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Abstract: The global hydrological cycle is susceptible to climate change (CC), particularly in underde-
veloped countries like Pakistan that lack appropriate management of precious freshwater resources.
The study aims to evaluate CC impact on stream flow in the Soan River Basin (SRB). The study
explores two general circulation models (GCMs), which involve Access 1.0 and CNRM-CM5 using
three metrological stations (Rawalpindi, Islamabad, and Murree) data under two emission scenarios
of representative concentration pathways (RCPs), such as RCP-4.5 and RCP-8.5. The CNRM-CM5
was selected as an appropriate model due to the higher coefficient of determination (R2) value
for future the prediction of early century (2021–2045), mid-century (2046–2070), and late century
(2071–2095) with baseline period of 1991–2017. After that, the soil and water assessment tool (SWAT)
was utilized to simulate the stream flow of watersheds at the SRB for selected time periods. For
both calibration and validation periods, the SWAT model’s performance was estimated based on
the coefficient of determination (R2), percent bias (PBIAS), and Nash Sutcliffe Efficiency (NSE). The
results showed that the average annual precipitation for Rawalpindi, Islamabad, and Murree will
be decrease by 43.86 mm, 60.85 mm, and 86.86 mm, respectively, while average annual maximum
temperature will be increased by 3.73 ◦C, 4.12 ◦C, and 1.33 ◦C, respectively, and average annual
minimum temperature will be increased by 3.59 ◦C, 3.89 ◦C, and 2.33 ◦C, respectively, in early to late
century under RCP-4.5 and RCP-8.5. Consequently, the average annual stream flow will be decreased
in the future. According to the results, we found that it is possible to assess how CC will affect small
water regions in the RCPs using small scale climate projections.

Keywords: Soan River Basin (SRB); climate change; GCMs; SWAT; prediction; RCP 4.5; RCP 8.5

1. Introduction

The global climate change (CC) has impacted the hydrological regimes of various
regions all over the world, and this change is anticipated to go on in the future [1]. CC
has a significant effect on the ecological unit, socioeconomic systems, water supplies, and
eco-systems [2,3]. In this regard, CC has become a major research focus during the past
few decades [4–6]. Higher evaporation rates because of escalating global temperatures
impact the precipitation patterns [7–11]. The hydrological cycle is a complex process that
is challenging to manage on a global scale as well as within individual watersheds [12].
Therefore, it is necessary to assess the effects of improved decision making on the water
resources management [3]. In order to predict consequences of the CC on hydrological
catchments, a combination of general circulation models (GCMs) and hydrological models
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are often utilized [3,13,14]. The GCMs are regarded as the most appropriate models for
evaluating the dynamic and physical process of the atmospheric system [15]. However, a
limitation of the GCMs is low spatial resolution to evaluate the number of significant sub
grid scale hydrological processes and applicability for the regional CC evaluations [16–18].
On the other hand, by simulating the hydrological processes that take place inside water-
sheds, hydrological models offer a correlation between CC and water yield, but regional
scale input data is required to do so [19]. Downscaling approaches fill the gap between
hydrological models and GCMs in terms of temporal and spatial resolution [20]. Despite
various downscaling approaches, there are three key steps which affect CC simulation:
(i) projection of future CC effects using simulations of GCMs, (ii) downscaling of climate
projections from regional to large scales, and (iii) generation of hydrologic predictions using
downscaled data and hydrologic models [21].

For a better understanding of CC impact on stream flow, hydrological models incor-
porates climatic model as an input [22]. By comparing water yield and CC, hydrologic
processes can be simulated. The soil and water assessment tool (SWAT) is a physical model
that can smooth continuous hydrologic simulations in a semi-distributed manner in real
time. Despite not being a three-dimensionally circulating model, the SWAT recognizes
geographically separated components that make up hydrologic response units (HRUs)
and sub-basins [23]. Changes in temperature, humidity, and precipitation can affect plant
growth and can be anticipated to have an effect on evapotranspiration, runoff, and snowfall.
The SWAT model is frequently employed in research to simulate the hydrologic processes
of watersheds with an emphasis on the impact of CC. In the literature, numerous studies
have been performed to evaluate the impact of CC on the stream flows using both climate
and hydrological models [21,24–27]. For instance, Babur et al. [28] used seven GCMs and
the SWAT model. He concluded a decreasing and increasing tendency in overflow of the
Upper Indus Basin. Akber et al. [29] evaluated the impact of land use land cover (LULC)
changes followed by CC on stream flow of the Kunhar river basin using GCMs, the SWAT
model, and the downscaling technique. It was concluded that owing to CC the streamflow
increased 20% from its baseline period. Garee et al. [30] investigated CC impact on the
stream flow of the Hunza River (Pakistan) using GCMs and SWAT models. It was observed
that temperatures will be expected to increase from 1.39 ◦C to 6.58 ◦C by the end of this
century while precipitation is anticipated to increase by 31%, resulting in a 5–10% increase
in runoff. However, to the authors’ best knowledge, few studies have been performed
particularly for Soan river basin (SRB) in Pakistan with the SWAT model for streamflow
prediction, as this model has the ability to simulate the long-term hydrological changes,
particularly for large catchments. It is projected that the demand for water will increase due
to rapidly shifting economic and social conditions in upcoming decades. In this regard, it is
essential to ascertain potential impacts of CC on stream flow for sustainable management
of water resources in such areas.

Therefore, the present study aims to evaluate the impact of CC on stream flow varia-
tions in the SRB by employing the SWAT model in response to RCP-4.5 and RCP-8.5 with
two of the most commonly used GCMs. Five metrological parameters data including maxi-
mum temperature (Tmax), minimum temperature (Tmin), relative humidity, precipitation,
wind speed and solar radiation with land use (LU), digital elevation model (DEM), and soil
data of the SRB were used and input for the SWAT model. Two general circulation models
(GCMs) (i.e., Access 1.0 and CNRM-CM5) were used for the prediction of three meteoro-
logical parameters including Tmax, Tmin, and precipitation by utilizing three metrological
stations (i.e., Rawalpindi, Islamabad, and Murree) data under RCP-4.5 and RCP-8.5 for
early (2021–2045), mid (2046–2070), and late century (2071–2095) with a baseline period
of 1991–2017. Consequently, the SWAT model’s output was incorporated with climatic
models and utilized to simulate the stream flow of watersheds at the SRB for selected time
periods. Additionally, the SWAT model’s performance was assessed based on coefficient
of determination (R2), percent bias (PBIAS), and Nash Sutcliffe Efficiency (NSE) for both
calibration (2006–2009) and validation (2010–2013) period.
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2. Materials and Methods
2.1. Study Area

The Soan River is a major tributary of the Indus River and a substantial supplier
of water for the Pothwar regions of Pakistan [31]. It begins in Murree mountains and
passes through two hydrological stations of Chirrah and Dhok Pathan before flowing
into the Indus River. The SRB covers an area of 6842 km2 with maximum height of
2274 m. The average annual temperature in the SRB varies between 8–18 ◦C with average
annual precipitation of 1465 mm. The northern area of the SRB has humid and sub humid
climates whereas southern area has arid and semiarid climates [32]. Simly dam is also a
major supplier of water for the capital city (Islamabad) that receive water from the SRB.
Furthermore, the SRB significantly contributes to Pothwar’s agriculture and domestic water
use. The slope of the SRB varies from gentle to steep, and monsoon season generates the
majority of the stream flow. The study area’s population has grown dramatically in recent
years owing to an increase in rural-to-urban migration, suggesting that water supplies are
under persistent pressure [22].

2.2. Data Collection
2.2.1. Observed Climatic Data

The study employed climatic data obtained from the Pakistan Meteorological Depart-
ment and Soil and Water Conservation Research Institute for three meteorological stations,
as shown in Figure 1, for the period of 1991–2017. The climatic data was obtained in terms
of temperature, relative humidity, precipitation, wind speed, and solar radiation. The
precipitation and temperature data are shown in Figure 2. However, the relative humidity,
wind speed, and solar radiation data is available in Appendix A (Figures A1 and A2).
Stream flow data (gauged data) was collected from a hydrological station (Chirrah) of
Water and Power Development Authority (WAPDA) only for the period of 2006–2013 due
to the non-availability of long-term data.
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Figure 2. Spatial distribution of meteorological parameters of baseline period for selected meteoro-
logical stations.

2.2.2. Model Data

Model data including Tmax, Tmin, and precipitation were acquired for developing the
CNRM-CM5 Model. The climatic projections were categorized into two groups such as
the baseline period (1991–2005) and three future periods: early century (2021–2045), mid-
century (2046–2070), and late century (2071–2095). Five global climate models (Access 1.0,
CNRM-CM5, CCSM4, CSIRO, and MPI-ESM-LR) were used in this study, and the data was
downloaded from reference [33].

2.2.3. Spatial Data

Spatial data comprising the digital elevation model (DEM), soil data, and land use (LU)
data was incorporated into the SWAT model. The coordinate system used to project each
spatial dataset was the same as WGS 1984 UTM ZONE 43N. The SWAT model developed
the stream network plus defined the watershed using the DEM of the research area. It was
purchased from the CGIAR-Consortium for spatial information v4.1 database (23). The
LU data was collected from the National Engineering Service of Pakistan (NESPAK). After
that, this LU data was categorized into eight classes including agricultural land generic,
agricultural land-row crops, forest ever green, deciduous, mixed, pasture residential low
density, and water, as shown in Figure 3a. The digital soil map of the world (DMSW) was
utilized to download soil information from the reference [34]. The DEM data of the SWAT
model defined five slope classes and soil classification in Figure 3b. The most central soil
category is Gleyic Solonchaks, which covers 67.32% of the basin area. The dataset of soil
classification for this region was obtained from the reference [34]. Based on the DEM data,
the SWAT model defined five slope classes as shown in Figure 3c.
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2.3. Climate Change Analysis and Downscaling

Linear scaling was applied to completely meet the corrected monthly average values
with observed values [35–37]. Monthly variations in climatic data were obtained using
observed data (1991–2017) and GCMs data. The following equations were used to predict
future temperature and precipitation data of the GCMs using the bias correction method.

∆T27 years = Tobserved, monthly − TGCM,observed, monthly (1)

∆P27 years =
Pobserved, monthly

PGCM,observed, monthly
(2)

Tf uture, daily = ∆T27 years+TGCM,daily, f uture (3)

Pf uture, daily =
(
∆P27 years

)
∗ PGCM,daily, f uture (4)

where Tobserved, monthly and Pobserved, monthly represents the observed monthly temperature (◦C)
and precipitation (mm), respectively, while TGCM,observed, monthly and PGCM,observed, monthly
represents the raw data observed monthly temperature (◦C) and precipitation (mm), re-
spectively. ∆T represents a change in temperature (◦C), T represents temperature (◦C),
∆P represents a change in precipitations (mm), and P represents precipitation (mm). By
using these above equations, climatic data was examined relative to baseline periods on a
seasonal and annual basis for future possibilities. The predictions were divided into three
future periods: early century (2021 to 2045), mid-century (2046 to 2070), and late century
(2071 to 2095) while the selected baseline period was 1991 to 2017.

2.4. Bias Correction

In this study, two GCMs, Access 1.0, and CNRM-CM5, under two representative
concentration pathways (RCPs) such as RCP-4.5 and RCP-8.5, were employed to predict the
future impact of CC [14]. A statistical analysis including the 90th percentile, mean, standard
deviation, and 10th percentiles was applied for non-bias corrected data, observed data, and
for bias corrected data for Tmax, Tmin, and precipitations. Linear scaling was applied to com-
pletely meet the corrected monthly average values with observed values [35–37]. Monthly
variations in climatic data were obtained using observed data (1991–2017) and GCM data.
The bias correction of climatic parameters (precipitation, temperature) depended upon the
below two equations.

Psim(bc) = Psim·(Pobs/Phis) (5)
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Tsim(bc) = Tsim + (Tobs − This

)
(6)

where Psim(bc) and Tsim(bc) represent bias corrected monthly precipitation and temperature,
respectively. Psim and Tsim represent the GCMs values for precipitation and temperature, re-
spectively. Pobs and Tobs are the precipitation and temperature observed values, respectively.
The Phis and This are GCMs historical simulated values of precipitation and temperature.
The bias correction was done by adopting the following steps.

• The observed data period (1991–2010) was divided in to two groups: calibrated period
(1991–2000) and validated period (2001–2010) for bias correction.

• For the calibration period, the correction factor for temperature and precipitation were
calculated using historical data of the model and observed data.

• The linear scaling performance evaluation was estimated depending upon the evalua-
tion of the 10th percentile, standard deviation, mean, and 90th percentile between two
types of data (observed data, model data) formerly and later bias correction.

• The performance for the calibrated period was assessed after applying the bias cor-
rected calibration period parameters to the validation period.

• The future forecasted model data of 2021–2095 was corrected monthly using the
monthly correction factor.

2.5. SWAT Model for Hydrological Modelling

The study considered SWAT model to simulate the stream flow of watersheds because
long-term simulations and predictions are possible with this model [38–40]. In a wide vari-
ety of watersheds, the SWAT model can replicate the stream flow process [35,41]. In various
climate impact studies [42–44], the SWAT model shows promising results for simulating
the long-term hydrological changes. Furthermore, these studies also concluded that the
SWAT model is more efficient in the case of large catchments and provides satisfactory
results, particularly for annually, daily, and monthly values. The SWAT model combined
the spatial data, including soil data, land use, and digital elevation data. The DEM of
the studied area was employed in the SWAT model to delineate the watershed and river
network. The generated data were used to evaluate the hydraulic response unit (HRU),
and each HRU simulates its own discharge at a monthly scale, which directed it to obtain
total discharge from the entire watershed. The water balance equation is used to evaluate
the hydrological parameters of the SWAT model [23,45].

SWt = SWo + ∑t
i=1(Ri − Qi − Ei − Pi − QRi) (7)

where SWt represents final soil water content (mm/day), SWo represents initial soil water
content (mm/day), t represents time (days), Ri represents the amount of precipitation
(mm), Qi represents the amount of surface runoff (mm), Ei represents the amount of
evapotranspiration (mm), Pi represents the amount of percolation (mm), and QRi represents
the amount of return flow (mm).

2.5.1. Calibration and Validation

The calibration of the model is the process of changing parameter values to ensure
that the developed or simulated model flow accurately represents the changes of actual
flow [46]. To acquire a better alignment between simulated and observed data (gauged
data 2006–2009), calibration was achieved utilizing manual calibration as well as SWAT
adjustment and an uncertainty program using SWAT-CUP (SWAT Calibration Uncertainty
Program). In this regard, outflow from the SRB is simulated using ArcSWAT. Monsoon
season starts in Pakistan from July to September, so runoff was found at maximum value in
this season while the driest period of this region was from November to December. Data
from GCMs was utilized as inputs for the SWAT model, which resulted in a variety of
runoff series (6-time series and one baseline data). These six-time series belong to GCMs
and given future conditions. The SWAT model generates replicate runoff data above its sub
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basin to determine CC impact. The same method has been successfully utilized by different
studies [47–49].

2.5.2. Performance Evaluation

The SWAT model’s performance was assessed based on the most commonly used
parameters such as the coefficient of determination (R2), percent bias (PBIAS), and Nash
Sutcliffe Efficiency (NSE). The R2 values from 0 to 1 indicates that either simulated and
observed data are correlated or not. Higher values of R2 (normally > 0.5) represent greater
correlation with less error. The NSE represents how precisely the simulated plots turn
the measured plots. It varies between 0 to 1, and values greater than 0.5 are regarded as
acceptable if the model shows less error at higher levels. The PBIAS shows percent mean
divergence between simulated and actual flows and might have a positive or negative
value. The PBIAS values varied between −15 to +15 are considered acceptable [50].

3. Results
3.1. Climatic Model Selection

The climatic model was selected based on the observed values of R2 for selected
GCMs (Access 1.0 and CNRM-CM5). The results showed that the R2 for Access 1.0 and
CNRM-CM5 were 0.34 and 0.43, 0.31 and 0.52, and 0.47 and 0.35 at Rawalpindi, Islamabad,
and Murree metrological stations, respectively. While the other three GCMs (CCSM4,
CSIRO, and MPI-ESM-LR) give a lower value of R2. The climatic parameter precipitation
was selected for comparison with GCMs data from 1991–2005. The values of these three
GCMs are given in a table below. It was observed that the CNRM-CM5 performed well as
compared to the other four GCMs models on the basis of a high value for the coefficient
of determination R2. A high value for R2 for CNRM-CM5 was due to more precipitation
data similarity with a baseline precipitation as compared to Access 1.0 and the other three
models. In this regard, the CNRM-CM5 model was selected for evaluation impact of CC on
the SRB.

3.2. Bias Correction

A statistical analysis including the 90th percentile, mean, standard deviation, and
10th percentiles was applied for non-bias corrected data, observed data, and for bias cor-
rected data for Tmax, Tmin, and for precipitation at meteorological stations of Rawalpindi,
Islamabad, and Murree as shown in Figure 4. The correction factor established during the
calibration period (1991–2000) was useful to the validation period (2001–2010). During bias
correction, a correction factor in the calibration period of 1991–2000 was found, thereby
utilized for validation period of 2001–2010. Additionally, a performance evaluation of both
periods was calculated. According to the results, the calibration period increased more than
the validation period at each meteorological station. The standard deviation, mean, and
90th percentiles showed underestimated results for Tmax, Tmin, and precipitations at the
selected metrological stations using non-bias corrected signs. However, the bias corrected
and observed mean precipitation results become equal during the calibration period at
all metrological stations while the percentage difference of 51.5%, 41.9%, and 18.26% was
observed at Rawalpindi, Islamabad, and Murree station, respectively, as compared to the
observed results. For the Tmax, the signs showed both underestimated and overestimated
results mostly in the case of non-bias corrected data for both the calibration and validation
periods for Murree and Rawalpindi station, while for Islamabad station, the signs show
very little variations. In the case of Murree station, the mean values percentage differ-
ence for the Tmax was observed at −38.76% (non-bias corrected) during the calibration
period while at −37.12% during the validation period. However, in the case of the 90th
percentile, the percentage difference for Murree station was improved from 16.91% during
the calibration period and 5.77% during the validation period with respect to the observed
data. The percentage difference for the 10th percentiles was improved −23.11% during the
calibration period and −2.18% during the validation period according to observed data
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for Murree station. The non-bias adjusted data for the Tmin, which includes the mean, 10th
percentile, and 90th percentile, reveals overestimated and underestimated values for the
calibration and validation period at all climatic stations. At Murree station, for Tmin, the
percentage difference for the 90th percentile is 4.50% for non-bias correction and 9.50% for
bias correction with respect to the observed data. Generally, it was detected that linear
scaling applications meaningfully enhanced the statistical signs at all climatic stations.
This demonstrates how effective these strategies are at improving the output of the chosen
CNRM-CM5 model for the study area.
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Figure 4. Statistical analysis (mean, standard deviation, 90th percentile, and 10th percentile) of
(a) maximum temperature (Tmax), (b) minimum temperature (Tmin), and (c) precipitations for
Rawalpindi, Islamabad, and Murree station. Red, green, and blue colors represent bias corrected,
observed, and non-bias corrected data points, respectively. Filled, and hollow points represent
statistical sign through standardization and authentication periods, respectively.

3.3. Assessment of Mean Monthly Future Meteorological Parameters at Climatic Stations

The mean monthly future meteorological parameters like precipitation, Tmax, and Tmin
were evaluated for the observed baseline period (1991 to 2017) and forecasted for early (2021
to 2045), mid (2046 to 2070), and late century (2071 to 2095) using the CNRM-CM5 model
under both RCP-4.5 and RCP-8.5 for selected stations. Figure 5 represents the fundamental
mean monthly profiles of precipitation for the base line period, early century, mid-century,
and late century under RCP-4.5 and-RCP-8.5 at selected stations. In the case of both actual
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and prospective timeframes, the predicted peak precipitation levels were observed in July
and August at selected stations under both emissions scenarios. In the case of mid-century
(except Murree RCP-4.5), the maximum difference in precipitation was predicted to be
between 127 mm/month and 155 mm/month for the month of July under both RCP-4.5
and RCP-8.5 while there is relatively minor change in precipitation between early and
late century under both RCPs at selected stations. Additionally, in case of the Islamabad
climate station, it was predicted that there will be more precipitation in the month of July
rather than August. The early century was predicted to experience high precipitation of
200 mm/month which is approximately 50.90% higher than the baseline period under
RCP-4.5. However, the mid- and late century were predicted to experience about 28% and
36% less precipitation than the baseline period. The precipitation in the early century under
RCP-8.5 was predicted to be less than RCP-4.5 but still 45% less than the baseline period.
Similarly, the predicted results of other stations can be found in Figure 4.
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Figure 5. Monthly profiles of precipitations for the base line period, early, mid, and late century
under RCP-4.5 and RCP-8.5 at selected stations.

Figure 6 represents the monthly profiles of Tmax and Tmin for the base line period, early
century, mid-century, and late century under RCP-4.5 and RCP-8.5 at selected stations. The
Tmax was observed in the month of June in the case of early and mid-century for selected
stations under both RCP-4.5 and RCP-8.5 as shown in Figure 6a. The early and mid-century
was predicted to be greater than the baseline period, and this increment is observed to
be significantly higher under RCP-8.5 as compared to RCP-4.5. However, in early and
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mid-century, a minor temperature difference was observed under RCP-4.5 but about 34.57%
greater as compared to the baseline period for selected stations.
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Consequently, in the case of Islamabad, the Tmax of 42.5 ◦C was observed in the month
of June for the late century under RCP-8.5 which is 3.5 ◦C or 26% greater as compared to
the baseline period of 38 ◦C while Tmax of 42.5 ◦C was observed in the same period under
RCP-4.5. However, in early and mid-century, Tmax under RCP-8.5 was approximately equal
to the temperatures under RCP-4.5. According to Figure 6b, the highest values of Tmin were
in the month of July for all time periods and stations under both emission scenarios. In the
case of Islamabad, highest value of Tmin of 28.5 ◦C was observed in the late century for the
month of July as compared to the baseline period of 24 ◦C under RCP-8.5 while according
to RCP-4.5, the highest value of Tmin of 27 ◦C was observed.

Additionally, for more clarification, the spatial distribution of the precipitation data in
the SRB for early, mid, and late century under both RCP-4.5 and RCP-8.5 is represented in
Figure 7. It is observed that the annual average precipitation is going to decrease from the
early to late century. Similarly, Figure 8 represents the spatial distribution of Tmax and Tmin
data in the SRB for early, mid, and late century under both RCP-4.5 and RCP-8.5. Figure 8a
shows spatial distribution of Tmax in the SRB for early, mid, and late century under both
RCP-4.5, and RCP-8.5. It was observed that Tmax varied between 31.4 ◦C to 34.4 ◦C under
both RCP-4.5, and RCP-8.5. Similarly, Figure 8b shows spatial distribution of Tmin in the
SRB for early, mid, and late century under both RCP-4.5, and RCP-8.5. It was observed
that Tmin varied between 13.4 ◦C to 14.6 ◦C under RCP-4.5 while 13.6 ◦C to 16.5 ◦C under
RCP-8.5. The results conclude that Tmax and Tmin will increase from early to late century
which will result in a serious water threat in the near future.
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both RCP-4.5, and RCP-8.5.

According to Ikram et al. [51], the projected precipitation increases in Pakistan and
is expected to be 2–3 mm/day under RCP-4.5 while 3–4 mm/day under RCP 8.5. The
temperature increases were predicted to be 3 ◦C to 4 ◦C under RCP-4.5 and 3 ◦C to 8 ◦C
under RCP-8.5. The findings of this study showed similar trends in temperature, but due
to the use of different GCMs, precipitation showed a slight variation. In a previous study
by Babur et al. [28], the change in Tmax, Tmin, and precipitation in Pakistan was varied from
(−50) to (+70%), 3 ◦C to 6 ◦C, and 2.5 to 8 ◦C, accordingly, in RCP-4.5 and 8.5. The current
study facts by Babur et al. show that extreme temperature shows a little variation while
precipitation within the projected limit [28]. This might be due to a different GCM for
climate prediction. Because of different study areas, several climate models can propose
various outcomes. Naeem et al. [52] studied the impact of CC on the hydrological regimes
of Jhelum River Basin and observed an annual increase in Tmax, Tmin, and precipitation
of 0.4–4.18 ◦C and 0.3–4.2 ◦C and 1–1.4 mm and 2.1–2.8 mm under RCP-4.5 and 8.5,
respectively [52]. Islam et al. [30] investigated the climatic and hydrological changes on
the upper Indus River and found a significant increase in temperature and a decrease in
precipitations [30]. Mahmood et al. [53] found an increase of 12% to 14% in precipitation at
the end of this century at Jhelum River basin [53]. Shaukat et al. [54] concluded that there
is a 0.5–2 ◦C increase in the temperature at the upper Indus basin system [54].
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3.4. Water Balance/Stability in SWAT Model

Table 1 represents the water stability for the baseline period in a simulated hydrological
SWAT model. Inflows and outflows were almost equal excluding a little difference because
of losses happening in the watershed. About 59% of the inflows were used to produce
water, which showed that the streamflow was being affected by most of the precipitation.

Table 1. R2 values of selected GCMs with respect of climatic stations.

GCMs Stations R2 Value

Rawalpindi 0.52
CNRM-CM5 Islamabad 0.47

Murree 0.35
Rawalpindi 0.34

ACCESS 1.0 Islamabad 0.43
Murree 0.31

Rawalpindi 0.27
CCSM4 Islamabad 0.22

Murree 0.29
Rawalpindi 0.35

CSIRO Islamabad 0.14
Murree 0.33

Rawalpindi 0.15
MPI-ESM-LR Islamabad 0.28

Murree 0.04

3.5. Calibration and Validation of the SWAT Model

Observed data collected by WAPDA at Chirrah gauge station on the SRB was em-
ployed for the calibration (2006–2009) and validation (2010–2013) of the SWAT model as
shown in Figure 9. Twelve parameters were measured from which five were considered
comparatively sensitive as shown in Table 2. Additionally, Table 3 shows the annual av-
erage water balance for the SRB (1991–2017). In Table 4, using the available information
and the predicted results, the SWAT model simulation’s effectiveness was assessed from
the viewpoints of R2, PBIAS, and NSE are presented. To acquire complex parameters
for calibration and validation, previous research work was the main point of concentra-
tion [37,55,56]. Five model parameters, which include Curve Number (CN), Groundwater
Recharge Evaporation (GWRE), Soil Evaporation Compensation (SEC), Soil Available Water
Capacity (SAWC), and slope, were adjusted to simulated results similar to the actual values.
It was observed that all sub watersheds increased four-fold in the case of the CN while the
GWRE was accepted as 0.4 and SEC was increase by 0.8, and SAWC and slope parameters
multiplied by 0.4 and 1.3, respectively. This shows that for this particular watershed, factors
relating to soil processes, surface runoff, and groundwater processes have the greatest
effects on the output of the SWAT. The detailed explanation of every parameter of this
model is available in user’s manual of the SWAT [57].
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Table 2. Model parameters used for calibration and validation.

Sr. No Parameters Description Range Optimum Value

1 SOL-AWC Soil available capacity
(mm/mm) 0–1 0.17

2 SOL-K Saturated hydraulic
conductivity (mm/h) 0–2000 4.27

3 GW-DELAY Ground water delay (days) 0–500 31

4 GW-QMIN Aqusifer required for return
flow to occur (mm) 0–5000 1000

5 RCHRG-DP Deep aquifer percolation
fraction (–) 0–1 0.05

6 GW-REVAP Ground Water rewap
coefficient (-) 0.02–0.2 0.02

7 REVAPMN
Threshold depth of water in
the shallow aquifer required
for return flow to occur (mm)

0–500 500

8 ALPHABF Base flow alpha factor (–) 0–1 0.048

9 CH-N2
Mannings n value for the
main channel (–) 0.01–0.3 0.014

10 CH-K2

Effective hydraulic
conductivity in the main
channel (mm/h)

0.001–500 0.001

11 ESCO Soil evaporation
compensation factor (–) 0–1 0

12 EPCO Plant uptake compensation
factor (–) 0–1 0.97
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Table 3. Annual average water balance for the SRB (1991–2017).

Flow Components of the
Water Balance Symbology Calculated Values

(mm)
Total Flow

(mm)

Inflow Precipitation PRECIP 2404.8 2404.8
Water Yield WYLD 1424

Outflow Deep Aquifer Recharge DA-RCHG 802.7
Evapotranspiration ET 170 2396.7

Losses 8.1

Table 4. SWAT model calibration results.

Coefficients Calibration Period (2006–2009) Validation Period (2010–2013)

R2 0.8125 0.835

PBIAS −0.8794 −0.9263

NSE 0.7876 0.6

Figure 10 shows the profiles of simulated and observed runoff at the SRB for the
calibration and validation periods. It was observed that simulated runoff during the
calibration period was greater from July 2006 to September 2008 while lower values were
observed from January 2006, May 2006, and November 2008 to December 2009. However,
in case of the validation period, the simulated flow was observed less from June 2010 to
June 2011 while higher values were observed between May 2012 and August 2012. The
variations in runoff data are due to different precipitation data observed and calculated
with the GCM at all selected stations.
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3.6. Prediction of Streamflow Variations

Figure 11 shows monthly changes in stream flows for the baseline to late century
with their marginal distribution curves in the SRB under both RCP 4.5 and RCP 8.5.
The predicted monthly stream flows were observed at a maximum of 84.34 mm/month
and 78.41 mm/month from July to August under RCP-4.5 as shown in Figure 11a while
67.12 mm/month and 75.25 mm/month under RCP-8.5 as shown in Figure 11b in the
mid-century period for selected stations. It is important to mention here that the marginal
distribution curve in Figure 11 shows a data height in numbers instead of density or relative
frequency of data. Additionally, in mid-century, the predicted annual averaged stream
flows were observed at a maximum of 42.31 mm and 35.71 mm under RCP-4.5 and RCP-8.5,
respectively. The significant difference was observed in peak runoff established in the late
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century under both emission scenarios. At all meteorological stations, the trend of mean
monthly precipitation was directly related to the trend of stream flow.
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4. Discussion

In general, a hydrological model and climate simulations by GCMs, which are run
in future under various RCPs, must be combined in order to assess the hydrological
implications of CC [58]. The parameters such as precipitation, Tmax, Tmin, relative humidity,
and wind speed are major variables for hydrological presentations in particular, hence
stream flow forecasting/projections depends on accurate data for these variables at the
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catchment size. Numerous features of climatic variables are measured using several metrics,
such as the 90th percentile, mean, standard deviation, and 10th percentile for both bias and
non-bias corrected data of climatic variables for future prediction, which was divided into
three future periods of early (2021–2045), mid (2046–2070), and late century (2071–2095).
In order to estimate how effectively the CNRM-CM5 model simulates the observed data
over the research area, for one sub catchment of (SRB) in Pakistan, these measures were
initially utilized. Additionally, relatively minor variations in climatic variables may result
in significant variations in the future prediction of climate variables [59–61].

Therefore, the SWAT model’s calibration and validation was done to anticipate stream-
flow across the Chirrah sub catchment. When measured against a particular objective func-
tion, the model’s performance during calibration is typically effective since it highlights a
specific system characteristic [62]. However, concurrently, other system characteristics may
experience significant faults [63]. While evaluating the performance of hydrological model
using various objective functions takes into account the various uncertainties that may be
present in a system, a representative set of Pareto optimum results of the model’s parameter
is produced as a result avoiding simulation from being biased near one objective function
and specifying an exclusive solution that can increase or decrease a specific independent
priority [64,65]. For example, the NSE illustrates how large the residual variance is in
comparison to the variance of the observations and could lead to an incorrect assessment
of the model’s performance [66]. In this work, the performance of the SWAT model was
evaluated during autonomous calibrated and validated periods using a variety of objective
functions, including R2, PBIAS, and NSE. These centuries were carefully chosen to account
for the future forecasting of climate variables, thus reducing inaccuracies [66].

The SWAT model worked exceptionally well during the calibrated and validated peri-
ods for Chirrah sub catchment in (Figure 10); this model has also done exceptionally well
in other catchments with utterly dissimilar characteristics, such as complicated terrain [28].
The small PBIAS (%age transformation between gauged and modeled streamflow) values
suggest the strength of the model’s factors, which is very suitable for sub catchment. The
divergence between gauged and modeled runoff during the calibrated and validated peri-
ods is a reflection of the inaccuracies in model arrangement and factors values [67]. For the
investigation on the implications of climate change, the choice of appropriate GCMs is cru-
cial [68]. For this, the runoff for the historic period of 1991–2017 was initially simulated by
means of both gauged and modeled (CNRM-CM5) climatic data for Chirrah sub catchment
by means of the SWAT model (after calibration and validation). The streamflow for the
early century (2021–2045), mid-century (2046–2070), and late century (2071–2095) future
periods was than simulated by means of the climate data from CNRM-CM5, enforced with
two emission scenarios of RCP-4.5, and 8.5.

The best GCM across the sub catchment was chosen after R2 was used to access
the GCMs appropriateness for streamflow modeling [69]. The average minimum and
maximum temperature was found to be increased from 1.31 ◦C to 4.67 ◦C from early to late
century, and a decrease in precipitation was found to be 43.86 mm to 86.86 mm from early
to late century; that is very close to the previous studies value while precipitation shows a
slight variation [28,51]. Performance evaluation parameters like R2, PBIAS, and NSE also
give satisfied values: 0.81, −0.87, and 0.78 for calibration period and 0.83, −0.92, and 0.6
for validation period of the SWAT model. The value of NSE is little in validation but is
justified due to area characteristics and comparable to the other studies like Baber et al.; in
his study, he found the validation value was 0.65 for R2 and 0.55 for NSE [28].

5. Conclusions and Recommendations

The study evaluated the impact of CC on streamflow at SRB, which is the main tribu-
tary of the Indus River and a significant source of water for Pothwar regions of the country.
The study concludes that bias in climatic parameters (temperature and precipitation time
series) can be effectively removed using the linear scaling practices. After bias was cor-
rected, and the statistical indicators significantly outperformed the observed time series.
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The SWAT was a useful tool for analyzing the water balance components since it accurately
represented the hydrology for data scarce and high elevation regions. The results of the
study showed that under both RCPs for early, mid, and late parts of the century, precipi-
tation was predicted to decrease in the future. Winter was projected to be relatively dry
while summer was predicted to get the most precipitation. Early June was also anticipated
to have the highest Tmax and Tmin in comparison to the baseline period. The future rise
in the Tmax was more significant than the Tmin. Furthermore, the runoff at the SRB was
expected to decrease in the future, especially in the summer months (July and August)
under RCP-8.5. The conservation of water may be useful during the high flow season to
meet the demands in the dry season or low flow season. Indeed, the runoff is decreasing in
the future; however, this increment may speed up the soil erosion process, which would
lead to the reduction of the storage capacity of the Simly Dam.

The SRB is a key source of domestic water supplies for Rawalpindi and Islamabad.
Therefore, coordination is required between the various departments: Capital Development
Authority, Rawalpindi Cantonment Board (RCB), and Water and Sanitation Authority
(WASA). In addition, future research can be planned with the use of the SWAT model
to predict sediment and runoff by studying LU changes. This study could help to cope
with the reservoir storage capacity problem and promote effective maintenance techniques.
Furthermore, as forecasted above, the effective rainfall will decrease while the average
Tmax, and Tmin will increase in upcoming decades, ultimately leading to a reduction in
freshwater resources and an increase in crop water demands. Therefore, there should be a
strong relationship between the water management board and research institutes of the
country to deal with the problems associated with water shortage.

6. Limitations

Short term discharge data for only eight years made the SWAT model calibration and
validation challenging. However, the satisfied values of performance evaluation parameters
(i.e., R2, PBIAS, and NSE) showed better performance. In this study, LULC was supposed
to be persistent. In future studies, it is advised to consider how variations in LULC may
contribute to CC. In conclusion, using a single GCM to evaluate CC forecasts into future
flow projection has inherent vagueness. To better convey the future climate uncertainty,
future work should include the whole group of GCM model outputs.
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