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Abstract: As more pressure is exerted onto water sources, hydrologic systems may be altered in
ways that are difficult to predict. In Texas, water deficits can become widespread as sources are
strained beyond capacity. For smaller communities, such as Boerne, Texas, water management
and planning is a way to prepare. The supply-demand water balance in Boerne is conceptualized
through causal loop diagrams and system dynamics modeling. Through stakeholder engagement,
xeriscaping, rainwater harvesting, and smart meters were chosen as interventions, each varied in
adoption levels. The resulting 125 combinations were analyzed under three scenarios: a base case
assuming maximum supply of water is firm, and two responses to a meteorological drought. Results
show that the city can effectively forestall a deficit. Different combinations of adoptions can achieve
the same goal, giving the city optionality in choosing strategies that are best suited for its needs and
constraints. Rainwater harvesting was found to be the dominant intervention influencing demand,
but its influence is reduced in the two drought scenarios. Xeriscaping was the second most influential
intervention and smart meters for irrigation had no effect on demand. The approach used in this
study highlights the interdependency between community adoption of conservation strategies and
the importance of considering these relationships using systems modeling.

Keywords: system dynamics; water management; Boerne; Texas; stakeholder engagement; sustainability
and resilience

1. Introduction

Future accessibility, quality, and quantity of water resources are threatened from the
growing pressure of population, economic development, and climate change [1]. Once
relatively balanced, hydrologic systems have been and will continue to be altered by com-
peting stresses, generating changes that are difficult to predict and quantify, especially at
local scales. Scale-appropriate analyses can reveal solutions feasible for a given city by
understanding their relationship with water and how these may vary given local circum-
stances. While national- or state-scale water management and planning approaches can
prove too abstract, vis-à-vis system components and stakeholders, the municipal/district
level facilitates identification of relevant stakeholders and system boundaries. This scale of
analysis is also naturally bounded by service areas and jurisdictional boundaries.

Sustainable and resilient water management and planning will prepare Boerne, Texas
for water shortages that are likely to occur in the future. In 2015, the city contracted with
HDR Engineering Inc. [2] to guide a water planning process to account for rapid population
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growth. The plan projects water shortages based on two sources of data, population
estimates from the city itself and population estimates from the Texas Water Development
Board (TWDB) in the 2016 Region L Water Plan [3]. This study highlights the importance
of projected population growth, changes in per capita consumption, and the use of treated
wastewater. With city data, shortages were estimated by 2070, while TWDB data estimated
shortages by 2050 and worsening through 2070. While population estimates from the
TWDB are smaller than those of the City of Boerne, estimated consumption by the TWDB
is greater at 0.73 m3 (192 gallons) per capita per day (PCD) in 2020 to 0.71 m3 (187 gallons)
PCD in 2070. Furthermore, the city estimates reclaimed water use to increase to almost
2.5 × 106 m3 (2000 AF) by 2070, while the TWDB found this to be a constant 8.6 × 103 m3

(7 AF).
With a population of 17,250 as of 2020, Boerne, Texas typifies a relatively small commu-

nity adjacent to a large municipal city (i.e., San Antonio). To increase the sustainability and
resilience of its water system, Boerne—and other communities that are also undergoing
and managing significant population growth—must address questions related to their
water resources: what types of policies should the city pursue, if any? Which conservation
strategies are most effective in reducing water demand and how would they fare under
drought conditions? How can the city avoid a water deficit?

Answering these questions at present increases the adaptability of a city to future
circumstances. Alternatively, delaying action can result in reactive measures during some
future drought scenario. These issues become more salient as community populations
grow, and the difference diminishes between supply—which has a physical upper limit—
and demand—which is closely tied to decisions made within the community and is affected
by growth in surrounding areas. In the Texas Hill Country, water supply and infrastructure
are closely tied and limited; the threat of inter- and intra-city competition for limited
resources will continue to be an issue in areas where both growth and potential resource
shortages intersect.

This research will explore the effectiveness of various options and strategies to be
tested, without the lag time (or risk) of experimenting on real systems. Refsgaard et al. [4]
highlights the interaction between water management and modeling processes and the
methodologies to assess uncertainty, including scenario analyses. Figure 1 shows the
interaction between relevant stakeholder(s) (on the left) and the modeling step they helped
inform (on the right). We incorporate scenario analysis and the constant feedback of various
stakeholder groups from Boerne, Texas throughout the modeling process.

In this study, we use Causal Loop Diagrams (CLDs) and System Dynamics modeling
for reasons described below. CLDs represent an individual hypothesis of how a system
functions and is the first step in framing the scope of a System Dynamics (SD) model [5].
CLDs map causal relationships and identify feedback loops within a process or system [6].
In a CLD, the polarity of each arrow highlights the reinforcing or mitigating relationships
that the arrow connects. The overall loop sign is obtained by multiplying the signs of the
variables involved in the feedback [7].

Since its conception in the 1950s [8] and with further development [9], SD has been
applied to a number of topics specific to water, such as illustrating the effects of proposed
strategies while raising stakeholder awareness of resource problems [10]. The appropri-
ateness of SD modeling techniques to address water management concerns specifically
was shown by [11–13]. Elsawah et al. [11] found that SD modeling can be applied to water
allocation problems at various scales, with a tendency to use this type of modeling for
decision-making and social education. Additionally, Winz et al. [12] found that, because it
requires explicit acknowledgement of assumptions and identification of uncertainties, SD
modeling represents a transparent method that can confidently inform policy recommen-
dations. Finally, Karimlou et al. [13] reasoned that SD can help choose the most efficient
management strategies by helping managers observe the linked changes occurring in
the system.
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Figure 1. Interactions Between Stakeholders and the Modeling Process.

Stave [14] explains that SD emphasizes finding the causes of problematic behavior,
assisting investigators and stakeholders as they propose solutions. This is important
because one difficulty of resource management is the inability to comprehend or foresee
the cascading effects of changes made to the system due to a lack of understanding of how
system components are interconnected. Martone et al. [15] explains similar observations.
Newell et al. [16] further this argument, explaining that linear thinking suggests that
doubling a cause doubles the effect, when in reality causation in complex systems is
impacted by feedback. The usefulness of SD is enhanced by feedback analyses, which have
the capacity to visually demonstrate how changes in some elements affect other elements
and the overall dynamics of the system [16–19].

While the above literature indicates the usefulness of SD modeling in water-related
fields, to our knowledge, we are unaware of studies dedicated specifically to understanding
the effectiveness of strategies in reducing sector-demand at a municipal/city scale, while
also incorporating stakeholder participation throughout the modeling process, distinguish-
ing demand from different sectors, and incorporating different adoption levels in strategy
combinations. The five case studies used by Karimlou et al. [11], for example, are not
local scale, but instead include a metropolitan region, groundwater systems, and a river
basin. Stave [10], on the other hand, uses SD modeling to assist stakeholders in Las Vegas,
Nevada to understand management options based on their capacity to reduce demand,
but the produced model incorporates all demand as either indoor or outdoor. Unlike
Winz et al. and Karimlou et al. [10,11], this research breaks indoor and outdoor demand
further into residential, municipal, and business sectors to generate a greater understanding
of the effect of each sector on the local system. Altogether, this research incorporates SD
modeling, demand-reducing interventions, stakeholder participation, and a more detailed
understanding of demand, at the municipal level.
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The chosen approach was tailored based on local knowledge and direct feedback by
utility managers and stakeholders. The value of stakeholder participation and bottom-up
approaches to water management and planning is exemplified in the Texas State Water
Plan [20] as well as in the literature [21–29]. As part of the socio-hydrological system, Boerne
residents are as important and relevant as the economic, political, and scientific aspects of
water management and planning. Residents demand the majority of water entering the city,
and they create an important leverage point in the system where conservation strategies
can be introduced; through their support or opposition, residents can influence the success
or failure of these actions.

The overall goal of this research is to demonstrate the usefulness of community
engagement and SD modeling in creating water management plans. We use the community
of Boerne, Texas as the case study, though we note that this workflow and community
engagement outcomes can be applied in other cities focusing on improving sustainability
and resilience of their water systems. Effectiveness of a policy here is measured based
on the ability of an intervention to delay a deficit in water supply. Through stakeholder
engagement, other communities can incorporate data specific to their situation.

2. Materials and Methods
2.1. Study Area

Located in the south of Kendall County, the City of Boerne is a medium-sized com-
munity in the San Antonio MSA and is surrounded by the Texas Hill Country. Cibolo
Creek, an important component of the water distribution system (WDS) in Boerne, is a
tributary of the San Antonio River and flows through the city, feeding into Boerne City Lake.
With respect to water, the city lies within many important geographical and governmental
boundaries, being within the jurisdiction of the Cow Creek Groundwater Conservation
District (GCD), the 9th Groundwater Management Area (GMA), and the Region L Planning
Group. Climate in the area around Boerne is humid subtropical to semi-arid [30], with an
average annual temperature between 15.6–18.3 ◦C (60–65◦ F) and less than 88.9 cm (35 in.)
of precipitation per year [30]. High summer temperatures and low precipitation make the
region prone to moderate to severe droughts.

The city obtains its water supply from surface and subsurface sources. Boerne obtains
~33% of its water from the Trinity Group Aquifers. Boerne City Lake supplies 25% and the
remaining 42% comes from Canyon Lake through a contract with the Guadalupe Blanco
River Authority (GBRA) [31]. Specific yearly permitted allocations can be found in Table 1.
By the end of the 2020 calendar year, the city had only purchased approximately 36% of
its total contract with GBRA and has been purchasing below their GBRA contract supply
for the last ten years [32] (Figure S1 in Supplementary Materials). This is because demand
has not reached levels of consumption necessary of greater purchases, and because the
City of Boerne has maintained a very proactive water resources planning programming,
especially given the current and expected growth in the region and the vulnerability of
the community to droughts. The future water supply from GBRA will depend on water
availability and possible policy decisions regarding curtailment.

Table 1. Water Supply by Source.

Source Amount (m3/year)

Boerne Lake 1,027,488.5
(833 AF *)

Trinity Wells 1,233,479.6–2,281,937.3
(1000–1850 AF *)

Canyon Reservoir 4,454,095
(3611 AF *)

* 1 AF = 325,851 gal.
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Efforts to increase supply of reclaimed water have also increased. Currently, the city
operates the Esser Road Wastewater Treatment Plant, with a capacity of 4542 m3 (1.2 MGD),
and the Old San Antonio Road Wastewater Treatment and Recycling Center, with a capacity
of 5300 m3 (1.4 MGD). The vast majority of reclaimed water from Esser Road is used for
maintaining streamflow in Cibolo Creek. The majority of reclaimed water from the Old
San Antonio Road facility is used for outdoor irrigation in residential areas, city parks, and
other public areas [2]. From October 2019 to October 2020, reclaimed water accounted for
approximately 11% of total water used by the city. Through consultation with the Utilities
Director, we decided that water reclamation was best classified as a conservation strategy.
We reasoned that wastewater reclamation is not an increase in supply that can be used
for indoor consumption. Rather, its use reduces pressure on potable water supply that
would otherwise be used for outdoor irrigation. Therefore, increased use of reclaimed
water represents a conservation strategy for reducing potable water use.

2.2. Focus Groups and Community Survey

As Figure 1 indicates, the workflow includes focus group sessions with Boerne resi-
dents and a community-wide distributed survey. The sessions and survey were intended to
provide information and context for understanding community perception of supply and
demand of their municipal water system. Briefly here (more details in Appendix A), focus
group sessions were organized around four specific stakeholder groups (municipal and
county agencies, business leaders, community service organizations, and environmental
groups). Members were identified through local networks, but with a goal of ensuring a
diversity of backgrounds, perspectives, and influence. During focus group sessions, par-
ticipants discussed their understanding of system components and existing relationships
between these components, eventually yielding a CLD. Through a survey (described in
Appendix A) distributed throughout the community using print and social media, respon-
dents (n = 324) identified conservation strategies from a list created by project participants
they would be more willing to adopt. The strategies, prioritized by the community, were
used in the systems dynamic model.

2.3. Causal Loop Diagrams and System Dynamics Modeling

A preliminary CLD with knowledge of the water system in Boerne was created and
vetted through several meetings with different stakeholders, including the city utility office.
Given their knowledge, different stakeholder groups informed various parts of the CLD,
including subject matter experts such as local water purveyors and hydrologists, as well
as focus group sessions. The final CLD (Figure 2) was completed after several meetings
with the Boerne Utility Director. We note that agriculture is not present in the city, nor is
heavy industry with intensive water needs (i.e., manufacturing is limited to businesses in
the service sector).

The CLD illustrates the water system in Boerne and informed the stocks, flows, pa-
rameters, and variables in the SD model (The AnyLogic Company, version 8.7.5; Figure 3).
Descriptions and values for each of the variables were generalized to facilitate use of the
model by other interested parties (reference Table S1 in Supplementary Materials for a
description and values of model variables). First, we focused on supply and demand. Water
source was conceptualized as the sum of three water sources (WS) (labeled WS1, WS2, and
WS3) (Figure 3). The magnitude of each source is the maximum amount outlined in either a
contract or permit (Table 1). The sources are pooled together and are triggered to flow into a
stock on January 1 of every year. Water is withdrawn from this stock by indoor and outdoor
demands on a daily basis. At the end of the year, water not withdrawn is accounted for
and removed from the stock in order to prevent accumulation of unused water.
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The decision to pool water into a stock that would be released on January 1 is based on
the overall goal of the model— to assess broader benefits of specific interventions on long-
term supply-demand dynamics of the system. This approach would be more illustrative
than using daily supply dynamics given that trying to simulate the dynamics of community
member decision-making on their daily water consumption (e.g., will they irrigate the day
after precipitation?) would over-reach the abilities of the model. This would also make
calculations and extrapolations for an approximately 50-year time period difficult and
likely ambiguous.

Indoor and outdoor water uses are each calculated by their respective demands
(D)—D1, D3, and D5 for indoor, and D2, D4, and D6 for outdoor. Demand for each is
calculated based on the number of people for a given population type (e.g., residential,
municipal, or business) multiplied by the respective per capita water use. Units will be in
m3/capita/day (PCD), followed by gallons/capita/day (GPCD) in parenthesis. Water for
outdoor irrigation is assumed to exit the system via evapotranspiration (i.e., we assume
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no shallow recharge to groundwater or surface water), while water for indoor purposes
flows to a wastewater treatment plant. Once treated, a portion of this water flows back
into the system to offset demand from residential outdoor irrigation (i.e., D2), and another
portion is released to Cibolo Creek, where it exits the system. Model time units are in
days and the simulation runs from 1 January 2022 through 31 December 2070. The model
simulation begins on January 1 because this is when the yearly water supply enters the
system. Discussion of modeled interventions is in Section 2.7.

Labels in the SD model were intentionally generalized so that other communities
would need only update values, rather than redesign the model. For example, a water
source is labeled as WS instead of the specific name of that water source since these names
can change across communities.

2.4. Incorporating Community Feedback

Community engagement outcomes from Boerne residents were incorporated as feed-
back throughout this research. Focus group sessions and a publicly released survey are
part of the [33] project in Boerne and thus conducted outside of this specific research;
more information on these can be found in the Supplemental Information. Community
engagement outcomes were relevant to this research, as participants provided their per-
spectives of the system, and subsequently informed Figure 2. The top three most popular
strategies obtained from these community engagement efforts were introduced into the
model as interventions and assessed in terms of their effectiveness in delaying a deficit in
supply. Only the top three strategies were chosen to keep the modeling tractable. These
strategies were tested through scenarios in which each strategy was adopted at various
levels separately and in combination.

2.5. Model Assumptions

Data provided by the City of Boerne were available at daily increments, including
water supply by source—including reclaimed wastewater—beginning 19 May 2000 to date.
The calibration period for the model is from 1 June 2016 through 26 February 2021. This
period was chosen because it spans the time period for which all water source data were
available. Information with respect to seasonal patterns, indoor versus outdoor differences,
and management of wastewater treatment was necessary to inform the model on the
volume of water delivered to each sector throughout the 50-year modeling period. Educated
assumptions were co-created with representatives from Boerne Utilities, including:

• Differentiation between residential and non-residential water use represented by an
80%–20% breakdown. This initial breakdown of water use between residential and
nonresidential sectors is an educated assumption based on local expert knowledge.
Recording actual data on this breakdown could build confident in decisions about
water management and economic growth moving forward. This breakdown can be
adjusted depending on specific municipal conditions.

• Outdoor water consumption is greatly impacted by seasonality (e.g., landscape irriga-
tion). Seasons were adjusted to fit the transition months used by the city. Transition
months are the periods between each season and can be used to adjust seasonality
given geographic location.

o Summer, 15 May–14 October; 60–40% indoor-outdoor
o Fall, 15 October-30 November: indoor use increases linearly from 60% to 90%

while outdoor use decreases linearly from 40% to 10%.
o Winter, 1 December–28/29 February; 90–10% indoor-outdoor
o Spring, 1 March–14 May: indoor use decreases linearly from 90% to 60% while

outdoor use increases linearly from 10% to 40%.

• Treated wastewater supply will always exceed demand because only new construction
(homes, businesses) would be added to piping infrastructure. With the guidance of the
Utilities Department of Boerne, this allowed us to simplify the volume of flow from
indoor demand to the wastewater treatment plants to be 50% of total indoor demand.



Water 2022, 14, 3682 8 of 19

• Volume of water treated and returned to the system is based on the percentage of
total demand. Future projections of this percentage are based on expected housing
expansion that will be connected to appropriate piping. We assumed this percentage
to be within 10–15% of total water use. As of 2020, treated wastewater was 11% of
total water use. Beyond 2020, this percentage is assumed to grow by one percentage
point per year until 15% is reached and will remain at 15% until the end of the
simulation period.

• Ratio of residential population to municipal employees is assumed to be 63:1. These
demographic ratios were coupled to proportion of total demand of each sector to obtain
separate per capita consumption values for sector-specific indoor and outdoor uses.

• Indoor use does not fluctuate season to season. Given that little is known or recorded
about variability of indoor consumption rates, we assume that residential use remains
constant from season to season. Understanding the impacts of weather, comfort, and
cost of water on altering indoor consumption patterns would improve the accuracy of
the model.

2.6. Verification and Validation

Model validation was done using data from the four-year period described above. Sim-
ulated total demand—including demand across all sectors for indoor and outdoor—captures
the seasonality of observed total demand (Figure 4), increasing and decreasing during
respective shoulder months. Precipitation is included to show its influence on demand,
particularly during shoulder months. For example, in late 2018 and mid 2019 (Figure 4),
a series of rainy days reduced demand (mainly from outdoor irrigation). The average
difference between known demand and modeled demand varies season to season, year
to year, and sector to sector. We did not investigate the specific relationship between
precipitation rates and user behavior.
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MAD or MAE 1 1383.195 1386.315 1422.040 1494.895 1614.257 1784.053 1994.118 
MSE 1 8.87 × 108 8.93 × 108 9.63 × 108 1.11 × 109 1.34 × 109 1.64 × 109 2.02 × 109 
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Figure 4. Calibration Period for the System Dynamics Model (1 June 2016–26 February 2021).

To evaluate model performance, we used quantitative and qualitative metrics for
verification and validation. The Nash-Sutcliffe model efficiency coefficient [34] is widely
used in hydrologic modeling as an indicator of performance. Depending on the con-
text, different values can be interpreted as having a good fit. For example, SWAT [35]
and Moriasi et al. [36] state that a value of 0.5 and above is a satisfactory fit, while Chris-
tiansen [37] noted that a 0.5 value is a good fit.

Table 2 lists the NSE value obtained for this model, as well as values of other statistical
indices such as root mean square error and mean bias error. The NSE value obtained for the
observed dataset is 0.54 (Table 2a), surpassing the 0.5 threshold. Table 2b lists the values of
these metrics for increasing values of per capita outdoor consumption rates for all seasons
of the observed dataset. These values indicate that statistical indices become worse off as
outdoor per capita consumption rates increase, thus the model maintained base values. We
note that maximum yearly allocation of water is over 6.44 × 106 m3 (1.7 billion gallons) and
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unaccounted water is 10–12% of total daily production. These values are important because
they highlight areas of uncertainty within the system. Overall, the model is able to capture
system behavior while not accounting for error given precipitation and unmetered water.

Table 2. Metrics to Measure Predictive Ability of the Model. (a) Error Metrics for Dataset. (b) Error
Metrics while Varying Residential Outdoor Per Capita Demand Values.

(a)

Metric Value

Mean Absolute Error (MAE) 1 1383.2
Root Mean Square Error (RMSE) 1 1832.5
Mean Bias Error (MBE) 1 50.8
Mean Absolute Percentage Error (MAPE) 2 13.6
Nash-Sutcliffe model efficiency coefficient (NSE) 3 0.54

(b)

0.24 m3PCD
(63 GPCD)

0.25 m3PCD
(65 GPCD)

0.26 m3PCD
(70 GPCD)

0.28 m3PCD
(75 GPCD)

0.3 m3PCD
(80 GPCD)

0.32 m3PCD
(85 GPCD)

0.34 m3PCD
(90 GPCD)

N 1732 1732 1732 1732 1732 1732 1732
MAD or MAE 1 1383.195 1386.315 1422.040 1494.895 1614.257 1784.053 1994.118
MSE 1 8.87 × 108 8.93 × 108 9.63 × 108 1.11 × 109 1.34 × 109 1.64 × 109 2.02 × 109

RMSE 1 1832.535 1838.920 1909.559 2050.783 2249.272 2491.444 2765.785
MBE 1 50.797 (72.100) (379.418) (686.768) (994.068) (1301.371) (1608.701)
MAPE 2 13.593 13.817 14.613 15.713 17.178 19.022 21.155
NSE 3 0.543 0.540 0.504 0.427 0.311 0.155 (0.041)

1 Error metric expressed in units of observations, m3. 2 Error metric expressed as a percentage. 3 Error metric
expressed as a range from -inf. to 1.

Furthermore, Sargent [38] describes that when a research team is small in size, the best
approach is for model users to decide alongside developers the validity of the model. For
this more qualitative method, results of the model were shared with utility officials, and
after several meetings, the output from the model was deemed acceptable.

2.7. Parameter Variation

The top three community-chosen interventions were varied across five levels of adop-
tion, generating 125 different combinations (Table 3). All combinations were compared
with current consumption rates: total residential consumption of 0.59 m3 (155 gallons) PCD,
broken down by 0.35 m3 (92 gallons) indoor and 0.24 m3 (63 gallons) outdoor. This is the
base output (0% adoption for each intervention), represented by X1R1M1.

Xeriscaping (intervention X) eliminates the need for irrigation completely and is
incorporated through the resulting water saving potential. Water saving potential is the
product of the difference of water consumption per day between the two landscapes (we
assume St. Augustine as a representative turfgrass for central Texas), an average lawn size
of 701.6 sq. m. (7552 sq. ft.) (subtracting the average roof size from the average lot size), an
assumed 20% adoption in residential homes, and 0–100% conversion of lawn space from
turfgrass to xeriscaping; 20% adoption is based on the demographic makeup of Boerne.

Rainwater harvesting for landscape water needs (intervention R) is varied according to
percent of households that install a rainwater harvesting system. Per Krishna et al. (2005),
rainwater harvesting potential is the product of the following:

rain f all depth × roo f area × 0.85 collection e f f iciency (1)

Smart metering (intervention M) also varies according to the number of participating
households. When installed, irrigation is not used when precipitation is equal to or greater
than turfgrass water needs.
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Table 3. Ranges and Intervals of Parameter Variation.

Strategy (Top 3) Identification and Range Options Increment

X: Xeriscaping

X1 *: 0%,

5 5%
X2: 5%
X3: 10%
X4: 15%

X5: 20% of water saved

R: Harvest rainwater for
landscape use

R1 *: 0%,

5 25%
R2: 25%
R3: 50%
R4: 75%

R5: 100% households with implemented
systems

M: Incorporate smart
meters that detect

excessive consumption

M1 *: 0%,

5 25%
M2: 25%
M3: 50%
M4: 75%

M5: 100% households with smart meters
Total Combinations: 125. * Indicative of a base value.

Since interventions R and M require a rainfall parameter, we rely on historical ob-
servation data from the Parameter elevation regression on the independent Slopes model
(PRISM) which map the daily precipitations as a function of the temperature, rain shadows,
and orography. Prism data are estimated for the Boerne city at a resolution of the 800-m. To
extract the trend of the historical precipitations, we used the Seasonal and Trend decompo-
sition using Loess (STL) method [39] and obtained the long-term change which includes
the linear trend and the interannual to decadal variability. The long-term trend is then
trained using Bayesian state space modeling by assuming t-distributions of the trend to
account for the heavy tails (e.g., extremes) in the long-term component, and the slopes and
the intercepts are assumed to follow a random walk process. We then generated a posterior
distribution of 10,000 samples using a Humiliation Markov Chain Monte Carlo (MCMC)
sampling method [40,41].

The inference period is from 1980 to 2019, where we broke down the daily precip-
itation into the four seasons, adjusted to match the shoulder months used in modeling
demand. The forecasting periods is 51 yrs from 2020 to 2070. Finally, the mean of posterior
distribution is then used as input for the model. Using statistical model-based predictions
of historical and future precipitation is preferred over the global climate model to constrain
the uncertainty in historical and future change in climate driven trend. Specifically, the
MCMC sampling allows us to generate the whole distributions of possible change in the
climate-driven trend instead of a single realization that could be obtained from the climate
model. Also, the PRISM data take into account the local climate changes at the city scale
(~800 m), which could be beyond the capability of the climate models to simulate. Al-
though precipitation was modeled based on historical data, the extent, severity, and timing
of future hydrologic and meteorological droughts are unpredictable.

In addition to the top interventions, we also modeled reductions in indoor residential
consumption as a standalone strategy. Indoor residential per capita consumption was
reduced from 0.35 m3 (92 gallons) to 0.25 m3 (67 gallons) in 0.02 m3 (5 gallon) increments.
This increment was chosen given its interpretability and visualization by residents as well
as for the greater feasibility of small reductions. For reference, Stave [10] models the effects
of a single 25-gallon reduction in indoor demand in Las Vegas, Nevada, from 0.29 m3 to
0.19 m3 (76 to 51 gallons) PCD.

3. Results

Parameter variation was analyzed under a base scenario and two drought scenarios
(Table 4). The base scenario assumed that total maximum supply of potable water for the city
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would be available throughout the simulation period. The effects of hydrologic droughts
are less easily understood because these impact processes that can take months or years to
manifest. Therefore, we consider only a meteorological drought by decreasing forecasted
precipitation by 50%, which was experienced in the region during the 2011, one-year
drought of record. As mandated by the drought contingency plan of the city, total rate of
consumption (indoor plus outdoor) is expected to decrease to 0.45 m3 (120 gallons) PCD,
an approximate 22.5% reduction from the 0.59 m3 (155 gallons) PCD base rate. Drought
scenario (DS) one (DS1) assumes that the entire reduction in demand is met by reducing
outdoor consumption. Drought scenario two (DS2), on the other hand, equally distributes
the expected reduction between indoor and outdoor.

Table 4. Description of Scenarios.

Scenario Description

Base Scenario Supply is firm throughout the simulation period, i.e., maximum * total
supply is available to the city. Demand is calculated using base values.

Drought Scenario 1

Supply is firm throughout the simulation period, i.e., maximum * total
supply is available to the city. For demand projections, outdoor

demand is reduced to meet the decreased total consumption for the city
of 120 GPCD under drought conditions.

Drought Scenario 2

Supply is firm throughout the simulation period, i.e., maximum * total
supply is available to the city. For demand projections, indoor and

outdoor demand are reduced to meet the decreased total consumption
for the city of 120 GPCD under drought conditions.

* Maximum total supply is equal to the sum of the sources in Table 1.

The following results are organized according to these three scenarios. Each of the
listed figures will contain a vertical line in the year 2045 (the current planning period for
Boerne), and horizontal lines indicating Total (for total water supply), a 10% threshold
(10% below total water supply) and Current Supply Behavior (current water supply at 50%
of contracted availability from GBRA). Furthermore, only 25 out of the 125 combinations
generated different results in each scenario, but the listed figures only include the five most
salient combinations since the same interpretation is achieved and figures are more legible.

3.1. Comparisons to Base Scenario

Figure 5a shows the model output for the base scenario. The base combination of
strategies, X1R1M1, is the projected water consumption based on normal—and current—
per capita consumption patterns. From Figure 5a, it is apparent that intervention R (rainwa-
ter harvesting) is the dominant variable influencing water demand. Interventions X and M
(xeriscaping and smart metering, respectively) appear to influence water demand to a much
lesser extent. When intervention X increases from 0% to 5%, demand output decreases
by 1.2%. Results indicate that this inverse relationship is directly proportional in nature.
When adoption of intervention R increases from 0% to 25%, the demand decreases by
approximately 5.5%; similar to intervention X, reductions in demand are linearly related to
the adoption rate for intervention R. No adoption of intervention M leads to a measurable
decrease in demand.

By 2046, the city will need to rely more heavily on surface water supplies regardless
of the combination of interventions employed (Figure 5a); water demand by 2070, under
base case conditions, nearly surpasses the 10% threshold. It is clear that water demand
without any interventions will monotonically increase with time, just given the projected
increase in community population. In the base case scenario, demand surpasses current
supply in 2026. If the community adopts rainwater harvesting as an intervention strategy,
this crossover point can be delayed; results show that increasing adoption from 25% to
100% (in 25% increments) delays the crossover until 2029, 2030, 2033, and 2046 (respectively,
depending on the adoption level). All combinations are below Total water supply.
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3.2. Drought Scenario One (DSI)

While a 50% reduction in precipitation for the entire simulation period is unlikely to
occur, this scenario allows us to study the magnitude of the effects of a meteorological
drought at different points in time. Results show that drought conditions manifest a
distinct difference from base case conditions (Figure 5b). The spread of the five different
combinations shows a smaller relative influence of intervention R (rainwater harvesting),
because there is less precipitation available to capture and use as an alternative water
supply for irrigation. Thus, during times of drought, when additional water is needed most,
rainwater harvesting is less effective. Similar to base case conditions, ranging combinations
by interventions X and M have minimal impact. Increasing intervention X from 0% to 5%
decreases demand by 0.7%, and intervention M does not reduce demand noticeably at any
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level of adoption. Increasing adoption of intervention R from 0% to 25% decreases demand
by 1.5%; this reduction is less than that seen in the base scenario.

Under these drought conditions, and assuming outdoor demand is decreased to meet
the goal of 0.45 m3 (120 gallons) PCD, the current supply will not be sufficient in the coming
years. Base demand will surpass current supply by 2035. Increasing the percentage of
residential homes using rainwater harvesting forestalls this crossover point. Increasing
adoption from 25% to 100% initially forestalls exceedance of supply from 2036 to 2046,
using the modeled precipitation forecast. Increasing adoption to 75% and 100% leads to
different behavior; namely, even with these high adoption rates, demand surpasses current
supply in 2041 and 2046, respectively, but demand eventually falls below current supply for
a few years as a result of higher forecasted precipitation, leading to higher water capture.
This outcome is an artifact of the precipitation forecast. Eventually, after years with lower
precipitation, water demand again exceeds current supply in 2045 and 2050 for 75% and
100% adoption rates, respectively. Water demand in Boerne is not anticipated to surpass
Total supply by 2070 under all demand projections.

3.3. Drought Scenario Two (DS2)

Similar to DS1, the mandated reduction in total demand does improve the flexibility
of the city to manage drought. In this scenario, a 22% reduction is applied to both indoor
and outdoor water use, resulting in approximately 0.08 m3 (20 gallons) per capita reduction
in indoor and 0.05 m3 (14 gallons) per capita reduction in outdoor (Figure 5c). While it
remains that an increasing population increases the difficulty of managing demand during
a dry period, DS2 shows that the city is better equipped when both indoor and outdoor
demands are decreased. Results indicate that only under base case conditions does demand
surpass current supply, and not until 2068. With all other combinations of interventions
X, R, and M demand remains below current supply throughout the model period. When
intervention X increases from 0% to 5% demand decreases by 1.2%, while increasing
adoption of intervention R from 0% to 25% decreases demand by 1.7%. Intervention M was
not effective in reducing demand at any level of adoption.

3.4. Decreasing Indoor Residential Demand

While not a strategy chosen by community members, decreasing indoor residential
water demand could be important for altering the balance between demand and supply.
This scenario tests reductions in indoor residential consumption independent of interven-
tions X, R, and M, and precipitation rates. With the baseline rate of 0.35 m2 (92 GPCD),
demand exceeds current supply in 2026. Reducing baseline indoor daily demand in 0.02 m3

(5 gallon) increments alters this balance (Figure 6) but initially only by an additional year,
e.g., demand exceeds current supply in 2027 when demand is reduced from 0.35 m3 to
0.33 m3 (92 to 87 gallons) PCD. Further reduction to 0.27 m3 (72 gallons) PCD delays the
deficit until 2032, and 0.25 m3 (67 gallons) PCD delays the deficit until 2035. With further
0.02 m3 (5 gallon) decreases in indoor PCD use, each increment will delay a deficit by larger
time increments.
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4. Discussion

The results of this research highlight three important points. First, optionality resulting
from multiple combinations of interventions that yield the same or similar results allows
the city to accomplish the same goal while accommodating for economic, political, or
environmental constraints. For example, combinations X2R1M1, X2R1M2, X2R1M3, X2R1M4,
and X2R1M5 all yield the same demand. In this case, the city could realize 5% water
potential savings from xeriscaping, no adoption of rainwater catchment or meters and
yield the same results as 100% adoption of meters. From the standpoint of feasibility,
understanding sensitivities of the supply/demand balance to changes in interventions can
inform policy makers where requests of residents can yield the highest impact and value.

These tradeoffs are important given that different constraints almost always come
at some cost, monetary and otherwise. As exemplified by the above example, adopting
meters can be a costly undertaking; thus, there is a benefit to communities by achieving
similar results without asking residents to sacrifice convenience or cost. The same logic can
apply to combinations of interventions that yield different outputs, but where the cost per
unit decrease in water savings may be too high to justify the cost of intervention. As shown
in Section 3.2, choosing X2 instead of X1 can yield a demand that is 1.2% lower. While any
decrease in potable water demand has positive effects, the cost of more households altering
their lawns for a 1.2% decrease may not be cost effective. Assessments such as this allow
communities to consider and agree to optimal choices.

The second important point is the susceptibility to negative impacts from decreased
precipitation, depending on the type of intervention. Precipitation rates can affect both
demand and supply. During dry periods, less water for irrigation is supplied naturally
(through rainfall) or through rainwater harvesting, just when more water is needed, in-
creasing demand for potable sources. As both drought scenarios indicate, the ability to
conserve potable water through adoption of rainwater harvesting or smart meters depends
on precipitation. Therefore, with a lack of precipitation, rainwater harvesting and smart
meters fail as water-shortage adaptations. Although the model used herein showed little
relationship between smart meter adoption and decreased demand, this finding is also
based on projected precipitation. Actual precipitation patterns could lead to different effects
that may impact the ability of water supply to meet demand.

A further note on precipitation is that, while this study highlights the year in which
the total maximum supply will be insufficient to meet its demand under different circum-
stances, rainfall patterns can actually affect crossover points on smaller temporal scales,
such as daily or seasonal. Figure 4 shows that precipitation has the capacity to reduce
demand below what is expected. It stands to reason, therefore, that the absence of precipi-
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tation can increase demand beyond what is expected. This could occur within a dry, hot
summer where demand exceeds previously known peak summer demands and strains
water production capacity on a daily basis. In these instances, storage infrastructure such
as tanks or impoundments could be effective in restoring system balance.

Finally, while the maximum potable supply, 10% threshold, and current supply intake
are shown in Figure 5a–c, the effects of precipitation on overall water sources should be
considered. For example, under prolonged drought, decreased spring flow or water table
elevation could decrease recharge into Canyon Reservoir and Boerne Lake, as well as
(vertical) groundwater recharge. By understanding the magnitude and time necessary to
see effects on the physics of the overall hydrologic cycle, the “true” supply availability in a
hydrologic drought is determined.

By using SD modeling to reveal the relationships (reinforcing or mitigating) between
different parameters in the system, the city is better able to assess the cascading effects
of different strategies. For example, reducing indoor residential consumption effectively
reduces the amount of potable water used, while at the same time reducing the supply of
treated wastewater. Also, increasing the capacity of wastewater treatment plants increases
the supply of treated wastewater, but it also reduces the amount of water diverted for
Cibolo Creek streamflow, potentially affecting the health of that waterway. Lastly, while
rainwater harvesting systems are conservation strategies that can have a positive impact
on potable consumption, their conservation benefit depends how much and how often
precipitation occurs.

5. Conclusions

This work sought to leverage local knowledge, through focus group sessions and a
survey, to create a simulation model of the water system in Boerne, and to use such a model
to understand the effectiveness of water sustainability and resilience efforts. Stakeholder
participation throughout the modelling process ensured that the final product was capable
of meeting city needs. Results show that the city can effectively reduce its total demand from
potable sources, forestalling when a 10% threshold from maximum supply will be surpassed
through various means (Figure 5a–c). While different strategy combinations can achieve
the same goal, the effects of climate change can diminish flexibility, especially as population
continues to grow. This research has generated a series of options that can be compared
and chosen, given local political, economic, environmental, or technological constraints.

This study also highlights the importance of conservation strategies, targeting high
demand, increased use of treated wastewater, and education and participation of citizens
in water management and planning. In the case where new cost-effective sources become
available, conservation remains the best strategy from cost-competitiveness [42] and sus-
tainability standpoints. Furthermore, by treating the root of the problem (i.e., high demand),
demand for potable sources and reliance on precipitation can decrease. This is important
given the popularity of a strategy such as rainwater harvesting, the effectiveness of which
is highly dependent on precipitation events. Finally, Brown [43] argues that awareness
of the public and their ability to see water stress can strengthen the political viability of
conservation strategies. By improving how water-related information is communicated to
residents and other stakeholders, the status of these water sources can become visible to
the public, and hence more understood.

Although a case study of Boerne, the findings are also relevant in other areas where
increasing competition for water sources, future water shortages, and an increasingly
warmer and drier climate threaten the sustainability and resilience of water systems.
This study could serve as a template for other communities in the Texas Hill Country,
or elsewhere, who are interested in leveraging stakeholder feedback for water shortage
mitigation and could benefit from conservation strategies, increased use of alternative
sources such as treated wastewater, and increased education of citizens. As shown by
this study, community feedback and knowledge can inform modeling efforts used to
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analyze interventions to reduce demand. In this manner, solutions are based on community
feedback and needs, which is inherently a local- or municipal-scale approach.
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Appendix A. Community Engagement Outcomes

Two methods were used for community engagement, a series of focus group sessions
and a survey. As mentioned in Section 2.3, these are a part of a greater Internet of Water
(2021) project developing in Boerne. Through late 2020 and early 2021, the Internet of Water
team from Duke University partnered with the Cibolo Center for Conservation and the
University of Texas at Austin to conduct four focus group sessions around municipal lead-
ers, environmental advocates, business leaders, and representatives of socially vulnerable
groups. These groups were chosen in order to represent varying perspectives and opinions
from community members, an approach that has been previously used by the Internet of
Water team from Duke University in other states. Through these sessions, groups discussed
water concerns, data needs, and informed the causal loop diagram used for this study. Key
takeaways of these focus group sessions, as highlighted by [33] included the desire for
consistency across agencies for the collection of data, a need for visuals such as tables and
charts for better data interpretation, and increased transparency in data management.

In March 2021, the Internet of Water team from Duke University once again partnered
with the Cibolo Center for Conservation and the University of Texas at Austin to develop
and distribute a survey through the Office of the Mayor in Boerne, Texas. During a two-
week period [33] Boerne residents were able to complete the survey, which generated a total
of 324 responses, of which the majority self-identified as residential water consumers; other
possible identities included commercial water customer, municipal leader, member of the
business community, member of the agricultural community, or environmental advocate.
The survey was meant to highlight citizen opinions with respect to water, trusted sources
of data and information, concerns over water, and strategies citizens could be willing
to support and employ. Of most importance to this specific research was the question
regarding strategies citizens would be willing to employ to reduce their consumption of
water. This question asked participants to choose three strategies from a list of 10 options:
xeriscaping; rainwater harvesting for outdoor use; smart meters; rainwater harvesting
for potable use; drip irrigation for landscaping; adopt greywater reuse; upgrade to water
efficient fixtures; install raingardens to filter stormwater and recharge groundwater; add
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hot water circulator to reduce water waste; and use pool covers to reduce evaporation.
The most referenced strategies were the ones used in this research: rainwater harvesting,
xeriscaping, and smart meters.

Appendix B. Statistical Metrics for Model Verification and Validation

As part of Section 2.5, individual Summer demand values were increased to assess
statistical error metrics. As Table A1 shows, and as mentioned in Section 2.5, these metrics
become worse off as Summer demand values are increased.

Table A1. Error Metrics while varying outdoor per capita demand values for summer season observations.

Year 0.24 m3PCD
(63 GPCD)

0.25 m3PCD
(65 GPCD)

0.26 m3PCD
(70 GPCD)

0.28
m3PCD

(75 GPCD)

0.3 m3PCD
(80 GPCD)

0.32
m3PCD

(85 GPCD)

0.34
m3PCD

(90 GPCD)

Summer
2016

N 136 136 136 136 136 136 136
MAD or MAE 1806.546 1874.455 2082.361 2332.448 2620.574 2947.978 3303.766

MSE 1.29 × 109 1.36 × 109 1.61 × 109 1.98 × 109 2.47 × 109 3.07 × 109 3.80 × 109

RMSE 2210.724 2268.054 2469.395 2738.204 3056.599 3410.733 3790.756
MBE (586.977) (775.746) (1247.809) (1719.872) (2191.879) (2663.887) (3135.977)

MAPE 20.137 21.122 23.931 27.112 30.610 34.430 38.471
NSE (0.068) (0.124) (0.333) (0.639) (1.042) (1.543) (2.141)

Summer
2017

N 153 153 153 153 153 153 153
MAD or MAE 1740.941 1706.793 1683.509 1718.729 1833.681 2066.819 2416.992

MSE 1.05 × 109 1.02 × 109 1.05 × 109 1.20 × 109 1.48 × 109 1.90 × 109 2.44 × 109

RMSE 1991.338 1965.892 1989.185 2130.510 2368.991 2678.910 3038.298
MBE 352.684 154.532 (340.813) (836.207) (1331.502) (1826.871) (2322.413)

MAPE 15.593 15.564 16.029 16.987 18.581 21.086 24.463
NSE (0.028) (0.001) (0.025) (0.176) (0.454) (0.860) (1.392)

Summer
2018

N 153 153 153 153 153 153 153
MAD or MAE 2448.799 2408.734 2334.805 2300.252 2355.495 2496.773 2724.091

MSE 1.95 × 109 1.93 × 109 1.99 × 109 2.19 × 109 2.54 × 109 3.02 × 109 3.65 × 109

RMSE 2716.681 2704.911 2745.173 2880.505 3098.469 3382.983 3718.928
MBE 267.022 58.924 (461.582) (981.940) (1502.397) (2022.656) (2543.137)

MAPE 22.477 22.529 22.875 23.534 24.878 26.857 29.447
NSE (0.042) (0.033) (0.064) (0.171) (0.355) (0.615) (0.952)

Summer
2019

N 153 153 153 153 153 153 153
MAD or MAE 2301.190 2258.339 2197.523 2197.091 2290.931 2487.852 2771.511

MSE 1.84 × 109 1.79 × 109 1.75 × 109 1.88 × 109 2.17 × 109 2.61 × 109 3.21 × 109

RMSE 2640.396 2599.659 2577.267 2669.103 2864.181 3143.526 3486.735
MBE 588.156 369.493 (177.313) (723.971) (1270.802) (1817.509) (2364.266)

MAPE 18.365 18.350 18.676 19.460 20.921 23.103 25.866
NSE (0.014) 0.017 0.034 (0.036) (0.193) (0.437) (0.768)

Summer
2020

N 153 153 153 153 153 153 153
MAD or MAE 2301.190 2258.339 2197.523 2197.091 2290.931 2487.852 2771.511

MSE 1.84 × 109 1.79 × 109 1.75 × 109 1.88 × 109 2.17 × 109 2.61 × 109 3.21 × 109

RMSE 2640.396 2599.659 2577.267 2669.103 2864.181 3143.526 3486.735
MBE 588.156 369.493 (177.313) (723.971) (1270.802) (1817.509) (2364.266)

MAPE 18.365 18.350 18.676 19.460 20.921 23.103 25.866
NSE (0.014) 0.017 0.034 (0.036) (0.193) (0.437) (0.768)
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