water content at the 

end of the t-th month was calculated according to the water conservation law (Equation 

(3)). C is a dimensionless parameter used to account for the effect of time-scale transfor-

mation, while SC is the second parameter representing the maximum soil water capacity 

of the catchment with a unit of millimeter. Note that water holding capacities of 

groundwater and unsaturated zone storage were not separated in order to keep the 
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model structure simple without deviation from the runoff formation mechanism at a 

monthly time scale. 

The TPMWB model has proved to be quite efficient in simulating monthly runoff in 

many small and medium basins [29,37,38]. However, the mathematical derivation of 

dQ/dNS can be larger than 1.0 when NS/SC > 0.64 [30], and calibrated SC values are too 

large for some watersheds when considering its similar definition with field capacity 

[39], both of which to a certain extent weaken the physical soundness of the model. 

In the so-called Darwinian hydrological model framework [40], the generalized 

proportionality hypothesis has been identified as a commonality across a wide range of 

time scales [41]. Referring to this assumption, we attempt to modify the runoff generation 

module in the original TPMWB model by simulating the underlying competing rela-

tionship between soil water storage GSt and runoff Qt from water availability NSt, as 

follows: 

SC

GS

NS

Q t

t

t   (4)

Combining Equations (1), (3), and (4), the full expression of monthly runoff can be 

calculated by: 
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The parameters of the modified TPMWB model are calibrated using the Particle 

Swarm Optimization algorithm (PSO) [37]. Two criteria are used to justify the perfor-

mance of the proposed model, that is, the Nash–Sutcliffe efficiency criterion (NSE) and 

the mean relative error (RE) of the volumetric fit between the observed runoff series and 

the simulated series, given as: 
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where Qobs,i and Qsim,i is the observed and simulated runoff, respectively, Qobs is the mean 

value of Qobs,i, and n is length of calibration/validation period. 

2.2. Calculation of Standardized Drought Index 

Hydrological drought indices based on frequency analysis are commonly calculated 

by fitting an assumed theoretical probability density function (PDF) to the hydrological 

series summed/averaged over a time scale of interest to estimate the non-exceedance 

probability of flow data. The cumulative probability is then transformed into a unit 

standard normal deviance (quantile) to allow spatial or temporal description and com-

parison of drought condition. To evaluate the applicability of the modified TPMWB 

model in assessing hydrological droughts, we use the Standardized Runoff Index (SRI) 

proposed by Shukla and Wood [27]. The simplicity and predictability of this mod-

el-simulation runoff-based drought index have fueled its popularity around the world 

[42–46]. 

The procedure for calculating SRI includes the following three steps. Firstly, the time 

series of monthly runoff of each sub-basin is obtained by continuous hydrological simu-

lation. Secondly, the runoff data of each month are abstracted, and the cumulative 

probability of the runoff is estimated from a theoretical PDF. It should be noted that the 
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probability distribution of simulated monthly runoff Qsim,t (t = 1, 2,..., 12) is of concern and 

hereafter denoted as Q for short. In this paper, the traditional curve-fitting method is 

applied to model the theoretical PDF of simulated monthly runoff. Considering the sig-

nificant skewness of monthly runoff series, especially in the dry season, together with 

the potential huge difference among runoff distributions in different months [22], a uni-

form distribution derived based on the principle of maximum entropy (POME) is 

adopted to fit the empirical frequencies of monthly runoff, without presupposing any 

PDF of underlying distributions [47,48]. 

Boltzmann entropy was introduced by Shannon to quantitatively measure the un-

certainty of a random variable [49]. If the PDF of the random variable, referred to 

monthly runoff Q is fQ(q), then the Shannon entropy H(q) is defined as follows: 

     dqqfqfqH

b

a

QQ ln  (8)

where a and b are the upper and lower bounds of the integral interval of Q, respectively. 

The POME describes the process of selecting the PDF which fits the observed data 

with minimal deviation among all compatible distributions, as the one that can maxim-

ize the Shannon entropy, subject to certain constraints. Constraints in the form of 

low-order original or central moments are probably the most popular, given their struc-

tural flexibility and solution reliability [3,50–52]. In this paper, the first three original 

moments were adopted as constraints for maximizing Equation (8), thus the entro-

py-based PDF should be specifically restrained as follows: 

  1 dqqf
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where qi (i = 1, 2, 3) are the first to third power of q, while qi (i = 1, 2, 3) are correspond-

ing sampling original moments of q. 

To maximize the Shannon entropy (Equation (8)) subject to the constraints specified 

by Equations (9) and (10), the Lagrange multipliers method [3] was adopted, and then 

the PDF of runoff in each month is derived as: 
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The Lagrange multipliers can be obtained by solving the minimization problem of 

the following convex functions [53]: 
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where E[qi] (i = 1, 2, 3) are the expectations of qi obtained from observations. The New-

ton–Raphson method was then employed to iteratively calculate the Lagrange multipli-

er. 

In this way, a more uniform theoretical PDF of monthly runoff fQ(q) is constructed 

by making maximum use of the information collected from the simulated runoff data 

while avoiding redundant information as much as possible. Once the PDF is deter-



Water 2022, 14, 3715 6 of 20 
 

 

mined, the cumulative distribution function (CDF) can then be estimated by integrating 

the PDF as follows: 

     dqqfqQqF

q

QQ 

0

Pr  (13)

Finally, the cumulative probability was transformed into a standardized normal 

deviance of the normal CDF: 

  qFSRI Q
1  (14)

where Φ−1(∙) is the inverse of a standard normal CDF. 

For comparatively evaluating the capability of the modeled runoff to reconstruct the 

historical drought condition, the SDI calculated from observed monthly streamflow se-

ries [21] is also applied to model hydrological drought events in the study area. Likewise, 

the POME distribution is selected as the theoretical PDF for observed monthly stream-

flow data. The standardized nature of SRI and SDI removes the spatial and temporal 

differences among regions, thus making them suitable for multiple time-scale analysis. 

Accumulation of time scale, however, attenuates the modeling errors during continuous 

runoff generation. To compare the difference between these indices in estimating 

streamflow quantiles under a more significant circumstance, only a one-month time 

scale is employed in this study. 

2.3. Identification of Drought Events and Characteristics 

After obtaining the SRI (or SDI) series, drought events and corresponding charac-

teristic variables can be extracted by means of the Run Theory [54,55]. A drought event is 

defined as a consecutive time period with SRI/SDI values lower than a pre-set threshold, 

which is determined as zero in this paper considering its standardized nature [18], as 

well as to obtain sufficient samples of drought events with limited hydrological data (see 

Figure 1). Characteristic variables that constitute a drought event include: 

(1) Drought duration (D) is defined as the time period between the initiation and 

termination of a drought, with continuous SRI/SDI values below the critical level with a 

unit of month. 

(2) Drought severity (S) is the dimensionless cumulative deficiency of the SRI/SDI 

value below the critical level within a drought event. 

(3) Drought intensity (I) is the average value of the SRI/SDI below the critical level 

within the drought duration, which can be estimated as the drought severity divided by 

the duration. 

(4) Drought inter-arrival time (L) is the time gap between two initiation moments of 

adjacent droughts. 

 

Figure 1. Definition of drought characteristics using Run Theory. 
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2.4. Correlation Analysis between Drought Characteristics and Watershed Features 

The occurrence and evolution of hydrological drought events are simultaneously 

affected by complicated land–atmosphere coupled process and water storage capability 

of the catchment (including both groundwater storage and unsaturated zone storage). 

Construction of the rainfall–runoff model makes it possible to analyze the driving forces 

and main influencing factors of hydrological droughts. 

In this study, we selected four representative indicators of watershed climatic and 

underlying surface features. Firstly, the Aridity Index (AI, AI = PE/P), defined as the ratio 

of mean annual potential evapotranspiration PE and mean annual rainfall P of a catch-

ment, is adopted. Then, to link the calibrated physical parameter with observed hydro-

logical element, the Basin Storage Index (BI, BI = SC/Q), defined as the ratio of the max-

imum soil water capacity SC (one of the parameters of the TPMWB) and the mean annual 

runoff Q, is derived to evaluate the capability of the catchment to store and regulate 

runoff. Since the model proposed in this paper does not separate the base flow from the 

runoff, this indicator can be regarded as an alternative to the traditional Base Flow Index 

(BFI) [56]. The third indicator also depends on the structure of the TPMWB, that is, the 

time-scale transformation parameter C. According to Hu et al. [39], C is a regionally spe-

cific parameter, which can be seen as the maximum ratio of monthly actual evapotran-

spiration and potential evapotranspiration in a catchment, influenced by land use, vege-

tation coverage, etc. Finally, the annual Runoff Coefficient (RC, RC = Q/P), defined as the 

ratio of the mean annual runoff Q and the mean annual rainfall P, is employed. 

Among the selected indices, the AI is mainly controlled by catchment climate, while 

BI can be regarded as the reflection of the regulating ability of the watershed’s underly-

ing surface. Additionally, C and RC are comprehensive indicators informing the impacts 

of both climatic and underlying land surface features. The linear correlation analysis is 

applied to assess the interrelationships of different drought characteristics and watershed 

features, while the coefficient of determination R2 is used to investigate the strength of 

coupling. 

3. Study Area and Data 

3.1. Study Area 

The Han River, located with 106~114° E and 30~34° N, is the largest tributary in the 

middle reach of the Yangtze River. Flowing southeastward from its source on the south-

ern slope of the Qinling Mountains, the river passes through several provinces in central 

China, and finally pours into the Yangtze River at Wuhan City, with a mainstream length 

of 1577 km and a drainage area of more than 159,000 km2 (see Figure 2). The Danjiangkou 

(DJK) reservoir divides the whole basin into an upper and a mid-lower sub-basin. A 

sub-tropical monsoon climate and the varying topography from high mountains in the 

upper reach to relatively flat plains in the lower give rise to dramatic spatial–temporal 

diversity of water resources distribution in this area. 

There have been some studies revealing a very dry period after 1990s in the Han 

River basin [57] and a decreasing trend of precipitation in the future over the upper basin 

[58]. The Hang River is also the water source for the middle route of the well-known 

South-to-North Water Diversion Project (SNWDP) in China. Since the capacity of water 

diversion depends greatly on the water availability of the water source area, fully un-

derstanding drought characteristics in the Han River basin is of great importance for ef-

ficient water resources management and planning. 
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Figure 2. Topography and hydrological stations in the Han River basin. 

3.2. Data 

Hydrological data used in this study include monthly precipitation, monthly po-

tential evapotranspiration (represented by pan evaporation), and monthly streamflow 

from 30 sub-basins located within the Han River basin, as shown in Figure 2. The main 

characteristics of these sub-basins are listed in Table 1. All data series used cover a time 

period from the 1950s to 1980s, with a minimum length of more than 20 years to ensure 

the representativeness of the data. Additionally, the data have not been extended beyond 

1990 to keep the stationary assumption of data; the rapid economic development that has 

taken place in China since 1990, characterized by large-scale land use change and sharp 

increase in water consumption for living and production, has dramatically altered the 

hydrological regimes in the Han River basin [59]. 

Monthly precipitation, pan evaporation, and streamflow records were collected 

from hydrological almanacs compiled by the Bureau of Hydrology of Changjiang 

(Yangtze River) Water Resources Commission of China. The areal mean precipitation of 

each sub-basin was obtained by using the Thiessen polygon method, while pan evapo-

ration and streamflow data at the hydrological station of each sub-basin were directly 

adopted. 
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Table 1. Data information for the studied sub-basins. 

No. Watershed 
Area 

(km2) 
Data Period 

P 

(mm∙yr−1) 

PE 

(mm∙yr−1) 

Q 

(mm∙yr−1) 

AI 

(-) 

RC 

(-) 

1 Baitugang 1134 1963–1989 923 864 389 0.94 0.42 

2 Baiyan 690 1965–1989 779 708 286 0.91 0.37 

3 Bandian 425 1955–1989 742 896 176 1.21 0.24 

4 Caodian 683 1960–1987 1142 1205 443 1.06 0.39 

5 Chadianzi 1683 1967–1989 868 624 319 0.72 0.37 

6 Chaiping 2364 1969–1989 845 880 369 1.04 0.44 

7 Dazhuhe 2651 1968–1989 1229 735 899 0.60 0.73 

8 Guihuayuan 1275 1964–1989 859 721 446 0.84 0.52 

9 Houhui 816 1958–1989 902 849 318 0.94 0.35 

10 Huayuan 2601 1964–1987 1113 1207 356 1.08 0.32 

11 Jiajiafang 1281 1960–1989 839 885 279 1.05 0.33 

12 Jiangwan 781 1959–1989 849 890 309 1.05 0.36 

13 Kouzihe 421 1963–1989 863 865 316 1.00 0.37 

14 Lianghekou 2816 1967–1989 889 716 438 0.81 0.49 

15 Miping 1404 1967–1989 794 875 209 1.10 0.26 

16 Nankuanping 3936 1965–1989 773 869 264 1.12 0.34 

17 Nanshahe 243 1967–1989 1208 585 705 0.48 0.58 

18 Pingshi 748 1960–1989 975 1010 336 1.04 0.34 

19 Qingfeng 2082 1963–1989 931 875 298 0.94 0.32 

20 Qingniwan 1377 1965–1989 798 869 293 1.09 0.37 

21 Shengxiancun 2143 1961–1988 890 738 414 0.83 0.47 

22 Sheqi 1044 1966–1989 796 981 200 1.23 0.25 

23 Shuhe 581 1969–1989 881 851 391 0.97 0.44 

24 Taikou 2073 1965–1989 883 888 466 1.01 0.53 

25 Tiesuoguan 433 1966–1989 1106 632 611 0.57 0.55 

26 Wanyugou 560 1965–1989 1013 996 494 0.98 0.49 

27 Wuguan 724 1959–1989 772 888 227 1.15 0.29 

28 Xianhekou 772 1966–1989 974 733 489 0.75 0.50 

29 Xinzhou 4660 1964–1989 1055 830 598 0.79 0.57 

30 Youshuijie 911 1961–1989 939 734 536 0.78 0.57 

4. Results and Discussion 

4.1. Performance of the Modified TPMWB Model 

To test the performance of the proposed TPMWB model, the historical record of each 

sub-basin was divided into two parts, i.e., calibration period and validation period. The 

lengths of validation period were set to be equally the last 5 years for all sub-basins, while 

the remaining data were used to calibrate parameters of the TPMWB model. 

The NSE and RE indicators during the validation period in each sub-basin were 

calculated and are listed in Table 2. The average value of NSE for the 30 sub-basins in the 

Han River basin is 0.82, with a range from 0.74 to 0.88, while the mean value of RE is 

10.7%, ranging from 1.2% to 30.4%. In general, the performance of the proposed modified 

TPMWB model is reasonably satisfactory and competitive with that of the previous ver-

sion proposed by Xiong and Guo [29]. 
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Table 2. Calibrated TPMWB model parameters and performance criteria for the studied 

sub-basins. 

No. Watershed C (-) SC (-) NSE (%) RE (%) 

1 Baitugang 0.94 300.63 0.83. 10.4 

2 Baiyan 0.98 301.01 0.75 12.8 

3 Bandian 1.14 301.11 0.80 4.1 

4 Caodian 0.85 302.08 0.84 15.5 

5 Chadianzi 1.23 300.61 0.85 21.9 

6 Chaiping 0.76 302.35 0.86 10.2 

7 Dazhuhe 0.36 301.84 0.84 7.7 

8 Guihuayuan 0.62 300.63 0.74 11.0 

9 Houhui 1.03 302.78 0.82 7.8 

10 Huayuan 0.95 302.08 0.81 15.2 

11 Jiajiafang 1.03 390.16 0.80 1.8 

12 Jiangwan 1.00 512.38 0.78 2.7 

13 Kouzihe 1.02 301.83 0.86 14.4 

14 Lianghekou 1.22 302.35 0.83 18.7 

15 Miping 1.15 300.93 0.81 5.7 

16 Nankuanping 0.93 300.63 0.84 12.2 

17 Nanshahe 0.91 301.81 0.86 17.8 

18 Pingshi 1.00 300.63 0.75 13.1 

19 Qingfeng 1.09 303.66 0.80 2.1 

20 Qingniwan 0.90 305.02 0.85 12.3 

21 Shengxiancun 0.86 301.01 0.76 30.4 

22 Sheqi 1.13 306.95 0.88 5.9 

23 Shuhe 0.89 300.63 0.86 4.6 

24 Taikou 0.73 305.02 0.81 1.2 

25 Tiesuoguan 0.85 300.63 0.86 22.1 

26 Wanyugou 0.75 300.93 0.86 5.8 

27 Wuguan 1.09 302.08 0.82 6.7 

28 Xianhekou 0.67 302.08 0.81 13.2 

29 Xinzhou 0.69 303.13 0.82 3.8 

30 Youshuijie 0.65 300.31 0.86 10.6 

Ave. 0.91 311.91 0.82 10.7 

Min. 0.36 300.31 0.74 1.2 

Max. 1.23 512.38 0.88 30.4 

There are clear differences in terms of the combination of climate (represented by the 

Aridity Index AI, see Table 1) and topography conditions among the study areas. Hence, 

four representative sub-basins, Sheqi, Taikou, Wanyugou, and Youshuijie, were selected 

for further comparison based on their AI values, catchment areas, and topography. The 

observed and simulated monthly runoff hydrographs at the four selected outlets of the 

sub-basins are shown in Figure 3 for a more visual demonstration of the simulation abil-

ity of the proposed model. It is obvious that the modified TPMWB model can success-

fully capture the variability of the runoff processes in these areas quite well. 
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Figure 3. Observed and simulated monthly runoff hydrographs at: (a) Sheqi; (b) Taikou; (c) 

Wanyugou; (d) Youshuijie. 
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It can also be informed from Table 2 that most calibrated C parameter values are 

scattered around unity, which reflects their roles in adjusting the inter-relationship 

among Et, PEt, and Pt, in consideration of a time-scale transformation from year to month. 

For the SC parameter, very robust SC values are obtained through the optimization pro-

cedure with almost all calibrated SC values distributing around 300 mm, except for a few 

outliers such as the Jiajiafang and Jiangwan sub-basins. It is shown that the SC parameter 

contains a wealth of information related to underlying surface properties of the catch-

ment. Given the acceptable performance of the modified TPMWB model, it can be used 

to reproduce or predict the hydrographs of calibrated sub-basins with confidence. 

The modified TPMWB model strengthens the physical base of the previous version 

[29] by solving the unrealistic condition that dQ/dNS may be larger than 1.0 when NS/SC 

increases to a threshold. Additionally, the calibrated SC values are much smaller com-

pared to the early parameter set with similar homogeneity [29]. 

4.2. Hydrological Drought Assessment Based on Standardized Drought Indices 

4.2.1. Calculation of Standardized Drought Indices 

After estimating the PDF parameters of runoff distributions using the POME 

method, theoretical cumulative probabilities and standardized normal quantiles calcu-

lated from curve-fitted observed/simulated monthly runoff distributions for different 

months were obtained; therefore, the SDI and SRI series for each sub-basin were con-

structed. 

Comparison between historical SDI and SRI series of the selected four sub-basins 

are shown in Figure 4. It can be found that the SRI series calculated using monthly runoff 

simulated by the modified TPMWB model capture several severe drought episodes, 

which is in accordance with the fluctuation of SDI, especially in dry months whose values 

are less than zero. For example, severe droughts (DEs) during 1966–1967, 1971–1972, 

1973–1974, 1974–1975, 1976–1977, 1978–1979, and 1986–1987 at Sheqi can be recognized 

from both the SRI and the SDI series, together with identification of drought events 

during 1966–1967, 1980–1981, and 1986–1987 at Taikou, during 1965–1967, 1978–1979, 

and 1986–1987 at Wanyugou, during 1965–1967, 1972–1973, 1977–1978, 1979–1980, and 

1986–1987 at Youshuijie. 
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Figure 4. Standardized hydrological index series calculated from simulated runoff (SRI) and ob-

served streamflow (SDI) at: (a) Sheqi; (b) Taikou; (c) Wanyugou; (d) Youshuijie. 

4.2.2. Drought Characteristics (DC) Analysis 

Comparisons of the relative bias (RB = [DCSRI − DCSDI]/DCSDI) of drought character-

istics between the SRI and SDI are shown in Table 3. It is found that the occurrence of 

drought events estimated by SRI (43.13 times on average) is less frequent compared with 

that estimated by SDI (48.19 times on average), with a mean RB of −9.7%. We can also 

notice that the average drought duration (E[D]) for most sub-basins are, however, over-

estimated by the SRI as the mean E[D] calculated from SRI for the 30 sub-basins (4.03 

months) is obviously longer than that from SDI (3.44 months) with a mean RB of 18.1%. 

Moreover, the maximum relative error of E[D] reaches 54.6%. This is similar for the av-

erage inter-arrival times (E[L]) with a mean and maximum RB of 11.7% and 41.5%, re-

spectively. In fact, a few short and minor droughts would be removed, while several 

dependent droughts would be combined to a larger independent drought event when 
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extracting drought events from the SRI series, since continuously simulated runoff series 

may eliminate the random fluctuations in observation series. 

Table 3. Comparisons of the statistical drought characteristics for the sub-basins. 

No. Watershed 
Number (Times) E[D] (Month) E[S] (-) E[I] (-/Month) E[L] (Month) 

SRI SDI RB(%) SRI SDI RB(%) SRI SDI RB(%) SRI SDI RB(%) SRI SDI RB(%) 

1 Baitugang  50 53 −5.6 3.42 3.29 4.0 2.53 2.34 8.0 0.53 0.67 −21.3 6.42 6.04 6.3 

2 Baiyan 44 48 −8.8 3.70 3.23 14.6 2.69 2.40 11.9 0.51 0.64 −20.6 6.75 6.13 10.0 

3 Bandian 42 48 −12.9 4.76 4.94 −3.6 3.81 4.28 −10.9 0.42 0.50 −15.9 9.71 8.56 13.5 

4 Caodian 46 58 −20.2 4.22 3.15 33.7 2.97 2.86 3.8 0.54 0.55 −0.5 6.93 5.53 25.5 

5 Chadianzi 40 40 0.0 3.48 3.68 −5.6 2.81 2.75 2.2 0.61 0.59 3.8 6.50 6.83 −4.8 

6 Chaiping 38 34 11.8 3.82 4.09 −6.7 2.65 3.03 −12.3 0.60 0.62 −4.1 6.53 7.18 −9.1 

7 Dazhuhe 52 52 0.0 2.90 2.70 7.5 2.02 1.94 4.2 0.58 0.66 −12.1 5.00 4.98 0.4 

8 Guihuayuan 47 51 −7.9 3.83 2.83 35.5 2.53 2.35 7.7 0.58 0.71 −17.7 6.38 6.03 5.9 

9 Houhui 49 59 −16.4 4.53 3.61 25.4 3.02 3.27 −7.5 0.51 0.61 −16.3 7.78 6.48 20.0 

10 Huayuan 41 44 −7.7 3.85 3.38 14.1 2.88 3.05 −5.7 0.52 0.50 4.3 6.59 6.30 4.6 

11 Jiajiafang 44 61 −27.3 4.32 3.21 34.4 3.19 3.01 5.8 0.48 0.53 −8.9 8.02 5.90 36.1 

12 Jiangwan 43 44 −3.2 4.60 4.07 13.1 3.39 2.95 15.1 0.48 0.51 −5.6 8.49 8.21 3.4 

13 Kouzihe 46 53 −13.1 4.02 3.67 9.5 2.73 2.97 −8.1 0.49 0.53 −8.3 6.96 6.02 15.5 

14 Lianghekou 34 49 −30.8 4.18 2.70 54.6 3.32 2.89 15.0 0.61 0.77 −20.3 7.82 5.53 41.5 

15 Miping 30 35 −14.2 4.67 4.10 13.9 3.63 4.02 −9.6 0.51 0.57 −11.3 8.90 7.77 14.5 

16 Nankuanping 39 37 5.4 4.49 4.48 0.1 3.07 3.32 −7.5 0.51 0.56 −9.9 7.59 7.89 −3.8 

17 Nanshahe 50 48 4.2 2.78 2.81 −1.1 2.25 2.30 −2.4 0.69 0.72 −5.0 5.46 5.69 −4.0 

18 Pingshi 40 51 −21.7 5.08 3.79 34.0 3.57 3.59 −0.5 0.48 0.57 −14.9 8.78 6.99 25.6 

19 Qingfeng 34 49 −30.8 4.79 3.21 49.3 3.78 3.42 10.6 0.53 0.63 −16.9 9.18 6.50 41.1 

20 Qingniwan 42 41 3.3 4.21 3.93 7.3 2.86 2.85 0.4 0.58 0.62 −5.6 7.05 7.15 −1.5 

21 Shengxiancun 51 62 −18.3 3.25 2.70 20.6 2.63 2.68 −1.7 0.68 0.67 1.8 6.47 5.32 21.7 

22 Sheqi 29 39 −25.2 5.52 4.02 37.2 3.87 3.57 8.3 0.48 0.50 −4.7 9.41 7.32 28.6 

23 Shuhe 31 32 −3.6 4.77 3.83 24.6 3.36 3.09 8.9 0.48 0.69 −29.9 7.94 7.59 4.6 

24 Taikou 46 48 −4.6 3.83 2.97 28.7 2.52 2.34 7.7 0.54 0.72 −25.5 6.43 6.07 6.0 

25 Tiesuoguan 53 51 3.9 3.02 3.09 −2.4 2.19 2.28 −3.9 0.60 0.67 −10.3 5.36 5.59 −4.1 

26 Wanyugou 49 52 −5.8 3.43 2.85 20.3 2.40 2.87 −16.4 0.56 0.70 −19.9 6.06 5.65 7.3 

27 Wuguan 42 52 −19.2 4.62 3.74 23.6 3.51 3.62 −3.0 0.49 0.59 −18.0 8.67 7.05 22.9 

28 Xianhekou 45 49 −8.5 3.38 2.82 19.8 2.63 2.97 −11.5 0.68 0.68 0.0 6.31 5.75 9.7 

29 Xinzhou 50 55 −8.8 3.38 2.72 24.3 2.45 2.14 14.1 0.62 0.72 −14.1 6.02 5.61 7.3 

30 Youshuijie 47 50 −6.2 3.98 3.57 11.4 2.98 2.63 13.5 0.64 0.63 1.5 7.28 6.88 5.8 

Ave. 43.13 48.19 −9.7 4.03 3.44 18.1 2.94 2.93 1.2 0.55 0.62 −10.9 7.23 6.48 11.7 

Min. 29 32 −30.8 2.78 2.70 −6.7 2.02 1.94 −16.4 0.42 0.50 −29.9 5.00 4.98 −9.1 

Max. 53 62 11.8 5.52 4.94 54.6 3.87 4.28 15.1 0.69 0.77 4.3 9.71 8.56 41.5 

Differences between average drought severities (E[S]) extracted from SRI and SDI 

series for the 30 sub-basins are much smaller, with a mean RB of 1.2%, ranging from 

−16.4% to 15.1%. In contrast, the RBs between average drought intensities (E[I]) extracted 

from the two series of 30 sub-basins have a wider range, with a mean RB of −10.9%, 

ranging from −29.9% to 4.3%. Additionally, the variation ranges of RBs for the two char-

acteristics are distributed not evenly in the two sides of the mean values. 

It can be inferred with a high degree of certainty that the difference between 

drought characteristics extracted from SRI and SDI series for the Han River sub-basins 

mainly depends on the simulation accuracy of the hydrological model. However, from 

the above comparison, we can conclude that the SRI has an acceptable performance in 

depicting regional drought evolution. 
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4.3. Impacts of Watershed Features on Drought Characteristics 

To further understand the relationship between the hydrological drought charac-

teristics and the generalized climate and underlying surface parameters (i.e., AI, BI, C, 

RC) in each sub-basin, the correlation between each parameter and the average value of 

drought characteristics extracted from the SRI series is plotted in Figures 5–8, respec-

tively. 

  

  

Figure 5. Correlation between Aridity Index and (a) E[D]; (b) E[S]; (c) E[I]; (d) E[L]. 

  

  

Figure 6. Correlation between Basin Storage Index and (a) E[D]; (b) E[S]; (c) E[I]; (d) E[L]. 
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Figure 7. Correlation between C and (a) E[D]; (b) E[S]; (c) E[I]; (d) E[L]. 

  

  

Figure 8. Correlation between Runoff Coefficient and (a) E[D]; (b) E[S]; (c) E[I]; (d) E[L]. 
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greatly affected by the basin climate and the underlying surface factors; further, the 

drought duration D and the drought intensity I have relatively low but significant cor-

relations with those climate and underlying surface parameters. 

Among the characteristics of each watershed climate and the underlying surface 

factors, the BI that reflects the watershed’s ability to regulate and store runoff, and the 

Runoff Coefficient RC that comprehensively reflects the climate and underlying surface 

elements, are most closely related to each drought feature, and the correlations between 

the Aridity Index AI and drought characteristics are also significant. However, the cor-

relation coefficients between the scaling conversion coefficient C and drought character-

istics are relatively low. Since BI mainly reflects the water storage capacity of the basin, 

and RC is also related to the terrain, vegetation coverage, and land use of the basin, it 

can be speculated that the formation and development of hydrological drought in the 

Han River basin may be greatly affected by the underlying surface elements of the basin. 

However, the role of climate factors cannot be ignored. 

The larger the Basin Storage Index BI, that is, the larger the ratio of maximum soil 

water storage capacity to annual runoff, the longer the average hydrological drought 

duration; the possible reason is that according to the relative equilibrium relationship 

between runoff and soil water storage in the model structure [Qt/NSt = (NSt − Qt)/SC], 

when the watershed is experiencing a meteorological drought, which begins with a de-

crease in precipitation or a rise in temperature, more available water is used to refill the 

water shortage in soil and underground aquifers, so hydrological droughts may last 

longer. The smaller the Runoff Coefficient RC, the less precipitation that can be trans-

ferred into runoff; when a meteorological drought occurs in the watershed, it would be 

necessary to accumulate precipitation not lower than the normal level for a long time to 

restore the hydrological drought to a normal level, resulting in longer drought duration. 

The larger the Aridity Index AI, the drier the watershed; when the temperature increas-

es, the evaporation capacity increases and the precipitation decreases, thus the water-

shed with a large AI may further amplify the drought. Since parameter C is the ratio of 

Et/PEt, and the compression transformation tanh(Pt/PEt), when the precipitation is small 

and evapotranspiration is large, that is, in the dry period, in the basin with large C, the 

actual evapotranspiration accounts for a higher proportion of evapotranspiration capac-

ity, which results in a relatively small runoff. 

Many studies have revealed that S and D generally have a strong positive correla-

tion [52,55]; thus, the degrees of correlation between S and each watershed cli-

mate/underlying surface factor are also similar to that of D. For example, in a watershed 

with a small RC, when experiencing a drought condition, more precipitation is needed 

in the future to restore the runoff from the deficit state to the normal level. 

According to the definition of drought inter-arrival time L, two initiation moments 

of adjacent droughts consist of a drought event and a humid period. Then, a watershed 

with a larger BI, that is, better water storage capacity in both the groundwater aquifer 

and unsaturated zone, may have a better “memory” of the drought or wet state of the 

watershed, and is more inclined to maintain the current state possibly because of rela-

tively slower water conversion, thus the return period of a drought event is longer. 

Generally, when the correlation coefficients between other drought characteristics 

and the abovementioned watershed factors are positive, the correlation coefficients be-

tween drought intensity I and those watershed factors are negative, and vice versa. The 

possible reason is that I is not a drought feature directly obtained, but is calculated from 

S and D, which may neutralize the influence and uncertainty of various factors on S and 

D. 

5. Conclusions 

In this study, a modified two-parameter monthly water balance model was pro-

posed based on the generalized proportionality hypothesis, and the monthly runoff 

process at the outlet of 30 sub-watersheds in the Han River basin was simulated using 
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the precipitation and potential evapotranspiration data set. Drought events were ex-

tracted from the Standardized Runoff Index (SRI) series and several drought characteris-

tics were calculated using Run Theory. Controlling factors for the evolution of hydro-

logical drought in the Han River basin were explored through the correlation study be-

tween the drought characteristics and several dimensionless parameters that character-

ize the basin climate and underlying surface features. The main conclusions are summa-

rized as follows: 

(1) The modified monthly water balance model can simulate the monthly runoff 

process at the outlet of the watershed with acceptable accuracy, with an average NSE of 

0.82 and mean RE of 10.7%. The model can thus provide a powerful tool for hydrological 

simulation in humid and semi-humid areas. 

(2) All statistical characteristics of drought events such as drought duration, severity, 

intensity, and inter-arrival time, are strongly related to basin-scale climate and underly-

ing surface factors. The formation and development of hydrological drought in the Han 

River basin may be mainly controlled by the underlying surface elements of the basin, 

and the role of climatic elements also needs to be considered. 

Among currently available drought analysis methods, frequency analysis of hy-

drological variables is probably the most popular one, having the major advantages of 

simplicity, variable time scale, and few data requirements. Unfortunately, in many 

catchments, streamflow data used to calculate a probabilistic hydrological drought index 

are mainly influenced by human impacts or are not long enough to carry out frequency 

analysis [28], thus necessitating the development of drought indices that can deduce the 

hydrological drought condition from climatic and antecedent soil moisture deficit. By 

incorporating the underlying physical mechanisms in the choice and estimation of runoff 

distribution, together with the explicit use of climate factors and watershed characteris-

tics, the derived distribution approach [60] seems to be a potential alternative in runoff 

frequency analysis and regional drought early-warning under changing environmental 

conditions. 
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