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Abstract: Quantitative assessment of the frequency and magnitude of drought events plays an im-
portant role in preventing drought disasters and ensuring water security in river basins. In this
paper, we modified a parsimonious two-parameter monthly water balance (TPMWB) model by
incorporating the generalized proportionality hypothesis with precipitation and potential evapo-
transpiration as input variables. The modified TPMWB was then used to simulate the monthly
hydrological processes of 30 sub-basins in the Han River basin. It is shown that the water balance
model can satisfactorily simulate the hydrological regimes in the selected sub-basins. We derived
the probability distribution functions of monthly runoff using the principle of maximum entropy
to calculate the Standardized Runoff Index (SRI), and assessed the historical hydrological drought
conditions. By investigating the correlation between four major drought characteristics (i.e., drought
duration, drought severity, drought intensity, and drought inter-arrival time) and four dimensionless
parameters representing the climatic and underlying properties of the basin, a conclusion can be
drawn that the formation and development of hydrological drought in the Han River basin is mainly
controlled by watershed storage factors, and the influence of climatic factors is also significant. The
proposed approach provides a potential alternative for regional drought early warning and under
changing environmental conditions.

Keywords: hydrological drought; Standardized Runoff Index; two-parameter monthly water balance
model; Han River basin

1. Introduction

Drought is a natural hazard that causes huge damage not only to aquatic and terrestrial
ecosystems, but also to many economic and social sectors such as agriculture, transportation,
and urban water supply. With persistent global warming, droughts have been dramatically
increased in terms of frequency and intensity in many parts of the world [1–6]. Moreover,
increasing pressure of water demand caused by growth in population and expansion of
agricultural, energy, and industrial activities will doubtlessly aggravate water scarcity
around the world [7–11].

To objectively quantify the characteristics of droughts (e.g., severity, duration, return
period), much effort has been devoted to develop robust drought indices for operational
use in drought monitoring and early warning [12]. Frequency analysis of drought-related
meteorological or hydrological variables is the most convenient tool to provide information
about drought magnitude and risk. The Standardized Precipitation Index (SPI) is probably
the most popular frequency analysis-based drought index across the world [13]. Following
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the framework, Tsakiris and Vangelis [14] and Vicente-Serrano et al. [15] proposed, respec-
tively, the similar Reconnaissance Drought Index (RDI) and Standardized Precipitation
Evapotranspiration Index (SPEI) to include the effects of temperature variability on drought
assessment. When a lack of precipitation develops into a period with insufficient surface
or groundwater resources, a hydrological drought is formed, which is likely to reduce the
reliability of water supply for urban drinking, irrigation, and hydropower generation, and
threatens the survival of fish and hampers navigation [16]. The high dependence of ecosys-
tem and socio-economy on available water resources and the destructive consequences
resulting from water shortage have promoted hydrological drought research [17–20]. Thus,
a variety of hydrological drought indices have been derived by applying the same theoreti-
cal background of the SPI based on observed surface/sub-surface flow or water level data
series, e.g., the Streamflow Drought Index (SDI) [21], the Standardized Streamflow Index
(SSI) [22], and the Standardized Groundwater Level Index (SGI) [23].

Unlike the arid climate that controls the long-term climatic variation in specific regions,
it is currently widely accepted that drought is a temporary water shortage situation related
to an unbalanced hydrological cycle, and may occur at any temporal and spatial scale. Thus,
drought indices that proposed simply relying on single meteorological or hydrological
variables seem to be insufficient when depicting the dynamic evolution of droughts [24,25].
For mitigating the devastating impacts of droughts on the management of water resources,
more attention must be given to understanding the triggering mechanisms, critical thresh-
olds, and driving factors of droughts by tracking back to the hydrological processes. Owing
to the fast development of various hydrological models, rainfall–runoff simulation pro-
vides an alternative to constructing practical drought indicators by incorporating the water
balance perspective. Palmer [26] first proposed the famous Palmer Drought Severity Index
(PDSI) by comparing the actual precipitation with the estimated water demand, that is,
the so-called “climatically appropriate precipitation for existing conditions” based on a
double-layer soil monthly water balance model. Shukla and Wood [27] claimed that mod-
eled runoff is more suitable to derive hydrological drought indices for quantitative drought
identification and assessment, and proposed the Standardized Runoff Index (SRI), which is
based on the same calculation procedure as SPI after accumulating daily runoff modeled
by the macro-scale Variable Infiltration Capacity (VIC) model to several multi-month scales.
More recently, Staudinger et al. [28] proposed a Standardized Snow Melt and Rain Index
(SMRI) to jointly consider both rain and snowmelt deficits in snow-influenced catchments.

There are at least three advantages of these model-based drought indices. Firstly,
future hydrological drought regimes can be forecasted considering both the seasonality
and initial condition of runoff generation, which is exactly the shortcoming of most me-
teorological drought indices. Secondly, compared with most post-processing streamflow
naturalization methods, applied to remove potential intervention such as human activities,
calibrated hydrological models are more desirable for real-time simulation cases [27]. Lastly,
by incorporating the meteorological inputs and runoff generation processes, model-based
hydrological drought indices can be more suitable for investigating the impacts of cli-
mate or/and other changes on moisture shortage propagation and evolution across the
hydrological cycle.

The response time interval for the river system to meteorological anomalies and the
minimum duration of droughts usually last to several months. Thus, rainfall–runoff models
with a rough time scale, such as monthly water balance models, seem to be promising for
regional hydrological drought assessment. During the last few decades, monthly water
balance models have been proposed for different purposes with consideration for achieving
more physical soundness while preserving acceptable complexity [29–33]. Taking the
advantages of their inherent parsimony in terms of data inputs, model structures, and
parameters, these monthly water balance models have been widely applied in water
resources estimation, streamflow forecasting, climate change impact assessment, and
hydraulic project design [34,35]. Though month-scale rainfall–runoff models generally
do not separate the runoff generation and routing processes, it is acceptable for drought
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monitoring and assessment since it can remove most stochastic effects existing in short-
term hydrological simulation. Vasiliades et al. [36] and Li et al. [37] applied the UTHBAL
model and a two-parameter water balance model, respectively, to analyze the historical
hydrological drought conditions of several sub-watersheds. However, the availability and
effectiveness of such water balance model-based hydrological drought indices have not
yet been widely tested. Further, few studies have focused on exploring the interrelations
between drought characteristics and watershed features (both climate and underlying
surface properties), which control the regional drought evolution.

The aim of this paper is threefold: (1) to propose a parsimonious conceptual monthly
water balance model for runoff simulation and test its applicability with a large set of
watersheds, (2) to calculate retrospective hydrological drought index series and analyze
historical drought characteristics for these watersheds, (3) to evaluate the correlations
among major drought characteristics and several representative indicators representing the
watershed climatic and underlying land surface features. The rest of this paper is organized
as follows: in Section 2, the methods used in this study are presented, followed in Section 3
by a brief introduction of the study area and data set. The results and discussion are then
provided in Section 4. The conclusion is given in Section 5.

2. Methodology
2.1. Modified TPMWB Model

Provided the suitability of a monthly time scale for drought analysis, a revised version
of a parsimonious two-parameter monthly water balance model (TPMWB) proposed by
Xiong and Guo [29] was applied to transform climatic inputs into runoff through catchment
hydrological response.

In the previous TPMWB model, two major modules, i.e., the estimation of actual monthly
evapotranspiration (Equation (1)) and the generation of monthly runoff (Equation (2)), are
integrated in the model as follows, yielding two parameters to be calibrated:

Et = C × PEt × tanh
(

Pt

PEt

)
(1)

Qt = NSt × tanh
(

NSt

SC

)
(2)

GSt = GSt−1 + Pt − Et − Qt (3)

where Et, PEt, Pt, and Qt represent the monthly actual evapotranspiration, potential evap-
otranspiration, rainfall, and runoff at the t-th month, respectively. NSt is the generalized
effective/net water storage for generating runoff in the month, which can be calculated
as (GSt−1 + Pt − Et) with GSt−1 being the generalized water content at the end of the
(t − 1)-th month and the beginning of the t-th month, all with a unit of millimeter. tanh(·)
is the hyperbolic tangent function. After the runoff generation, the water content at the end
of the t-th month was calculated according to the water conservation law (Equation (3)).
C is a dimensionless parameter used to account for the effect of time-scale transformation,
while SC is the second parameter representing the maximum soil water capacity of the
catchment with a unit of millimeter. Note that water holding capacities of groundwater and
unsaturated zone storage were not separated in order to keep the model structure simple
without deviation from the runoff formation mechanism at a monthly time scale.

The TPMWB model has proved to be quite efficient in simulating monthly runoff
in many small and medium basins [29,37,38]. However, the mathematical derivation of
dQ/dNS can be larger than 1.0 when NS/SC > 0.64 [30], and calibrated SC values are too
large for some watersheds when considering its similar definition with field capacity [39],
both of which to a certain extent weaken the physical soundness of the model.

In the so-called Darwinian hydrological model framework [40], the generalized pro-
portionality hypothesis has been identified as a commonality across a wide range of time
scales [41]. Referring to this assumption, we attempt to modify the runoff generation mod-
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ule in the original TPMWB model by simulating the underlying competing relationship
between soil water storage GSt and runoff Qt from water availability NSt, as follows:

Qt

NSt
=

GSt

SC
(4)

Combining Equations (1), (3), and (4), the full expression of monthly runoff can be
calculated by:

Qt =
NS2

t
NSt + SC

=
[GSt−1 + Pt − C × PEt × tanh(Pt/PEt)]

2

GSt−1 + Pt − C × PEt × tanh(Pt/PEt) + SC
(5)

The parameters of the modified TPMWB model are calibrated using the Particle Swarm
Optimization algorithm (PSO) [37]. Two criteria are used to justify the performance of the
proposed model, that is, the Nash–Sutcliffe efficiency criterion (NSE) and the mean relative
error (RE) of the volumetric fit between the observed runoff series and the simulated series,
given as:

NSE = 1 − ∑n
i=1(Qobs,i − Qsim,i)

2

∑n
i=1
(
Qobs,i − Qobs

)2 (6)

RE =

∣∣∣∣∑n
i=1(Qobs,i − Qsim,i)

∑n
i=1 Qobs,i

∣∣∣∣× 100% (7)

where Qobs,i and Qsim,i is the observed and simulated runoff, respectively, Qobs is the mean
value of Qobs,i, and n is length of calibration/validation period.

2.2. Calculation of Standardized Drought Index

Hydrological drought indices based on frequency analysis are commonly calculated by
fitting an assumed theoretical probability density function (PDF) to the hydrological series
summed/averaged over a time scale of interest to estimate the non-exceedance probability
of flow data. The cumulative probability is then transformed into a unit standard normal
deviance (quantile) to allow spatial or temporal description and comparison of drought
condition. To evaluate the applicability of the modified TPMWB model in assessing
hydrological droughts, we use the Standardized Runoff Index (SRI) proposed by Shukla
and Wood [27]. The simplicity and predictability of this model-simulation runoff-based
drought index have fueled its popularity around the world [42–46].

The procedure for calculating SRI includes the following three steps. Firstly, the
time series of monthly runoff of each sub-basin is obtained by continuous hydrological
simulation. Secondly, the runoff data of each month are abstracted, and the cumulative
probability of the runoff is estimated from a theoretical PDF. It should be noted that the
probability distribution of simulated monthly runoff Qsim,t (t = 1, 2,..., 12) is of concern
and hereafter denoted as Q for short. In this paper, the traditional curve-fitting method
is applied to model the theoretical PDF of simulated monthly runoff. Considering the
significant skewness of monthly runoff series, especially in the dry season, together with
the potential huge difference among runoff distributions in different months [22], a uniform
distribution derived based on the principle of maximum entropy (POME) is adopted to fit
the empirical frequencies of monthly runoff, without presupposing any PDF of underlying
distributions [47,48].

Boltzmann entropy was introduced by Shannon to quantitatively measure the uncer-
tainty of a random variable [49]. If the PDF of the random variable, referred to monthly
runoff Q is fQ(q), then the Shannon entropy H(q) is defined as follows:

H(q) = −
b∫

a

fQ(q) ln fQ(q)dq (8)
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where a and b are the upper and lower bounds of the integral interval of Q, respectively.
The POME describes the process of selecting the PDF which fits the observed data

with minimal deviation among all compatible distributions, as the one that can maximize
the Shannon entropy, subject to certain constraints. Constraints in the form of low-order
original or central moments are probably the most popular, given their structural flexibility
and solution reliability [3,50–52]. In this paper, the first three original moments were
adopted as constraints for maximizing Equation (8), thus the entropy-based PDF should be
specifically restrained as follows:

b∫
a

fQ(q)dq = 1 (9)

b∫
a

qi fQ(q)dq = qi, i = 1, 2, 3 (10)

where qi (i = 1, 2, 3) are the first to third power of q, while qi (i = 1, 2, 3) are corresponding
sampling original moments of q.

To maximize the Shannon entropy (Equation (8)) subject to the constraints specified
by Equations (9) and (10), the Lagrange multipliers method [3] was adopted, and then the
PDF of runoff in each month is derived as:

fQ(q) = exp
(
−λ0 − λ1q − λ2q2 − λ3q3

)
(11)

where λ0, λ1, λ2, and λ3 are the Lagrange multipliers, λ0 = ln
b∫
a

exp
(
−λ1q − λ2q2 − λ3q3)dq.

The Lagrange multipliers can be obtained by solving the minimization problem of the
following convex functions [53]:

Γ = λ0 +
3

∑
i=1

λiE
[
qi
]
= ln

b∫
a

exp
(
−λ1q − λ2q2 − λ3q3

)
dq +

3

∑
i=1

λiE
[
qi
]

(12)

where E[qi] (i = 1, 2, 3) are the expectations of qi obtained from observations. The Newton–
Raphson method was then employed to iteratively calculate the Lagrange multiplier.

In this way, a more uniform theoretical PDF of monthly runoff fQ(q) is constructed
by making maximum use of the information collected from the simulated runoff data
while avoiding redundant information as much as possible. Once the PDF is determined,
the cumulative distribution function (CDF) can then be estimated by integrating the PDF
as follows:

FQ(q) = Pr(Q ≤ q) =

q∫
0

fQ(q)dq (13)

Finally, the cumulative probability was transformed into a standardized normal de-
viance of the normal CDF:

SRI = Φ−1[FQ(q)
]

(14)

where Φ−1(·) is the inverse of a standard normal CDF.
For comparatively evaluating the capability of the modeled runoff to reconstruct

the historical drought condition, the SDI calculated from observed monthly streamflow
series [21] is also applied to model hydrological drought events in the study area. Likewise,
the POME distribution is selected as the theoretical PDF for observed monthly streamflow
data. The standardized nature of SRI and SDI removes the spatial and temporal differences
among regions, thus making them suitable for multiple time-scale analysis. Accumulation
of time scale, however, attenuates the modeling errors during continuous runoff generation.
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To compare the difference between these indices in estimating streamflow quantiles under
a more significant circumstance, only a one-month time scale is employed in this study.

2.3. Identification of Drought Events and Characteristics

After obtaining the SRI (or SDI) series, drought events and corresponding characteristic
variables can be extracted by means of the Run Theory [54,55]. A drought event is defined
as a consecutive time period with SRI/SDI values lower than a pre-set threshold, which
is determined as zero in this paper considering its standardized nature [18], as well as to
obtain sufficient samples of drought events with limited hydrological data (see Figure 1).
Characteristic variables that constitute a drought event include:
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(1) Drought duration (D) is defined as the time period between the initiation and
termination of a drought, with continuous SRI/SDI values below the critical level with a
unit of month.

(2) Drought severity (S) is the dimensionless cumulative deficiency of the SRI/SDI
value below the critical level within a drought event.

(3) Drought intensity (I) is the average value of the SRI/SDI below the critical level
within the drought duration, which can be estimated as the drought severity divided by
the duration.

(4) Drought inter-arrival time (L) is the time gap between two initiation moments of
adjacent droughts.

2.4. Correlation Analysis between Drought Characteristics and Watershed Features

The occurrence and evolution of hydrological drought events are simultaneously
affected by complicated land–atmosphere coupled process and water storage capability
of the catchment (including both groundwater storage and unsaturated zone storage).
Construction of the rainfall–runoff model makes it possible to analyze the driving forces
and main influencing factors of hydrological droughts.

In this study, we selected four representative indicators of watershed climatic and
underlying surface features. Firstly, the Aridity Index (AI, AI = PE/P), defined as the ratio
of mean annual potential evapotranspiration PE and mean annual rainfall P of a catchment,
is adopted. Then, to link the calibrated physical parameter with observed hydrological
element, the Basin Storage Index (BI, BI = SC/Q), defined as the ratio of the maximum soil
water capacity SC (one of the parameters of the TPMWB) and the mean annual runoff Q,
is derived to evaluate the capability of the catchment to store and regulate runoff. Since
the model proposed in this paper does not separate the base flow from the runoff, this
indicator can be regarded as an alternative to the traditional Base Flow Index (BFI) [56].
The third indicator also depends on the structure of the TPMWB, that is, the time-scale
transformation parameter C. According to Hu et al. [39], C is a regionally specific parameter,
which can be seen as the maximum ratio of monthly actual evapotranspiration and potential
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evapotranspiration in a catchment, influenced by land use, vegetation coverage, etc. Finally,
the annual Runoff Coefficient (RC, RC = Q/P), defined as the ratio of the mean annual
runoff Q and the mean annual rainfall P, is employed.

Among the selected indices, the AI is mainly controlled by catchment climate, while
BI can be regarded as the reflection of the regulating ability of the watershed’s underlying
surface. Additionally, C and RC are comprehensive indicators informing the impacts of both
climatic and underlying land surface features. The linear correlation analysis is applied to
assess the interrelationships of different drought characteristics and watershed features,
while the coefficient of determination R2 is used to investigate the strength of coupling.

3. Study Area and Data
3.1. Study Area

The Han River, located with 106~114◦ E and 30~34◦ N, is the largest tributary in the
middle reach of the Yangtze River. Flowing southeastward from its source on the southern
slope of the Qinling Mountains, the river passes through several provinces in central China,
and finally pours into the Yangtze River at Wuhan City, with a mainstream length of
1577 km and a drainage area of more than 159,000 km2 (see Figure 2). The Danjiangkou
(DJK) reservoir divides the whole basin into an upper and a mid-lower sub-basin. A sub-
tropical monsoon climate and the varying topography from high mountains in the upper
reach to relatively flat plains in the lower give rise to dramatic spatial–temporal diversity
of water resources distribution in this area.
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There have been some studies revealing a very dry period after 1990s in the Han River
basin [57] and a decreasing trend of precipitation in the future over the upper basin [58].
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The Hang River is also the water source for the middle route of the well-known South-to-
North Water Diversion Project (SNWDP) in China. Since the capacity of water diversion
depends greatly on the water availability of the water source area, fully understanding
drought characteristics in the Han River basin is of great importance for efficient water
resources management and planning.

3.2. Data

Hydrological data used in this study include monthly precipitation, monthly potential
evapotranspiration (represented by pan evaporation), and monthly streamflow from 30 sub-
basins located within the Han River basin, as shown in Figure 2. The main characteristics of
these sub-basins are listed in Table 1. All data series used cover a time period from the 1950s
to 1980s, with a minimum length of more than 20 years to ensure the representativeness of
the data. Additionally, the data have not been extended beyond 1990 to keep the stationary
assumption of data; the rapid economic development that has taken place in China since
1990, characterized by large-scale land use change and sharp increase in water consumption
for living and production, has dramatically altered the hydrological regimes in the Han
River basin [59].

Table 1. Data information for the studied sub-basins.

No. Watershed Area
(km2)

Data
Period

P
(mm·yr−1)

PE
(mm·yr−1)

Q
(mm·yr−1)

AI
(-)

RC
(-)

1 Baitugang 1134 1963–1989 923 864 389 0.94 0.42
2 Baiyan 690 1965–1989 779 708 286 0.91 0.37
3 Bandian 425 1955–1989 742 896 176 1.21 0.24
4 Caodian 683 1960–1987 1142 1205 443 1.06 0.39
5 Chadianzi 1683 1967–1989 868 624 319 0.72 0.37
6 Chaiping 2364 1969–1989 845 880 369 1.04 0.44
7 Dazhuhe 2651 1968–1989 1229 735 899 0.60 0.73
8 Guihuayuan 1275 1964–1989 859 721 446 0.84 0.52
9 Houhui 816 1958–1989 902 849 318 0.94 0.35

10 Huayuan 2601 1964–1987 1113 1207 356 1.08 0.32
11 Jiajiafang 1281 1960–1989 839 885 279 1.05 0.33
12 Jiangwan 781 1959–1989 849 890 309 1.05 0.36
13 Kouzihe 421 1963–1989 863 865 316 1.00 0.37
14 Lianghekou 2816 1967–1989 889 716 438 0.81 0.49
15 Miping 1404 1967–1989 794 875 209 1.10 0.26
16 Nankuanping 3936 1965–1989 773 869 264 1.12 0.34
17 Nanshahe 243 1967–1989 1208 585 705 0.48 0.58
18 Pingshi 748 1960–1989 975 1010 336 1.04 0.34
19 Qingfeng 2082 1963–1989 931 875 298 0.94 0.32
20 Qingniwan 1377 1965–1989 798 869 293 1.09 0.37
21 Shengxiancun 2143 1961–1988 890 738 414 0.83 0.47
22 Sheqi 1044 1966–1989 796 981 200 1.23 0.25
23 Shuhe 581 1969–1989 881 851 391 0.97 0.44
24 Taikou 2073 1965–1989 883 888 466 1.01 0.53
25 Tiesuoguan 433 1966–1989 1106 632 611 0.57 0.55
26 Wanyugou 560 1965–1989 1013 996 494 0.98 0.49
27 Wuguan 724 1959–1989 772 888 227 1.15 0.29
28 Xianhekou 772 1966–1989 974 733 489 0.75 0.50
29 Xinzhou 4660 1964–1989 1055 830 598 0.79 0.57
30 Youshuijie 911 1961–1989 939 734 536 0.78 0.57

Monthly precipitation, pan evaporation, and streamflow records were collected from
hydrological almanacs compiled by the Bureau of Hydrology of Changjiang (Yangtze River)
Water Resources Commission of China. The areal mean precipitation of each sub-basin was
obtained by using the Thiessen polygon method, while pan evaporation and streamflow
data at the hydrological station of each sub-basin were directly adopted.
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4. Results and Discussion
4.1. Performance of the Modified TPMWB Model

To test the performance of the proposed TPMWB model, the historical record of each
sub-basin was divided into two parts, i.e., calibration period and validation period. The
lengths of validation period were set to be equally the last 5 years for all sub-basins, while
the remaining data were used to calibrate parameters of the TPMWB model.

The NSE and RE indicators during the validation period in each sub-basin were
calculated and are listed in Table 2. The average value of NSE for the 30 sub-basins in
the Han River basin is 0.82, with a range from 0.74 to 0.88, while the mean value of RE is
10.7%, ranging from 1.2% to 30.4%. In general, the performance of the proposed modified
TPMWB model is reasonably satisfactory and competitive with that of the previous version
proposed by Xiong and Guo [29].

Table 2. Calibrated TPMWB model parameters and performance criteria for the studied sub-basins.

No. Watershed C (-) SC (-) NSE (%) RE (%)

1 Baitugang 0.94 300.63 0.83. 10.4
2 Baiyan 0.98 301.01 0.75 12.8
3 Bandian 1.14 301.11 0.80 4.1
4 Caodian 0.85 302.08 0.84 15.5
5 Chadianzi 1.23 300.61 0.85 21.9
6 Chaiping 0.76 302.35 0.86 10.2
7 Dazhuhe 0.36 301.84 0.84 7.7
8 Guihuayuan 0.62 300.63 0.74 11.0
9 Houhui 1.03 302.78 0.82 7.8
10 Huayuan 0.95 302.08 0.81 15.2
11 Jiajiafang 1.03 390.16 0.80 1.8
12 Jiangwan 1.00 512.38 0.78 2.7
13 Kouzihe 1.02 301.83 0.86 14.4
14 Lianghekou 1.22 302.35 0.83 18.7
15 Miping 1.15 300.93 0.81 5.7
16 Nankuanping 0.93 300.63 0.84 12.2
17 Nanshahe 0.91 301.81 0.86 17.8
18 Pingshi 1.00 300.63 0.75 13.1
19 Qingfeng 1.09 303.66 0.80 2.1
20 Qingniwan 0.90 305.02 0.85 12.3
21 Shengxiancun 0.86 301.01 0.76 30.4
22 Sheqi 1.13 306.95 0.88 5.9
23 Shuhe 0.89 300.63 0.86 4.6
24 Taikou 0.73 305.02 0.81 1.2
25 Tiesuoguan 0.85 300.63 0.86 22.1
26 Wanyugou 0.75 300.93 0.86 5.8
27 Wuguan 1.09 302.08 0.82 6.7
28 Xianhekou 0.67 302.08 0.81 13.2
29 Xinzhou 0.69 303.13 0.82 3.8
30 Youshuijie 0.65 300.31 0.86 10.6

Ave. 0.91 311.91 0.82 10.7
Min. 0.36 300.31 0.74 1.2
Max. 1.23 512.38 0.88 30.4

There are clear differences in terms of the combination of climate (represented by the
Aridity Index AI, see Table 1) and topography conditions among the study areas. Hence,
four representative sub-basins, Sheqi, Taikou, Wanyugou, and Youshuijie, were selected
for further comparison based on their AI values, catchment areas, and topography. The
observed and simulated monthly runoff hydrographs at the four selected outlets of the
sub-basins are shown in Figure 3 for a more visual demonstration of the simulation ability
of the proposed model. It is obvious that the modified TPMWB model can successfully
capture the variability of the runoff processes in these areas quite well.
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Figure 3. Observed and simulated monthly runoff hydrographs at: (a) Sheqi; (b) Taikou; (c) Wanyu-
gou; (d) Youshuijie.
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It can also be informed from Table 2 that most calibrated C parameter values are
scattered around unity, which reflects their roles in adjusting the inter-relationship among
Et, PEt, and Pt, in consideration of a time-scale transformation from year to month. For
the SC parameter, very robust SC values are obtained through the optimization procedure
with almost all calibrated SC values distributing around 300 mm, except for a few outliers
such as the Jiajiafang and Jiangwan sub-basins. It is shown that the SC parameter contains
a wealth of information related to underlying surface properties of the catchment. Given
the acceptable performance of the modified TPMWB model, it can be used to reproduce or
predict the hydrographs of calibrated sub-basins with confidence.

The modified TPMWB model strengthens the physical base of the previous version [29]
by solving the unrealistic condition that dQ/dNS may be larger than 1.0 when NS/SC
increases to a threshold. Additionally, the calibrated SC values are much smaller compared
to the early parameter set with similar homogeneity [29].

4.2. Hydrological Drought Assessment Based on Standardized Drought Indices
4.2.1. Calculation of Standardized Drought Indices

After estimating the PDF parameters of runoff distributions using the POME method,
theoretical cumulative probabilities and standardized normal quantiles calculated from
curve-fitted observed/simulated monthly runoff distributions for different months were
obtained; therefore, the SDI and SRI series for each sub-basin were constructed.

Comparison between historical SDI and SRI series of the selected four sub-basins are shown
in Figure 4. It can be found that the SRI series calculated using monthly runoff simulated by the
modified TPMWB model capture several severe drought episodes, which is in accordance with
the fluctuation of SDI, especially in dry months whose values are less than zero. For example, se-
vere droughts (DEs) during 1966–1967, 1971–1972, 1973–1974, 1974–1975, 1976–1977, 1978–1979,
and 1986–1987 at Sheqi can be recognized from both the SRI and the SDI series, together with
identification of drought events during 1966–1967, 1980–1981, and 1986–1987 at Taikou, during
1965–1967, 1978–1979, and 1986–1987 at Wanyugou, during 1965–1967, 1972–1973, 1977–1978,
1979–1980, and 1986–1987 at Youshuijie.

4.2.2. Drought Characteristics (DC) Analysis

Comparisons of the relative bias (RB = [DCSRI − DCSDI]/DCSDI) of drought charac-
teristics between the SRI and SDI are shown in Table 3. It is found that the occurrence
of drought events estimated by SRI (43.13 times on average) is less frequent compared
with that estimated by SDI (48.19 times on average), with a mean RB of −9.7%. We can
also notice that the average drought duration (E[D]) for most sub-basins are, however,
overestimated by the SRI as the mean E[D] calculated from SRI for the 30 sub-basins
(4.03 months) is obviously longer than that from SDI (3.44 months) with a mean RB of
18.1%. Moreover, the maximum relative error of E[D] reaches 54.6%. This is similar for
the average inter-arrival times (E[L]) with a mean and maximum RB of 11.7% and 41.5%,
respectively. In fact, a few short and minor droughts would be removed, while several
dependent droughts would be combined to a larger independent drought event when
extracting drought events from the SRI series, since continuously simulated runoff series
may eliminate the random fluctuations in observation series.
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Figure 4. Standardized hydrological index series calculated from simulated runoff (SRI) and observed
streamflow (SDI) at: (a) Sheqi; (b) Taikou; (c) Wanyugou; (d) Youshuijie.
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Table 3. Comparisons of the statistical drought characteristics for the sub-basins.

No. Watershed
Number (Times) E[D] (Month) E[S] (-) E[I] (-/Month) E[L] (Month)

SRI SDI RB(%) SRI SDI RB(%) SRI SDI RB(%) SRI SDI RB(%) SRI SDI RB(%)

1 Baitugang 50 53 −5.6 3.42 3.29 4.0 2.53 2.34 8.0 0.53 0.67 −21.3 6.42 6.04 6.3
2 Baiyan 44 48 −8.8 3.70 3.23 14.6 2.69 2.40 11.9 0.51 0.64 −20.6 6.75 6.13 10.0
3 Bandian 42 48 −12.9 4.76 4.94 −3.6 3.81 4.28 −10.9 0.42 0.50 −15.9 9.71 8.56 13.5
4 Caodian 46 58 −20.2 4.22 3.15 33.7 2.97 2.86 3.8 0.54 0.55 −0.5 6.93 5.53 25.5
5 Chadianzi 40 40 0.0 3.48 3.68 −5.6 2.81 2.75 2.2 0.61 0.59 3.8 6.50 6.83 −4.8
6 Chaiping 38 34 11.8 3.82 4.09 −6.7 2.65 3.03 −12.3 0.60 0.62 −4.1 6.53 7.18 −9.1
7 Dazhuhe 52 52 0.0 2.90 2.70 7.5 2.02 1.94 4.2 0.58 0.66 −12.1 5.00 4.98 0.4
8 Guihuayuan 47 51 −7.9 3.83 2.83 35.5 2.53 2.35 7.7 0.58 0.71 −17.7 6.38 6.03 5.9
9 Houhui 49 59 −16.4 4.53 3.61 25.4 3.02 3.27 −7.5 0.51 0.61 −16.3 7.78 6.48 20.0
10 Huayuan 41 44 −7.7 3.85 3.38 14.1 2.88 3.05 −5.7 0.52 0.50 4.3 6.59 6.30 4.6
11 Jiajiafang 44 61 −27.3 4.32 3.21 34.4 3.19 3.01 5.8 0.48 0.53 −8.9 8.02 5.90 36.1
12 Jiangwan 43 44 −3.2 4.60 4.07 13.1 3.39 2.95 15.1 0.48 0.51 −5.6 8.49 8.21 3.4
13 Kouzihe 46 53 −13.1 4.02 3.67 9.5 2.73 2.97 −8.1 0.49 0.53 −8.3 6.96 6.02 15.5
14 Lianghekou 34 49 −30.8 4.18 2.70 54.6 3.32 2.89 15.0 0.61 0.77 −20.3 7.82 5.53 41.5
15 Miping 30 35 −14.2 4.67 4.10 13.9 3.63 4.02 −9.6 0.51 0.57 −11.3 8.90 7.77 14.5
16 Nankuanping 39 37 5.4 4.49 4.48 0.1 3.07 3.32 −7.5 0.51 0.56 −9.9 7.59 7.89 −3.8
17 Nanshahe 50 48 4.2 2.78 2.81 −1.1 2.25 2.30 −2.4 0.69 0.72 −5.0 5.46 5.69 −4.0
18 Pingshi 40 51 −21.7 5.08 3.79 34.0 3.57 3.59 −0.5 0.48 0.57 −14.9 8.78 6.99 25.6
19 Qingfeng 34 49 −30.8 4.79 3.21 49.3 3.78 3.42 10.6 0.53 0.63 −16.9 9.18 6.50 41.1
20 Qingniwan 42 41 3.3 4.21 3.93 7.3 2.86 2.85 0.4 0.58 0.62 −5.6 7.05 7.15 −1.5
21 Shengxiancun 51 62 −18.3 3.25 2.70 20.6 2.63 2.68 −1.7 0.68 0.67 1.8 6.47 5.32 21.7
22 Sheqi 29 39 −25.2 5.52 4.02 37.2 3.87 3.57 8.3 0.48 0.50 −4.7 9.41 7.32 28.6
23 Shuhe 31 32 −3.6 4.77 3.83 24.6 3.36 3.09 8.9 0.48 0.69 −29.9 7.94 7.59 4.6
24 Taikou 46 48 −4.6 3.83 2.97 28.7 2.52 2.34 7.7 0.54 0.72 −25.5 6.43 6.07 6.0
25 Tiesuoguan 53 51 3.9 3.02 3.09 −2.4 2.19 2.28 −3.9 0.60 0.67 −10.3 5.36 5.59 −4.1
26 Wanyugou 49 52 −5.8 3.43 2.85 20.3 2.40 2.87 −16.4 0.56 0.70 −19.9 6.06 5.65 7.3
27 Wuguan 42 52 −19.2 4.62 3.74 23.6 3.51 3.62 −3.0 0.49 0.59 −18.0 8.67 7.05 22.9
28 Xianhekou 45 49 −8.5 3.38 2.82 19.8 2.63 2.97 −11.5 0.68 0.68 0.0 6.31 5.75 9.7
29 Xinzhou 50 55 −8.8 3.38 2.72 24.3 2.45 2.14 14.1 0.62 0.72 −14.1 6.02 5.61 7.3
30 Youshuijie 47 50 −6.2 3.98 3.57 11.4 2.98 2.63 13.5 0.64 0.63 1.5 7.28 6.88 5.8

Ave. 43.13 48.19 −9.7 4.03 3.44 18.1 2.94 2.93 1.2 0.55 0.62 −10.9 7.23 6.48 11.7
Min. 29 32 −30.8 2.78 2.70 −6.7 2.02 1.94 −16.4 0.42 0.50 −29.9 5.00 4.98 −9.1
Max. 53 62 11.8 5.52 4.94 54.6 3.87 4.28 15.1 0.69 0.77 4.3 9.71 8.56 41.5

Differences between average drought severities (E[S]) extracted from SRI and SDI
series for the 30 sub-basins are much smaller, with a mean RB of 1.2%, ranging from −16.4%
to 15.1%. In contrast, the RBs between average drought intensities (E[I]) extracted from the
two series of 30 sub-basins have a wider range, with a mean RB of −10.9%, ranging from
−29.9% to 4.3%. Additionally, the variation ranges of RBs for the two characteristics are
distributed not evenly in the two sides of the mean values.

It can be inferred with a high degree of certainty that the difference between drought
characteristics extracted from SRI and SDI series for the Han River sub-basins mainly
depends on the simulation accuracy of the hydrological model. However, from the above
comparison, we can conclude that the SRI has an acceptable performance in depicting
regional drought evolution.

4.3. Impacts of Watershed Features on Drought Characteristics

To further understand the relationship between the hydrological drought characteris-
tics and the generalized climate and underlying surface parameters (i.e., AI, BI, C, RC) in
each sub-basin, the correlation between each parameter and the average value of drought
characteristics extracted from the SRI series is plotted in Figures 5–8, respectively.

It can be deduced from the figures that, in general, correlations between the statistical
characteristics of drought events such as E[D], E[S], E[I], and E[L], and the basin-scale
climate and underlying surface factors in each basin are significant. Among the drought
characteristics, the drought intensity S and the drought inter-arrival time L are greatly
affected by the basin climate and the underlying surface factors; further, the drought
duration D and the drought intensity I have relatively low but significant correlations with
those climate and underlying surface parameters.
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Figure 5. Correlation between Aridity Index and (a) E[D]; (b) E[S]; (c) E[I]; (d) E[L].
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Figure 6. Correlation between Basin Storage Index and (a) E[D]; (b) E[S]; (c) E[I]; (d) E[L].
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Figure 7. Correlation between C and (a) E[D]; (b) E[S]; (c) E[I]; (d) E[L].
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Figure 8. Correlation between Runoff Coefficient and (a) E[D]; (b) E[S]; (c) E[I]; (d) E[L].

Among the characteristics of each watershed climate and the underlying surface
factors, the BI that reflects the watershed’s ability to regulate and store runoff, and the
Runoff Coefficient RC that comprehensively reflects the climate and underlying surface
elements, are most closely related to each drought feature, and the correlations between the
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Aridity Index AI and drought characteristics are also significant. However, the correlation
coefficients between the scaling conversion coefficient C and drought characteristics are
relatively low. Since BI mainly reflects the water storage capacity of the basin, and RC is also
related to the terrain, vegetation coverage, and land use of the basin, it can be speculated
that the formation and development of hydrological drought in the Han River basin may
be greatly affected by the underlying surface elements of the basin. However, the role of
climate factors cannot be ignored.

The larger the Basin Storage Index BI, that is, the larger the ratio of maximum soil
water storage capacity to annual runoff, the longer the average hydrological drought
duration; the possible reason is that according to the relative equilibrium relationship
between runoff and soil water storage in the model structure [Qt/NSt = (NSt − Qt)/SC],
when the watershed is experiencing a meteorological drought, which begins with a decrease
in precipitation or a rise in temperature, more available water is used to refill the water
shortage in soil and underground aquifers, so hydrological droughts may last longer.
The smaller the Runoff Coefficient RC, the less precipitation that can be transferred into
runoff; when a meteorological drought occurs in the watershed, it would be necessary to
accumulate precipitation not lower than the normal level for a long time to restore the
hydrological drought to a normal level, resulting in longer drought duration. The larger the
Aridity Index AI, the drier the watershed; when the temperature increases, the evaporation
capacity increases and the precipitation decreases, thus the watershed with a large AI may
further amplify the drought. Since parameter C is the ratio of Et/PEt, and the compression
transformation tanh(Pt/PEt), when the precipitation is small and evapotranspiration is
large, that is, in the dry period, in the basin with large C, the actual evapotranspiration
accounts for a higher proportion of evapotranspiration capacity, which results in a relatively
small runoff.

Many studies have revealed that S and D generally have a strong positive corre-
lation [52,55]; thus, the degrees of correlation between S and each watershed climate/
underlying surface factor are also similar to that of D. For example, in a watershed with
a small RC, when experiencing a drought condition, more precipitation is needed in the
future to restore the runoff from the deficit state to the normal level.

According to the definition of drought inter-arrival time L, two initiation moments
of adjacent droughts consist of a drought event and a humid period. Then, a watershed
with a larger BI, that is, better water storage capacity in both the groundwater aquifer
and unsaturated zone, may have a better “memory” of the drought or wet state of the
watershed, and is more inclined to maintain the current state possibly because of relatively
slower water conversion, thus the return period of a drought event is longer.

Generally, when the correlation coefficients between other drought characteristics and
the abovementioned watershed factors are positive, the correlation coefficients between
drought intensity I and those watershed factors are negative, and vice versa. The possible
reason is that I is not a drought feature directly obtained, but is calculated from S and D,
which may neutralize the influence and uncertainty of various factors on S and D.

5. Conclusions

In this study, a modified two-parameter monthly water balance model was proposed
based on the generalized proportionality hypothesis, and the monthly runoff process at
the outlet of 30 sub-watersheds in the Han River basin was simulated using the precipita-
tion and potential evapotranspiration data set. Drought events were extracted from the
Standardized Runoff Index (SRI) series and several drought characteristics were calculated
using Run Theory. Controlling factors for the evolution of hydrological drought in the
Han River basin were explored through the correlation study between the drought char-
acteristics and several dimensionless parameters that characterize the basin climate and
underlying surface features. The main conclusions are summarized as follows:

(1) The modified monthly water balance model can simulate the monthly runoff
process at the outlet of the watershed with acceptable accuracy, with an average NSE of
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0.82 and mean RE of 10.7%. The model can thus provide a powerful tool for hydrological
simulation in humid and semi-humid areas.

(2) All statistical characteristics of drought events such as drought duration, severity,
intensity, and inter-arrival time, are strongly related to basin-scale climate and underlying
surface factors. The formation and development of hydrological drought in the Han River
basin may be mainly controlled by the underlying surface elements of the basin, and the
role of climatic elements also needs to be considered.

Among currently available drought analysis methods, frequency analysis of hydrolog-
ical variables is probably the most popular one, having the major advantages of simplicity,
variable time scale, and few data requirements. Unfortunately, in many catchments, stream-
flow data used to calculate a probabilistic hydrological drought index are mainly influenced
by human impacts or are not long enough to carry out frequency analysis [28], thus ne-
cessitating the development of drought indices that can deduce the hydrological drought
condition from climatic and antecedent soil moisture deficit. By incorporating the underly-
ing physical mechanisms in the choice and estimation of runoff distribution, together with
the explicit use of climate factors and watershed characteristics, the derived distribution
approach [60] seems to be a potential alternative in runoff frequency analysis and regional
drought early-warning under changing environmental conditions.
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