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Abstract: Rivers are dynamic geological agents on the earth which transport the weathered 

materials of the continent to the sea. Estimation of suspended sediment yield (SSY) is essential for 

management, planning, and designing in any river basin system. Estimation of SSY is critical due to 

its complex nonlinear processes, which are not captured by conventional regression methods. 

Rainfall, temperature, water discharge, SSY, rock type, relief, and catchment area data of 11 gauging 

stations were utilized to develop robust artificial intelligence (AI), similar to an artificial-neural-

network (ANN)-based model for SSY prediction. The developed highly generalized global single 

ANN model using a large amount of data was applied at individual gauging stations for SSY 

prediction in the Mahanadi River basin, which is one of India’s largest peninsular rivers. It appeared 

that the proposed ANN model had the lowest root-mean-squared error (0.0089) and mean absolute 

error (0.0029) along with the highest coefficient of correlation (0.867) values among all comparative 

models (sediment rating curve and multiple linear regression). The ANN provided the best 

accuracy at Tikarapara among all stations. The ANN model was the most suitable substitute over 

other comparative models for SSY prediction. It was also noticed that the developed ANN model 

using the combined data of eleven stations performed better at Tikarapara than the other ANN 

which was developed using data from Tikarapara only. These approaches are suggested for SSY 

prediction in river basin systems due to their ease of implementation and better performance. 

Keywords: SSY; rainfall; water discharge; ANN; temperature; multiple linear regression; sediment 

rating curve 

 

1. Introduction 

The complex nonlinear process of sediment flow in a river basin involves the 

interaction of hydro-geo-climatical components with time and spatial variation. Rivers 

carry a huge amount of sediment load that flow through a variety of active tectonic zones, 

climates, and highly erodible materials [1]. Modeling of sediment transport in a river is 

critical for managing hydraulic structures, which is the primary issue in accessing the 

world’s surface water system [2,3]. The proper assessment of SSY is required to 

understand sediment transport in water resource management, territorial risks, water 
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system quality, land use, pollution control, and engineering structure damage caused by 

the morphological development of the river bed [4,5]. 

Unfortunately, failure to pay attention to the appropriate SSY measurements and 

computations could lead to a waste of energy, funds, people, and time [4,6]. The 

interaction of several complex processes makes it difficult to estimate SSY with high 

accuracy using conventional methods, such as the SRC and MLR methods. These methods 

cannot handle the complicated non-stationarity and nonlinearity of SSY. The ANN is one 

of the most popular artificial intelligence (AI) techniques and is most suited for the 

prediction of complex nonlinearity and dynamic systems in water resources due to its 

cost-effectiveness, simplicity, and few data requirements for prediction [7–9]. The main 

advantage of the black box ANN technique over traditional methods is the complexity of 

underlying processes which are not recognized to be explicitly described in mathematical 

form. The ANN has been used by many researchers in hydrological research including 

runoff or flow predictions [10–13], estimation of runoff hydrograph parameters [14], 

estimation of water quality parameters [15,16], reservoir operation optimization [17], 

water quality management [18] and non-point source contamination [19]. Various studies 

have extensively used intelligent ANN techniques to estimate SSY in river basin systems 

[20–29]. 

An ANN model was proposed by Zhu et al. [20] to simulate the monthly flux of 

suspended sediment in the Long Chuan Jiang River in the Upper Yangtze Catchments, 

China, using average temperature, rainfall, flow discharge, and rainfall intensity as 

inputs. The ANN model’s results demonstrated that it is capable of simulating suspended 

sediment flux with acceptable accuracy on a monthly basis by relating appropriate input 

parameters and their co-relation to the prior month (lagging effect) on the suspended 

sediment flux. Furthermore, the ANN was found to be a suitable technique in comparison 

to traditional regression models (MLR and SRC) and capable of estimating extremely high 

or low values of suspended sediment flux. Rajaee et al. [21] developed ANN, SRC, and 

MLR models to estimate suspended sediment concentrations in the little black and salt 

rivers of the United Kingdom. The results revealed that the ANN model performed better 

than the MLR and SRC. It was also revealed that the ANN model can estimate cumulative 

sediment. Melesse et al. [22] estimated suspended sediment load using an ANN model 

and daily and weekly hydro-climatological data (precipitation, water discharge, 

antecedent water discharge, and antecedent suspended sediment load). The MLR, 

multiple non-linear regression, and autoregressive moving average (ARMA) methods 

were used to compare the ANN model. The ANN model outperformed the comparison 

models. A prediction model for sediment and runoff yield was proposed by Sharma et al. 

[24] using ANN and regressions in the Nepal watershed Kankai Mai. The ANN provided 

a dominant result over the regression method. 

The current research demonstrates the capability and utility of the ANN model 

which is one of the most suitable AI techniques for simulating complex nonlinear 

processes of SSY in the Mahanadi River basin (MRB). In the MRB, India, many 

quantitative and ANN techniques have been utilized to estimate RF, runoff, WD, and 

flood risk [30–32]. There have not been many SSY prediction studies in the MRB. Yadav 

et al. [25] developed the gradient descending adaptive (GDA) learning rate, Levenberg–

Marquardt (LM)-based ANN, and classical models using T, WD, and RF components as 

input data to predict SSY at Tikarapara station in MRB. It was reported that the GDA-

learning-rate-based ANN model, which was previously used by Kisi [4] in the estimation 

of SSY in Valenciano Quebrada Blanca and Rio stations, USA produced inferior results to 

the LM-based ANN model. It is also found that the ANN model was more efficient and it 

outperformed conventional regression-based models in terms of accuracy but it was 

limited to Tikarapara station in MRB only. Samantaray and Ghose [33] developed an ANN 

model for SSY estimation and found it had satisfactory performance, but this was limited 

to the Salebhata gauging station in MRB only. Yadav et al. [24] also developed artificial 

intelligence (AI) models which are based on hydro climatical data, such as water discharge 
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(WD), rainfall (RF), and temperature (T) as inputs for SSY prediction at a single Tikarapara 

station in the MRB. It was found that WD, RF, and T input data provided the best results 

with different input parameter selection. Furthermore, it has been noted that the ANN 

model produced superior results compared to conventional-regression-analysis-based 

models. Yadav [26] also developed AI-based models at a single Tikarapara gauge station 

using WD, RF, T, rock type (RT), relief ®, and catchment area (CA) as inputs. No attempt 

has been made to predict SSY at multiple gauge stations using a single model in the entire 

MRB using the ANN techniques with temporal data (WD, RF, and T) and spatial data (RT, 

R, and CA). Thus, in this study, a single generalized ANN model was developed using 

the combined data of 11 gauge stations to estimate SSY at each station of the 11 gauging 

stations of the entire MRB using the hydro-geo-climatical WD, RF, T, RT, R, and CA data 

as major controlling factors of SSY. The parameters for some AI methods are selected by 

a trial-and-error method to obtain a reasonably good result. However, this approach takes 

a significantly large amount of computational time to obtain the parameter value, and is 

also not guaranteed to be the optimal or near-optimal solution to the problems. In this 

study, the parameters for the ANN model were selected by the grid search technique to 

obtain a passably good result. After the development of a reliable ANN-based prediction 

model, the performance of the model was examined with the same test dataset. The results 

demonstrated that the proposed ANN-based model performed satisfactorily and had a 

greater capacity for generalization than other comparative MLR and SRC methods for SSY 

prediction. Moreover, the ANN model, which is developed using the combined data of 11 

stations, provided better results at Tikarapara than the ANN models using the data of 

Tikarapara station only (ANN-1) and had more generalization capability. The ANN-1 

model is developed using the RF, WD, T, RT, CA, and R of a single Tikarapara station 

only using the same method as the ANN model which is developed combined data of 11 

gauging stations. Among all gauging stations, the proposed ANN prediction model 

provided the best accuracy at Tikarapara gauging station. It could be because Tikarapara 

is situated at the far downstream end of the MRB basin before meeting with the Bay of 

Bengal which has the maximum CA, RF, WD, and SSY among all the gauging stations. 

Many researchers have developed artificial intelligence (AI) models to predict sediment 

load by considering a set of temporal parameters, such as WD, RF, and T, for a specific 

geographical location. The ANN model prepared based on the data of 11 gauging stations 

performed better than the ANN-1 model which was developed based on the data of 

individual stations (Tikarapara) and has a greater generalization capability than the 

individual models of different gauging stations. The MRB case study focuses on the 

development of a highly generalized global single AI model using a huge amount of 

temporal as well as spatial data from 11 gauging stations and applied it at individual 

stations for the prediction of SSY in river systems which is our unique contribution. 

The proposed ANN prediction model of SSY which is hydro-geo-climatic-variable-

dependent is very helpful for planners and managers of water resources to have a good 

understanding of the problems and find alternative solutions to handle problems in the 

future. If a measurement of SSY is not available, then this proposed ANN-based modeling 

approach can be recommended for the prediction of SSY in river basin systems due to its 

comparatively superior performance and its ease of implementation. 

2. Study Region 

The Mahanadi River basin (MRB) was chosen in this study for SSY prediction. It is 

the fourth-largest river basin in India, with a total CA of 141,589 km2, accounting for 4.3% 

of India’s total geographical area [34]. The MRB is located between latitudes 19°20′ and 

23°35′ north and between longitudes 80°30′ and 86°50′ east. At an altitude of roughly 442 

m above sea level, the Mahanadi River starts in Raipur, Chhattisgarh, halfway between 

Pharsiya Village and Nagri Town. A total of 53 % of the river’s CA contribution is made 

in Chhattisgarh, 46% in Odisha, and the remaining amounts are split evenly between 

Maharashtra and Jharkhand [34,35]. According to the current sediment load, in terms of 
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capacity to cause flooding and water potential, the MRB is ranked second among the In-

dian peninsular rivers [36,37]. From 1971 to 2004, the mean annual RF in the MRB basin 

ranged between twelve hundred and fourteen hundred mm [36]. According to daily 

statistics for the years 1969 to 2004, the two coldest months of the year are January and 

December with the lowest temperatures of 12°C, and the two warmest months of the year 

are May and April with the highest temperatures of 39°C to 40°C [36]. The river’s basin 

area contribution for the years 2005–2006 was 54.27% under agricultural land cover, 5.24% 

under wasteland, 32.74% under forest cover, 3.30% under built-up land, and 4.45% under 

aquatic bodies [36]. The Chilika Lake and Hirakud reservoir are two large sources of water 

in the MRB. A geographical location map of the MRB including gauging sites is shown in 

Figure 1. The different lithologies found in the basin area include 5% coastal alluvium, 7% 

khondalite, 15% charnockite, 17% shale and Lower Gondwana limestone, and 22% shale 

and Upper Gondwana sandstone [38]. Among the 11 measuring stations, Tikarapara has 

the lowest elevation, while Baronda has the highest. The maximum CA value (124450 km2) 

is found at Tikarapara, which lies on the downward side of the MRB before it meets the 

Bay of Bengal, while the lowest CA value (2210 km2) is found in Andhiyarakhore, which 

lies in the upper part of the MRB. Table 1 summarizes the subbasin and tributary descrip-

tions of the MRB. The highest CA is found in the Seonath tributary, while the lowest is 

found in the Jonk. There is an abundance of literature that has provided a full description 

of the MRB [24,25,29,37]. 

Table 1. Sub-basins and tributaries of the MRB with catchment areas. 

Name of the Sub-Basin and Tributary Catchment Area (km2) 
Catchment Area of 

Mahanadi Basin (%) 

Hasdeo 9856 6.96 

Jonk 3484 2.47 

Seonath 30,761 21.72 

Mand 5200 3.67 

Upper Mahanadi 21,652 15.29 

Ib 12,447 8.79 

Ong 5128 3.62 

Middle Mahanadi 12,654 8.93 

Tel 22,818 16.12 

Lower Mahanadi 17,589 12.43 

Total 141,589 100 
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Figure 1. Location map of the MRB with eleven gauging stations. 

3. Methodology 

A specific kind of AI model is the ANN which is widely used. The ANN is capable 

of learning complex nonlinear correlations among variables. The ANN’s goal is to create 

pattern recognition as a learning approach so that it can learn from data and predict out-

put [39–41]. The ANN may represent any arbitrarily complicated nonlinear process that 

associates SSY with real-time hydro-geo-climatic factors [42]. The ANN is a flexible math-

ematical framework that resembles the biological brain in many ways [43]. It is based on 

the concept of a biological brain and the neurological system that surrounds it [43]. ANN-

based models have grown in popularity for the modeling of hydrological processes over 

the last two decades [44]. The ANN is capable of handling high-speed and high-accuracy 

simulations of hydrological processes. There are certain ANNs, such as the general regres-

sion neural network and the feedforward backpropagation neural network (FBNN) [45]. 

The FBNN is the most commonly employed since it is computationally efficient for multi-

layer perceptual training (MLP). The major aim of this research is to assess the effective-

ness of ANN in estimating SSY in the MRB using 20 years of monthly temporal data (RF, 

T, SSY, and WD) as well as spatial data (RT, R, and CA) from 1990 to 2010. To develop a 

robust model, data are normalized between 0 and 1 and separated into three categories: 

15% validation, 15% testing, and 70% training. The primary goal of the data normalization 

is used to remove the various ranges and dimensions of the parameters in the data set. 

The normalization was performed for all inputs and output variables used in this study. 

The normalization process of the data in the range of a and b is conducted using the fol-

lowing equations: 

����� = � +
�� − ����

���� − ����

× (� − �) (1)

where �� is the ith original value, �����is the normalized value of ��, ����  is the maxi-

mum value and ���� is the minimum value of the data set. All of the output and input 

variables employed in this study were normalized between 0 and 1. In Equation (1), � and 

� are the maximum and minimum values within which data are to be normalized. Thus, 

� and � are assigned as the value of 0 and 1, respectively, for normalizing the data. 

Generally, SSY is determined by taking samples of water-sediment mixtures. Bottle 

samples can be collected using either point-integrated or depth-integrated methods, 

which are the conventional method for collecting suspended sediment samples. Depth-

integrated sampling, which involves lowering sediment samples from the river surface to 

the channel bed at a uniform rate while a bottle within the sampler collects an incremental 

volume of the water-sediment mixture from all points along the sampled depth, is com-

monly used. Table 2 contains the list of abbreviations with meanings. 

Table 2. List of abbreviations with meaning. 

Abbreviations Meaning 

SSY Suspended sediment yield 

ANN Artificial neural network 

AI Artificial intelligence 

WD Water discharge 

RF Rainfall 

T Temperature 

R Relief 

RT Rock type 

CA Catchment area 

MRB Mahanadi river basin 

MSE Mean square error 

RMSE Root-mean-squared error 
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MAE Mean absolute error 

μ Combinational coefficient of Levenberg–Marquardt algorithm 

LM Levenberg–Marquardt 

CE Coefficient of efficiency 

MLP Multi-layer perceptron 

MAE Mean absolute error 

r Coefficient of correlation 

GDA Gradient descending adaptive  

VAR Error variance 

I Input layer 

O Output layer 

H Hidden layer 

ARMA Autoregressive moving average 

MLR Multiple linear regression 

SRC  Sediment rating curve 

The MLP is an FBNN with output, hidden, and input layers. Each layer has a fixed 

number of neurons that can be activated. Theoretical studies have shown that ANNs may 

approximate any complicated nonlinear function with just one hidden layer [46,47]. To 

keep the network’s complexity from growing, only one hidden layer is used [48]. Each 

layer’s neuron transfers the total weighted input into an activation level, and the activa-

tion level is controlled by the activation function. The hidden layer nodes were modified 

from 1 to 32 to lower the network’s processing time and complexity [49,50]. The machine 

learning model’s interpretability is easier to understand as the model’s complexity de-

creases [51]. The activation function should be differentiable and rise monotonically. This 

study made use of the tan-sigmoid function in the hidden layer and the pure linear trans-

fer function at the output layer for obtaining the optimum structure of the ANN [25,52]. 

Figure 2 shows a schematic representation of the MLP-based ANN model for SSY predic-

tion. “I” represents the input layer nodes (neurons), “H” denotes hidden layer nodes, and 

“O” represents output layer neurons in this diagram. The connection weight between the 

input layer and the hidden layer is represented by the blue line. The connection weight 

between the output and hidden layers is shown by the red line. In this study, the Leven-

berg–Marquardt (LM) algorithm was applied to train the ANN models using feed-for-

ward back-propagation training algorithms [30]. Because of its quick response, the LM is 

utilized to construct the robust MLP-based ANN model. The inputs, outputs, and neurons 

of the LM-based MLP ANN models were built with a single hidden layer. The weights, 

transfer functions, and hidden nodes all play an important role in the error of the ANN 

model [53]. The error is transferred backward across the network to each neuron’s bias 

weights and connection weights. The Jacobean matrix is the most important stage in this 

approach. The LM approach is the standard technique for minimizing the RMSE due to 

its quick convergence properties and high reliability [54]. The weight update rule of the 

LM-based ANN algorithm is presented as [25,30]: 

W��� = W� − (J�J) + µI)��J�� (2)

The weight (W) of the LM in ANN depends on the Jacobian matrix (J), identity matrix 

(I), iteration number (k), error matrix (�), and combinational coefficient of LM (µ) during 

the learning processes. Figure 3 shows the overall layout of the proposed ANN method. 
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Figure 2. Architecture of MLP-based ANN. 

 

Figure 3. The flowchart of the proposed ANN model with heuristic parameters selection processes 

for SSY prediction. 



Water 2022, 14, 3714 8 of 24 
 

 

Unlike other temporal variables, spatial input variables, such as RT, R, and CA, are 

fixed for each gauging station and do not change (WD, RF, T, and SSY) in ANN model 

development. The RT value was mapped between 0 and 1. The RT value is 0 if any gauge 

station has a very hard rock with the lowest weatherability. If the RT is soft, such as clay, 

limestone, or other materials that dissolve and weather quickly, the RT value was set to 1. 

Similarly, the values of R and CA are mapped between 0 and 1. The highest R-value in a 

gauge station inside the river basin is 1, and the lowest R-value in a gauge station is 0, 

with the values in between linearly interpolated between 0 and 1. To obtain values be-

tween 0 and 1, the catchment region was also coded similarly to R. The ANN prediction 

model is developed using these data. The performance of the ANN model is evaluated 

with other existing regression-based methods, such as SRC and MLR. 

The relationship between SSY and WD is given by the SRC method as a power func-

tion that is nonlinear [5,24]: 

SSY=�(WD)b (3)

where b and � indicate the coefficients of the SRC regression method. The generalized 

least square method was used to perform linear regression between the (WD) and log 

(SSY) data to determine the values of b and �. The direct relationship between SSY and 

WD is examined using the SRC method. In place of the original data, normalized data is 

used for the SRC method. The performance evaluation of the SRC method is compared 

with ANN and MLR models on the same test data set. 

The MLR method is the widely known regression method to predict SSY through a 

linear combination of the input and output variables. The MLR model involves the fitting 

of a linear equation between two or more dependent variables and independent variables. 

SSY prediction has been conducted in past research using a conventional MLR approach 

[20,21]. The MLR model is developed using hydro-geo-climatically data (WD, RF, T, CA, 

RT, R, and SSY) from 11 gauging stations. The MLR method is considered for the predic-

tion of the SSY linearly using the input variables. The MLR formula can be expressed as 

(���)(�) = �� + ��(��)(�) + ��(��)(�) + ���(�) + ��(��) + ��(��) + ��� (4)

where �� is the regression intercept; ��, ��, ��, ��, ��, and �� are the coefficients of 

the input variables WD, RF, T, CA, RT, and R, respectively. The MLR represents the de-

pendent predicted output, ���� through the independent input variables at time (�). The 

least square regression method was applied to calculate the values of ��, ��, ��, ��, ��, 

��, and �� coefficients of the MLR using input and observed output data. 

4. Results and Discussion 

Analysis of variance (ANOVA) was used to select the inputs. The ANOVA test is 

used to determine whether all input parameters (WD, RF, T, and CA) are statistically dif-

ferent or not. Figure 4 shows the box plots results of the ANOVA test. It was noticed that 

all of the input parameters have different distributions because of differences in the cen-

tral lines of the individual boxes which represent the mean value of individual boxes of 

each input. As a result, it was decided to consider all of these input parameters when 

predicting SSY in the MRB. In past research, some researchers have used ANOVA analysis 

for input parameter selections in modeling which are well described in various literature 

[25,55–57]. Bastia and Equeenuddin [37] demonstrated that water discharge, rainfall, 

catchment area, etc. affect the sediment yield in the Mahanadi River basin. Temperature 

also plays an important role in the erosion rate or sediment yield, which are the dominant 

driving forces of sediment transportation and sediment generation [20,58]. Temperature 

influences sediment yield in many indirect ways. Temperature changes may affect sedi-

ment discharge by altering runoff and changing the rate of erosion due to their effects on 

vegetation, evapotranspiration, and weathering [20,59]. However, several studies show 
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that temperature is exponentially related to sediment load and erosion rate [60,61]. There-

fore, in this study, the temperature was included as one of the inputs in the sediment yield 

model. In the ANOVA boxplot, the red color plus (+) of the water discharge and rainfall 

represents outliers, which are data values that are far away from other data values which 

can strongly affect the results. Often outliers are easiest to identify on an ANOVA boxplot. 

Water discharge and rainfall data are skewed. The majority of the data in the ANOVA 

plot are located on the high or low side of the graph. The data set may be left-skewed or 

right-skewed. Skewed data indicates that the data might not be normally distributed. It 

has been found that a high value of the skewness coefficient has a considerable negative 

influence on the performance of the artificial neural network (ANN) [62]. Analysis of Var-

iance (ANOVA) test results of the hydro climatical data set are shown in Table 3. 

Table 3. Analysis of Variance (ANOVA) test results of the hydro climatical data set. 

Source SS Df MS F P > F 

Columns 138.938 3 46.3126 1694.08 0.001 

Error 288.579 10556 0.0273   

Total 427.517 10559    

The ANOVA results show the between-groups variation (Columns) and within-

groups variation (Error). In the ANOVA test, the values of sum of squared error (SS), de-

gree of freedom (Df), mean squared error (MS), F-statistics, and error are given in Table 3. 

MS is the ratio between the SS and Df for each source of variation. The total degrees of 

freedom are the total number of observations minus one. The between-groups degree of 

freedom is the number of groups minus one. The within-groups degree of freedom is the 

total degrees of freedom minus the between-groups degree of freedom. The F-statistic is 

the ratio of the mean squared errors. The p-value is the probability that the test statistic 

can take a value greater than the value of the computed test statistic which is equal to 

0.001. The small p-value of 0.001 indicates that differences between column means are sig-

nificant. 

Yadav et al. [24] and Yadav et al. [25] demonstrated that suspended sediment yield 

is very closely related to water discharge in comparison to rainfall and temperature. Tem-

perature has a stronger relationship with rainfall, which has a stronger relationship with 

suspended sediment yield. Temperature is related to suspended sediment yield in a sec-

ondary way. Thus, temperature influences sediment yield in a variety of indirect ways. 

Temperature has the lowest impact on sediment yield as compared to rainfall and water 

discharge. It was found that water discharge, rainfall, catchment area, and temperature 

etc. are the most dominant controlling factors of the suspended sediment yield in the Ma-

hanadi River [24–27]. The variation in WD, T, RF, and SSY at different locations with dif-

ferent periods (months) is shown in Figure 5. There is exhibit significant fluctuation in 

WD and SSY among all temporal variables in the MRB across time without any cyclic 

pattern. 
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Figure 4. ANOVA test result of the input data. 

The inputs, outputs, and neurons with a hidden layer are used for developing the 

ANN model using temporal and spatial data for SSY prediction. The combination coeffi-

cient of LM (µ) value was kept flexible throughout this ANN modeling process which 

ranged from 0.001 to 10 × 109, and the value was incremented and reduced by a factor of 

ten and 0.1, respectively. The model began with a random connection and bias weights 

values that were initialized and then updated every epoch to optimize performance. In 

this study, the maximum number of hidden neurons was restricted to 32, in view of com-

putational time and model complexity [25,49,50]. The lower the complexity of the model, 

the easier it is to understand the interpretability of the artificial intelligence model [63]. 

Figure 6 shows the RMSE variation values with neurons an µ of the ANN using grid 

search techniques. This figure shows that when the optimum neurons in the hidden layer 

and µ are 31 and 0.06, respectively, then the ANN model produced the lowest RMSE value 

(0.00460) in the training phase. As a result, it was considered the best ANN model. To 

examine the effectiveness of the models, the error variance (VAR), RMSE, mean absolute 

error (MAE), coefficient of efficiency (CE), mean square error (MSE), and correlation co-

efficient (�) are often utilized as statistical performance measures. 

Table 4 indicates the error statistics of the ANN model’s training, validation, and 

testing data sets. If the model is ideal, RMSE, MSE, VAR, and MAE should be around zero, 

while CE and r should be near one. For all three data sets, the RMSE is extremely low 

(0.00457–0.01096) and r is significantly higher (0.7414–0.9757). According to the RMSE and 

r value, it can be inferred that this ANN model predicts SSY with higher accuracy. The 

error statistics data revealed that RMSE and MAE exhibit comparable tendencies., Ac-

cording to the results, these are in direct proportion to one another. The SSY significantly 

strongly correlated at all gauging stations except Andhiyarakhore, Sundargarh, and Bam-

nidih. Tikarapara gauging station had the highest r (0.9675) value among all stations. The 

Pearson correlation coefficient (r) should be justified as being strong if the r value is 

greater than 0.7, moderate if it is between 0.5 and 0.7, and poor if it is less than 0.5 [9]. 

According to Legates and McCame [64], the Pearson correlation coefficient (r) is not nec-

essarily appropriate for evaluating hydrological models. As a “goodness-of-fit” measure, 

the CE is a good substitute for r. 
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Figure 5. Monthly variations in WD, RF, T, and SSY at different locations (a) Tikarapara (b) Simga 

(c) Andhiyarakhore (d) Sundargarh (e) Bamnidih (f) Jondhra (g) Kantamal (h) Kurubhata (i) 

Basantpur (j) Baronda (k) Rajim. 

 

Figure 6. Effect of Neurons and µ on RMSE during the training of the ANN model. 

Table 4. Error statistics during the testing, training, and validation phases of the ANN model of 11 

gauge stations of the MRB. 

ANN RMSE MAE r VAR MSE CE 
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Validation 0.011 0.004 0.741 1.000 × 10−4 1.000 × 10−4 −1.255 

Training 0.005 0.002 0.976 2.090 × 10−5 2.090 × 10−5 0.952 

Testing 0.009 0.003 0.867 7.760 × 10−5 7.950 × 10−5 −0.249 

Tikarapara 0.009 0.006 0.967 5.400 × 10−5 7.960 × 10−5 0.901 

Simga 0.003 0.002 0.780 7.540 × 10−6 7.820 × 10−6 −0.196 

Andhiyakore 0.001 0.001 0.611 6.860 × 10−7 6.770 × 10−7 −14.881 

Sundargarh 0.005 0.003 0.684 2.240 × 10−5 2.170 × 10−5 0.412 

Bamnidih 0.002 0.001 0.546 2.480 × 10−6 2.440 × 10−6 −29.462 

Jondhara 0.004 0.002 0.922 1.620 × 10−5 1.760 × 10−5 0.778 

Kantamal 0.027 0.012 0.772 1.000 × 10−3 7.540 × 10−4 0.203 

Kurubhata 0.002 0.001 0.945 4.140 × 10−6 4.980 × 10−6 0.160 

Basantpur 0.006 0.004 0.943 4.540 × 10−5 4.910 × 10−5 0.785 

Baronda 0.001 0.001 0.849 1.400 × 10−6 1.290 × 10−6 0.667 

Rajim 0.002 0.001 0.716 2.520 × 10−5 2.540 × 10−6 0.455 

The value of the coefficient of efficiency (CE) fluctuated between −29.4624 and 0.9518. 

At Andhiyarakhore, Simga, and Bamnidih, the CE value was negative, indicating that the 

model’s performance was worse than the observed mean value. Kurubhata (0.160) had 

small positive values of CE, which were near zero. The CE value of 0 shows that the model 

is unable to predict the actual values, as measured by the observed mean [65]. The CE at 

Tikarapara was 0.901 which is almost 1 and the greatest among all the stations that demon-

strate the proposed model provided superior performance at Tikarapara. 

The ANN model appears to have reasonable accuracy in estimating SSY for all other 

stations, with CE ranging from 0.4116 to 0.7849. Negative CE values were reported at 

Bamnidih (−29.46), Simga (−0.196), and Andhiyarakhore (−14.88) which indicates poor 

performance. Aside from quantitative assessment using statistical measures, the efficiency 

of the ANN in predicting SSY at 11 gauging stations was evaluated using diagrammatical 

indicators. Figures 6 and 7 depict the hydrograph and scatter graph between estimated 

ANN and observed SSY with time (months). Except for Simga, Bamnidih, Kurubhata, and 

Andhiyarakhore, the hydrographs show that the predicted SSY follow the variation of the 

observed data. Similarly, in the scatter plot of the ANN, except for the above-mentioned 

gauging stations, the points of data were scattered around the 45-degree line (1:1 line). 

This line is a bisector line that has the same predicted and observed values. If the scatter 

points are close together along this line, the predicted and observed values are approxi-

mately the same. If all scatter values fall along this line, this is a perfect model. 

The modeled SSY in both Andhiyarakhore and Bamnidih stations showed wide var-

iations in all peaks and corresponded to a low value of observed SSY when compared to 

other gauging stations. The ANN estimated SSY values were nearest to the actual data 

values at Tikarapara among all stations, as seen in both plots. Furthermore, the model 

provides accurate estimates in Jondhra, Sundargarh, Kantamal, Baronda and Basantpur. 

The scatter plot between both the estimated and actual values (Figure 8a) of the ANN 

model also shows that the majority of the scatter points are near the bisector line. The 

ANN model did not perform well in predicting SSY at Bamnidih, Andhiyarakhore, Ku-

rubhata, and Rajim stations. 

In comparison to other gauge stations, a large number of negative estimated values 

were produced by the model at Bamnidih and Andhiyarakhore; although, SSY cannot be 

negative in actuality. SSY at these sites was found to be highly non-linear. At Bamnidih, a 

considerable discrepancy between the bisector line and the linear regression line can also 

be seen from the scatter plot. The hydrograph also shows that at these sites, the observed 

and model SSY did not match up. It could be because of the big Minimata Bango dam 

before this station. The hydrologic graph and scatter plots reveal that the proposed model 

did not produce satisfactory results in Andhiyarakhore. It could be because of the low CA. 

The poor performance of the proposed ANN model for predicting suspended sediment 

at Andhiyarakhore, Bamnidih, Rajim, and Kurubhata stations can be attributed to the 

highly complicated interaction of several suspended sediment yield controlling factors. 
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Kurubhata and Andhiyarakhore are two small tributaries with relatively small catchment 

areas; however, these carry relatively high suspended sediment yield. It is because of the 

inability of relatively small basins to store sediments and allow all eroded material to be 

removed [66]. The presence of a large Minimata Bango dam at Bamnidih is the primary 

cause of modeled output deviation. Simga has a relatively large catchment area, but its 

topography is very flat and dominated by limestone. As a result, the sediment yield and 

water discharge are low in comparison to other tributaries–Seonath and Tel that have a 

small catchment area. The hydrograph and scatter plots show that the ANN model pro-

vided the highest accuracy at Tikarapara station and the lowest accuracy at Andhiyarak-

hore and Bamnidih gauging stations (Figures 7 and 8). The ANN model also provided 

satisfactory performances and the best result at Tikarapara gauging station among all 

gauging stations which may be due to the highest WD, CA, SSY, and RF among all gaug-

ing stations at this gauging station. 

After the development of a reliable ANN model, the model’s performance was eval-

uated using the same testing data that was not utilized during the training phase. The 

ANN models at Tikarapara (ANN-1) were developed using just the data from this station 

and the same ANN model methods with temporal data (WD, RF, and T) as inputs. The 

comparison has been based on the test data’s estimated values and the same actual testing 

data for both models. Table 5 displays the error statistics obtained in the testing phase, 

such as MSE, MAE, RMSE, VAR, and � values of all models. 
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Figure 7. Hydrograph between predicted SSY and actual SSY of testing data of the ANN prediction 

model. 
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Figure 8. Scatter plots between predicted SSY and actual SSY of testing data of the ANN prediction 

model. 

Table 5. Performance comparisons in testing data error statistics of the ANN model and ANN-1 

model of Tikarapara Station of the MRB. 

Models RMSE MSE MAE Error Variance r 

ANN 0.00892 7.95 × 10−5 0.002897 7.76 × 10−5 0.867 

ANN-1 0.09847 0.00968 0.05694 0.006619 0.957 

MLR 8.960 × 10−3 8.03 × 10−5 0.004 7.92 × 10−5 0.843 

SRC 1.010 × 10−2 1.000 × 10−4 0.003 9.830 × 10−5 0.792 
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According to this table, the ANN model has a lower RMSE than the ANN-1, SRC, 

and MLR models. As a result, the ANN model outperformed the ANN-1 model. Based on 

the result, it was realized that the ANN model has greater generalization capability than 

that of the individual models of different gauging stations. It provided a superior result 

than the ANN-1 of Tikarapara station because the ANN model used combined inputs 

(WD, RF, T, RT, R, and CA) data from 11 gauging stations. The ANN model of Tikarapara 

(ANN-1) was also developed by considering these inputs but it is less capable than the 

ANN model of all stations because it was developed by considering a single station so it 

has a decreased generalization capability. It is observed from the hydrograph and scatter 

plots of the ANN model that the predicted and observed sediment was closer than the 

ANN-1 model (Figures 7–9). 

 

Figure 9. (a) Hydrograph between the predicted and actual SSY at Tikarapara using the ANN-1 

model; (b) Scatter plot between the predicted SSY and actual at Tikarapara using the ANN model. 

The hydrographs in Figure 7 and Figure 9a indicate that the proposed and observed 

SSY of the ANN model are closer than in the ANN-1 model. The scatter plots of Figure 7b 

and Figure 9b also show that the ANN-1 model has a larger deviation between the bisector 

and regression line than the ANN model. The ANN model’s superiority may be due to 

the development of this model using the combined data of 11 gauging stations as training 

by taking inputs, such as (WD, RF, T, RT, R, and CA) instead of considering Tikarapara 

data only and the inclusion of spatial data (RT, R, and CA) also. This ANN model has a 

greater generalization capability compared to the ANN-1 model. 

The MLR, ANN, and SRC model performance assessments were conducted for all 11 

stations during the test period (Table 5). In comparison to MLR (RMSE-0.00896; r-0.843) 

and SRC (RMSE-0.01010; r-0.792), ANN models had the lowest RMSE (0.00892) and great-

est r (0.867). As a result, based on these error statistics, the ANN model performed better 

than MLR and SRC. The ANN method’s efficiency in estimating SSY at 11 gauging sta-

tions also can be evaluated using graphical indications. 

Particularly at high sediment values, it can be seen in the hydrographs that the esti-

mated SSY by the ANN model is closer to the actual observations than the SRC and MLR 

(Figures 7, 10–12). The SRC model produced poor performances, which significantly un-

derestimated the peaks and failed to catch the abnormally high SSY. Thus, it provided the 

worst performance among all models. The actual and estimated SSY values in the ANN 

model are closer than the SRC model (Figure 7 and Figure 12). In the scatter plots (Figure 

8, 11 and 13), it is seen that the MLR model estimated more negative SSY at a low value 

as compare to other ANN and SRC models. It indicates the complex non-linear behavior 

of sedimentation at low sediment yields which are not captured by the model. However, 

the ANN model provided a high number of positive sediment values as compared to 

ANN-1, MLR, and SRC even when the SSY was low (Figure 7–13). These results reveal 

that the ANN approach provides better performance and generalization capability than 

other comparative methods. In the hydrographs, it is also noticed that the estimated SSY 

by the ANN model is nearest to the actual SSY as compared to ANN-1, MLR, and SRC at 
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Tikarapara (Figure 7a, 8a, 9a, 10a, 11a, 12a and 13a). As seen in the scatter plots of all 

models, the ANN-based linear regression line is much closer to the 45-degree line than 

the SRC, ANN-1, and MLR-based models. Thus, particularly in comparison to other 

ANN-1, MLR, and SRC models, the ANN model was found to be the most capable (Figure 

7b, 8b, 9b, 10b, 11b, 12b and 13b). 

 

Figure 10. Hydrograph between the predicted and actual SSY of testing data of the MLR model. 
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Figure 11. Scatter plots between predicted and actual SSY of testing data of the MLR model. 
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Figure 12. Hydrograph between predicted and actual SSY of testing data of the SRC model. 
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Figure 13. Scatter between the predicted and actual SSY of testing data of the SRC model. 
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5. Conclusions and Future Scope 

It may be concluded that the SSY patterns in the MRB are largely controlled by RF, 

WD, T, RT, R, and CA. It was found that the MRB’s WD and SSY show large oscillations, 

whereas T and RF show little variance among gauge stations in the basin. Furthermore, 

Tikarapara has the highest WD, RF, CA, and SSY, whereas Andhiyarakhore has the lowest 

SSY, WD, RF, and CA. In comparison to other hydro-climatic variables (WD, RF, and T), 

SSY has more non-linear complex processes. The far downstream Tikarapara station of 

the MRB had the highest WD, RF, CA, and SSY, whereas the upstream Andhiyarakhore 

station had the lowest WD and SSY. The models cannot estimate SSY with high accuracy 

at gauge stations that have extremely very small CAs but perform well at moderate to 

large CA sites. At Tikarapara, the gauge station far downstream with the highest CA, the 

models produced the best results. If there are no SSY measurements available in any river, 

the modeling approach can be used to estimate SSY at gauged or ungagged places. Hydro-

climatic variables (WD, T, RF, RT, R, and CA) were found to be the most important gov-

erning parameters of SSY in the MRB. Thirty-one hidden neurons were found to be the 

most suitable for the ANN model for obtaining satisfactory results. A greater proportion 

of negative values were produced by the proposed ANN model at Bamnidih and 

Andhiyarakhore among all gauging stations, which do not exist in reality. The modeled 

SSY indicates significant fluctuation in all peaks and during low SSY at both Bamnidih 

and Andhiyarakhore stations. High nonlinearity was found in Bamnidih and Andhiya-

rakhore stations. Among all gauging stations, the developed model was particularly ef-

fective at estimating SSY at Tikarapara station. It has been concluded that the ANN model, 

which is based on data from 11 stations, is the most suitable substitute and has a greater 

generalization capacity than the ANN-1 model, which is based on data from only the WD, 

RF, and T of Tikarapara station. It was also noticed that the ANN performed better than 

ANN-1, MLR, and SRC models. The study used rainfall data instead of rainfall intensity. 

It is also obvious that rainfall intensity would be much more significant than quantity 

because the detachment of the soil is more influenced by intensity than quantity of rain. 

The rainfall intensity factor was not incorporated into this research for the improvement 

of modeling performance due to its unavailability at gauging stations in the MRB but will 

be addressed in future research. Anthropogenic activities are not included in this study, 

but these factors are critical for SSY prediction. As a result, these variables will be consid-

ered in future studies. 
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