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Abstract: Slope collapse is one of the most severe natural disaster threats, and accurately predicting
slope deformation is important to avoid the occurrence of disaster. However, the single prediction
model has some problems, such as poor stability, lower accuracy and data fluctuation. Obviously,
it is necessary to establish a combination model to accurately predict slope deformation. Here, we
used the GFW-Fisher optimal segmentation method to establish a multi-scale prediction combination
model. Our results indicated that the determination coefficient of linear combination model, weighted
geometric average model, and weighted harmonic average model was the highest at the surface spatial
scale with a large scale, and their determination coefficients were 0.95, 0.95, and 0.96, respectively.
Meanwhile, RMSE, MAE and Relative error were used as indicators to evaluate accuracy and the
evaluation accuracy of the weighted harmonic average model was the most obvious, with an accuracy
of 5.57%, 3.11% and 3.98%, respectively. Therefore, it is necessary to choose the weighted harmonic
average model at the surface scale with a large scale as the slope deformation prediction combination
model. Meanwhile, our results effectively solve the problems of the prediction results caused by the
single model and data fluctuation and provide a reference for the prediction of slope deformation.

Keywords: prediction; combination model; fisher optimal segmentation; goodness-of-fit weight;
multi-scale; high slope

1. Introduction

High slope collapse is one of the most destructive and costly natural disasters. Flood
and rainwater disasters easily cause slope collapse and landslides in mountainous areas.
Once the slope collapses, the disasters will have a serious impact on the safety of water
engineering, water resource, ecology and society [1–5]. China has faced long-lasting and
severe collapse disasters in the past. The influences of collapse disasters have evoked
high levels of interest outside of the scientific community. Therefore, establishing the
appropriate prediction models to accurately predict slope deformation in time is important
to ensure safety and to avoid the collapse disasters in the process of constructing water
engineering [6–10].

In recent years, the time-series model and the artificial intelligence model are used by
most scholars and they have become an important means of slope deformation prediction
because of its strong stability, high accuracy and good applicability. Among them, the
time-series model can mainly analyze the historical data, which then finds the rule of data
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development, and predicts the data in the future [11–15]. As a branch of computer science,
artificial intelligence technology has been gradually applied for prediction in the field of
slope deformation by many scholars in recent years, and mainly include the ANN model and
SVR model [16–20]. At present, the time-series model and the artificial model have focused
on deformation prediction in the field of slope collapse disasters [21–23]. Nevertheless, some
scholars have noted that the single prediction model has some limitations in predicting
deformation for high slope, such as failing to identify the abrupt points of deformation
and to show the linear and nonlinear trend of slope deformation [24,25]. To overcome these
limitations, some scholars proposed the combination model to predict slope deformation. The
combination model could solve the shortcomings of the single model and adequately combine
the advantages of the single model as a new method for predicting slope deformation [26,27].
Nevertheless, the combination model proposed by present studies have revealed a variety
of errors caused by unsteady data trends and severe data fluctuation, but few studies
have considered the impact of these factors on the stability of the combination prediction
models. Meanwhile, the weight of the single model could be affected by the human factor.
Accordingly, the combination model could be further modified to improve the prediction
accuracy of predicting deformation.

While most scholars have discussed the application of the combination model in the field
of predicting the slope deformation, the influence of unsteady data trends, data fluctuation
and human factor on the prediction results has not been effectively solved [28,29]. What
we need is a process to predict the slope deformation and to solve the interference of
unsteady data trends and data fluctuation, as well as assign the objective weight for the
single model to ensure the accuracy of the prediction results. Here, we collected the data of
“day” time scale, including deformation speed, deformation acceleration and deformation
data in Hongshiyan water project, and proposed the modified combination prediction model.
Based on the traditional method, the sample data were segmented through the Fisher optimal
segmentation model, and the Machine Learning models were then used to predict the
segmented data, so as to solve the interference of unsteady data trends and severe data
fluctuation. Meanwhile, the goodness of fit of the model as the basis of evaluating the
suitability of the model could evaluate the quality of the prediction model well, and the
GFW model was used to calculate the weights of the different single model, from which the
combination model was constructed. The technical route of the method is shown in Figure 1.
This solves the limitation of the traditional prediction models, which can be interfered with
by the human factor and data fluctuation. Compared to previous studies, our proposed
method can better improve the prediction ability and provide a simple, efficient and new
method for slope deformation prediction.Water 2022, 14, x FOR PEER REVIEW 3 of 16 
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2. Materials and Methods
2.1. Study Area

The study area is a high slope of the Hongshiyan water control project. The project
is a key project of the overall plan of the State Council for post-earthquake restoration in
Ludian City. It is also the largest single project for post-earthquake restoration and recon-
struction in Ludian City. The Hongshiyan dammed lake renovation project is an important
project to control water hazards in China, and it is also one of the representative and impor-
tant projects in the international water conservancy and hydropower industry [30–32]. The
overview of the study area is shown in Figure 2.
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Figure 2. The location of the slope of the Hongshiyan water project.

The slope is a typical rock slope with no vegetation cover, large height drop and steep
terrain. The slope was formed by the collapse of the mountain caused by the earthquake
with a magnitude 6.5 on 3 August 2014 [33]. According to the survey of the downstream
side of the slope, the geological conditions of the excavation periphery are delineated for
dangerous rock mass. The dangerous rock mass of the slope is mainly divided into class I
and class II, the dangerous rock area of class I is mainly characterized by two groups of
steep incline fissure cuts of parallel slope and vertical slope, and the width of gap is large
and basically separated from the slope surface, and the stability is extremely poor. The
dangerous rock area of class II is mainly characterized by two groups of steep incline
fissure cuts of parallel slope and vertical slope, the width of the gap is short and dense,
but the width is not large, and the stability is poor [34–36]. Meanwhile, the conditions
of the project are complex with continuous aftershocks during the construction process
and accompanied by severe weather such as heavy rainstorms. Therefore, to ensure the
safety of the construction and operation of the Hongshiyan water project, it is necessary to
strengthen the prediction of the slope deformation.

2.2. Data Source

The data source in this study are mainly from Ground-based Synthetic Aperture
Radar technology, UAV Remote Sensing technology and field survey technology. The
deformation data, deformation speed data and deformation acceleration data were both
from Ground-based Synthetic Aperture Radar technology. Among them, Ground-based
Synthetic Aperture Radar is a high-resolution radar, which is characterized by a high
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resolution ratio, large scale and enabling real-time automatic monitoring of all-day and all-
weather, and the radar should be obtained by high-resolution radar images under villainous
environmental conditions. The data of each grid could be obtained by data processing and
the accuracy could reach sub millimeter [37,38]. Additionally, the DEM data were from
UAV Remote Sensing technology and field survey technology, it also mainly obtained the
deformation data, deformation speed and deformation acceleration at different scales. To
ensure we obtained multi-scale data, we used the method of mathematics statistics to count
and handle the data from Ground-based Synthetic Aperture Radar technology. We took
slope deformation data as an example. The point deformation is the largest deformation of
all segmented grids in the high slope DEM model. The linear deformation is the sum of all
segmented grids of terrain lines in the high slope DEM model. The surface deformation
is the sum of all segmented grids deformed in the same direction in the high slope DEM
model. Finally, we used the method of mathematics statistics to handle the deformation
data at other spatial scale such as the linear scale and surface scale.

2.3. Multiple Linear Regression Model

The relationship between the human factor, geological factor, environmental factor
and other multi-source factors may be independent, contained or interactive. Under ideal
conditions, slope deformation may have a significant linear relationship with the human
factor, geological factor and environmental factor. Therefore, the multiple regression model
is used to complete the linear prediction of slope deformation.

The linear regression model is the study of the mapping and mutual relationship
between two variables, and the method of measuring the closeness and quantitative
relationship between two variables [39–43]. Thus, the regression relationship between
two variables is often called the linear regression model. Meanwhile, the regression
relationship between more variables is called the multiple linear regression model, and the
model is used to analyze the regression relationship between a dependent variable and
more independent variables.

In this study, the main factors affecting slope deformation were divided into human
factors, meteorological factors, and geological factors, etc. The multiple linear regression of
the slope deformation can be expressed as follows:

y1 = β0 + β1x1 + β2x2 + . . . + βnxn + ε (1)

where y1 represents the predicted results of using a multiple linear regression model,
x1, x2 . . . xn are the factors that affect the slope deformation, β0, β1, β2, . . . , βn are the coeffi-
cients, and ε is the random error.

2.4. Multiple Nonlinear Regression Model

However, in practical application, slope deformation is often affected by the human
factor, geological factor, environmental factor and other multi-source factors. The relation-
ship between deformation and multi-source factors should not be independent, and their
relationship approximately presents the nonlinear relationship. Meanwhile, the multiple
linear regression model is only appropriate for sufficient sample data, and it is difficult to
fit sufficient sample data quickly for the multiple linear regression model. The response
relationship between deformation and external factors is more complicated, and when
slope deformation is fluctuated strongly in the certain factors, the response relation can
be affected. Therefore, it is necessary to use the multiple nonlinear regression model
to establish the nonlinear response relationship between the deformation and external
factors [44–48]. The multiple nonlinear regression model can be expressed as follows:

y2 = a1x1 + . . . + anxn + b1x2
1 + . . . + bnx2

n + c (2)
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where y2 represents the predicted result of using the multiple nonlinear regression model,
x1, x2 . . . xn are the factors that affect the slope deformation, a1, a2, . . . , an and b1, b2, . . . , bn
are the coefficients, and c is the random error.

2.5. Modified Deformation Prediction Combination Model Based on GFW-Fisher Optimal
Segmentation Method

In this study, the slope deformation is affected by the human factor, geological factor,
environmental factor and other multi-source factors. It is difficult for the single model
to accurately predict deformation and data fluctuation is likely to make errors in the
processing of predicting deformation, which cannot meet the needs of predicting slope
deformation [49,50]. Therefore, we perform the modified combination model of slope
deformation prediction to predict slope deformation at different spatial scales, overcome
the shortcomings of the single model and the interference of data fluctuation and human
factor to improve the prediction accuracy of slope deformation. Briefly, the Fisher optimal
segmentation method is used to segment slope deformation at different spatial scales and
solve the problem of data fluctuation. The segmented data are used to be predicted using
the multiple linear regression model and multiple nonlinear regression model. Meanwhile,
GFW model can be used to assign different weights to the multiple linear regression model
and multiple nonlinear regression model, which can be used to solve the problem of human
factors on the prediction results. The combination model of slope deformation prediction
can be established using the linear combination model, weighted geometric average model,
and weighted harmonic average model, respectively. The high-accuracy combination
model can be used as the chosen prediction model of slope deformation. The process of
constructing the prediction combination model is further described in Figure 1, and the
steps involved in constructing models are commonly shown as follows:

The matrix A is established by choosing the deformation speed and acceleration at
different spatial scales. The matrix A is shown as:

A =

x11 . . . x1j
...

. . .
...

xi1 . . . xij

 (3)

The matrix A need to be normalized and the process is shown as:

A′ =
{(

xij − xmin.j
)
/
(
xmax.j − xmin.j

)(
xmin.j − xij

)
/
(
xmax.j − xmin.j

) (4)

where xij is the ith data of the jth indicator. xmin.j is the minimum of the jth indicator. xmax.j
is the maximum of the jth indicator.

The sequence sample is a completed classification, one of the classifications is set{
xi, xi+1, . . . xj

}
, and the diameter of the classification is shown as: xij =

∑
j
r=i xi

j − i + 1

D(i, j) = ∑
j
r=i
(

xt − xij
)2

(5)

where D(i, j) is larger, the internal difference of classification is greater.
The sample is divided into the k classification and the results are shown as:

{i1, i1 + 1, i1 + 2, . . . , i2 − 1}, {i2, i2 + 1, i2 + 2, . . . , i3 − 1}, {ik, ik + 1, ik + 2, . . . , ik+1 − 1}.

Additionally, the error function is set as: E[F(n, k)] =
k
∑
j=i

D(j1, ji+1 − 1). When n and

k are determined, the value of error function is smaller, the sum of internal diame-
ter is smaller, and the classification is more reasonable. When the minimum of the
error function is E(F× (n, k)), and the k of the inflection point where the drawing
E(F× (n, k)) ∼ k related curve is more obvious is the optimal number of classifications.
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The k-class data are predicted using the multiple linear regression model and mul-
tiple nonlinear regression model and the fitting degree of the two models is computed,
respectively. The fitting degree is shown as:

R2
1 =

∑(y1 − y)2

∑(y− y)2 (6)

R2
2 =

∑(y2 − y)2

∑(y− y)2 (7)

where y is the original sample sequence, y is the average of the original sample sequence,
y1 is the fitting of the multiple linear regression model, and y2 is the fitting of the multiple
nonlinear regression model. Meanwhile, the range of R2 is between zero and one. Therefore,
when R2 is closer to one, the reference value of the relevant model is higher. On the contrary,
the reference value of the relevant model is lower.

The weights of two models are assigned by constructing the GFW model, which is
shown as:

w1 =
R2

1
R2

1 + R2
2

(8)

w2 = 1− w1 (9)

where w1 is the wight of the multiple linear regression model, and w2 is the weight of
multiple nonlinear regression model.

The combination model is established by choosing the linear combination model,
weighted geometric average model and weighted harmonic average model, respectively.
The combination model is shown as:

y3 = w1y1 + w2y2 (10)

y4 = y1
w1 × y2

w2 (11)

y5 =
y1 × y2

w1y1 + w2y2
(12)

where y3 is the prediction results of the linear combination model, y4 is the prediction
results of the weighted geometric average model, and y5 is the prediction results of the
weighted harmonic average model.

In summary, we used the modified prediction combination model based on the
GFW-Fisher optimal segmentation method to establish the slope deformation prediction
model, and used Fisher optimal segmentation method to solve the influence of data fluctu-
ation. Meanwhile, we also used the combination model to solve the influence of human
factors, and made the prediction results more accurate.

2.6. Model Accuracy Evaluation

On the basis of the construction of slope deformation prediction combination model, it
is necessary to further evaluate the applicability of the model. In this study, the Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE) and Relative Error (RE) were used as
the evaluation indicators to verify the accuracy of the model. The process of calculating the
indicators is shown as:

RMSE =

√√√√ 1
N

N

∑
i=1

(y− ŷ)2 (13)

MAE =
1
N

N

∑
i=1
|(y− ŷ)| (14)
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RE =
|y− ŷ|

y
× 100% (15)

where y is the prediction results of the combination model, ŷ is the actual results of slope
deformation, and N is the number of sample data.

3. Results and Discussion

In this study, we performed the experiments in Red Rock Slope by selecting the
deformation of the high slope DEM model at different spatial scales of point, linear, and
surface under 100 grids and 200 grids from 1 January 2019 to 31 December 2019. The
modified combination model of slope deformation prediction was established using the
GFW-Fisher optimal segmentation model. The prediction results of various combination
models were analyzed, and the accuracy evaluation of the model was completed.

3.1. Slope Deformation Prediction Results

Slope deformation was mainly affected by the geological factor, climatic factor, and hu-
man factor at different spatial scales, which makes deformation data have large fluctuations
at different times. Thus, the Fisher optimal segmentation method was used to segment the
sample data by combining speed with acceleration at different spatial scales, and solve the
influence of data fluctuation on the slope deformation prediction results. The results of the
data segmentation with the Fisher optimal segmentation are shown in Figure 3.
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(a) 100 grids; (b) 200 grids.

Figure 3a,b shows that the results were obtained from the Fisher optimal segmentation
model under 100 grids and 200 grids, respectively. The flection points of the results under
different numbers of grids were clear when k was four, the slope difference presented by
red reached peak, the optimal number of sample segmentation should be four, and the loss
value presented by blue is the value corresponding to the slope difference.

The segmented data were used for prediction by using the multiple linear regression
model and multiple nonlinear regression model after completing the segmentation of data
at different spatial scales, respectively. Additionally, two models were assigned different
weights by constructing the GFW model. The weights of the segmented data at different
spatial scales are shown in Table 1.
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Table 1. The weights assigned by the goodness-of-fit weight model.

Spatial and Scale Intervals Weights of Multiple Linear
Regression Model

Weights of Multiple
Nonlinear Regression Model

Deformation prediction at
point scales with 100 grids

The first interval 0.594 0.406
The second interval 0.205 0.795
The third interval 0.813 0.187
The forth interval 0.322 0.678

Deformation prediction at
linear scales with 100 grids

The first interval 0.256 0.744
The second interval 0.090 0.910
The third interval 0.369 0.631
The forth interval 0.415 0.585

Deformation prediction at
surface scales with 100 grids

The first interval 0.198 0.802
The second interval 0.060 0.940
The third interval 0.440 0.560
The forth interval 0.076 0.924

Deformation prediction at
point scales with 200 grids

The first interval 0.426 0.574
The second interval 0.228 0.772
The third interval 0.330 0.670
The forth interval 0.654 0.346

Deformation prediction at
linear scales with 200 grids

The first interval 0.184 0.816
The second interval 0.358 0.642
The third interval 0.454 0.546
The forth interval 0.312 0.688

Deformation prediction at
surface scales with 200 grids

The first interval 0.727 0.273
The second interval 0.117 0.883
The third interval 0.366 0.634
The forth interval 0.366 0.634

The multiple linear regression model and multiple nonlinear regression model were
combined using the linear combination model, weighted geometric average model and
weighted harmonic average model, respectively. Then the combination model of slope
deformation prediction based on the GFW-Fisher optimal segmentation method was estab-
lished. Meanwhile, we obtained the combination results of 18 groups through experiments
and selected the appropriate prediction combination model by comparing the determi-
nation coefficients of the combination results. The results of the prediction combination
models are shown in Figure 4.

Tables 2 and 3 show that the determination coefficients between the prediction results
and actual results of the modified combination model were strong, and the grids were
more and the determination coefficients were higher. When the number of grids in the
DEM model were same, the determination coefficients between the prediction results and
actual results at surface scales were the highest. Therefore, we should choose the weighted
harmonic average model as the prediction combination model of slope deformation at the
surface scale under 200 grids from the combination results from 18 groups.

Table 2. Determination coefficients (R2) of the modified slope deformation prediction model at
different spatial scales with 100 grids.

Spatial Scale Linear Combination
Model

Weighted Geometric
Average Model

Weighted Harmonic
Average Model

Point scale 0.89 0.88 0.83
Linear scale 0.77 0.79 0.84
Surface scale 0.93 0.93 0.95
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Table 3. Determination coefficients (R2) of the modified slope deformation prediction model at
different spatial scales with 200 grids.

Spatial Scale Linear Combination
Model

Weighted Geometric
Average Model

Weighted Harmonic
Average Model

Point scale 0.88 0.87 0.88
Linear scale 0.94 0.94 0.94
Surface scale 0.95 0.95 0.96

Figure 5 shows the prediction results of different models. This could be explained
by the fact that the prediction result of the modified combination model was great, the
determination coefficient was closer to one, and the fitting degree was strong. However, the
determination coefficient of the multiple linear regression model and multiple nonlinear
regression model were 0.15279 and 0.19802, respectively, and the prediction capacities of
two models were terrible. This was the main problem of the existing data fluctuation and it
could not be considered using the multiple linear regression model and multiple nonlinear
regression model to predict slope deformation. For example, the surface deformation on
19 June 2019 and 20 June 2019 was 944.95 mm and 980.11 mm, respectively, and the re-
sults of data fluctuation was 35.16 mm. The surface deformation on 19 July 2019 and
20 July 2019 was 2164.63 mm and 2522.87 mm, respectively, and the results of data fluctua-
tion was 358.24 mm. The surface deformation on 14 August 2019 and 15 August 2019 were
9492.75 mm and 9527.14 mm, respectively, and the results of data fluctuation was 34.49 mm.
Therefore, our results also verified that slope deformation could not be predicted accurately
under the problem of data fluctuation. Additionally, the problem was solved using the
modified combination model of deformation prediction based on the GFW-Fisher optimal
segmentation method, and the accuracy of predicting was improved.
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3.2. The Results of Accuracy Evaluation

In order to further verify the applicability of the modified model, it is necessary to
evaluate the accuracy of the model. Therefore, 70 percent of the sample data could be
used to establish the evaluation model and 30 percent of the sample data could be used
to evaluate the accuracy. RMSE, MAE and relative error could be used as the evaluation
indicators to evaluate the accuracy of the model at different spatial scales under different
numbers of grids. However, the obtained remote sensing images could be characterized
using the high-resolution ratio, so the error between the prediction results and actual
results should be distributed to each grid. Meanwhile, the accuracy of the multiple linear
regression model, multiple nonlinear regression model and combination model should be
evaluated by comparing the indicators of the traditional model and modified model. The
results of the accuracy evaluation are shown in Table 4.

Table 4. The evaluation results of the model accuracy.

Model RMSE MAE Relative Error

Multiple linear regression model 20.91% 19.52% 96.33%
Multiple nonlinear regression model 20.74% 19.14% 94.47%

Linear combination model 5.62% 3.14% 4.33%
Weight geometric average model 5.62% 3.12% 4.33%
Weight harmonic average model 5.57% 3.11% 3.98%

Table 4 shows that the values of RMSE, MAE and relative error of the weighted
harmonic average model are smaller than other combination models. Therefore, the
capacity to predict and fit the weighted harmonic average model should be stronger than a
single model. Meanwhile, these indicators could be used to evaluate the errors between
prediction results and actual results, which could be distributed to each grid. Additionally,
the weight harmonic average model should be used as the prediction model.

3.3. Discussion

The methodology in this study has a number of distinctive characteristics in relation
to the prediction model in the field of slope collapse. The method takes many environment
and climate impacts, across a range of sectors, into consideration. The extensive slope
deformation data are systematically collected, which is a scientific and reliable data resource
enabling deformation prediction. The slope deformation data used here are mainly from
Ground-based Synthetic Aperture Radar. In addition, we considered not only the disad-
vantage of the single prediction model but also the impacts of data fluctuation. Finally, the
deformation prediction at different spatial scales with different scales was explored using
the approach proposed, and the accuracy of the model was used to assess by indicators
such as MAE, RMSE, and relative error.

For the accuracy of the model proposed by our study, the results showed that the com-
bination model was more accurate than the single model. The most accurate combination
model was the weight harmonic average model, thus indicating that it should be used
as the appropriate model to predict slope deformation. This is consistent with existing
research by Tan et al., which established a model in consideration of the relevance of the
multi-point space to predict slope deformation [51]. Du et al. used the model to predict
slope deformation and found that the combination model was more accurate and reliable
than the single point model [52]. Their results showed that the combination model had
a higher prediction capacity, and the determination of the coefficient of the combination
model by their study was 0.95. The results presented in our study identified the weight
harmonic average model as having the highest prediction capacity, and the determination
of the coefficient of the combination model in our study was 0.96. Clearly, the stability
of the results obtained using our proposed method is stronger than their method. They
collected slope deformation data and used the combination model to predict the slope
deformation, which were mainly restricted to the small scale and the single spatial scale. In
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contrast to their results, our results are based on the consideration of data fluctuation and
human factors, which had been applied to the different spatial scales such as point, line
and surface and larger scales. For this reason, our method has a better capacity than other
methods for deformation prediction.

In summary, we established the combination prediction model as a novel method of
slope deformation prediction, which improved the accuracy of the prediction results. The
results from our proposed model revealed the difference in prediction results at different
spatial scales and different scales. The weight harmonic average model at the surface scale
with a large scale should be used as the appropriate combination model, which can provide
a scientific reference for the safety of water projects.

4. Conclusions

Unlike traditional prediction methods for slope deformation, a new method has
been proposed to predict the slope deformation at different spatial scales. The method
successfully identified the prediction results of the slope deformation at different scales by
establishing the modified combination model and selected the appropriate combination
model as the deformation prediction model. Meanwhile, this study used the model to
undertake experiments in 2019. We used this method to predict the deformation of the
high slope at different spatial scales, which could solve the interference of data fluctuation
and human factor to a great extent and improve the accuracy of the deformation prediction.
We concluded that the determination coefficient of the weighted harmonic average model
was the highest with a surface scale with 200 grids, and the stability of weighted harmonic
average model was stronger than other combination models. Meanwhile, the stability of
the proposed combination model at the same spatial scale with 200 grids was stronger
than 100 grids. Therefore, the weighted harmonic average model should be used as the
slope deformation prediction combination model when the scale is a surface scale with
200 grids. Our experimental results revealed that the capacity of predicting and fitting
of improved combination model was greater than traditional model by establishing an
improved prediction combination model based on the GFW-Fisher optimal segmentation
method. The RMSE, MAE and relative error have been significantly improved, which may
be effectively reflected by the slope deformation and provide the reference for ensuring the
safe construction of water engineering.

This study objectively reports that the improved combination model has solved the
disadvantage of the single model and the accuracy of predicting the improved combination
model is greater than the traditional model. However, future work will be required to
verify the stability of the combination model for the high slope with more time scales such
as hour and minute. Additionally, our proposed method should be used and implemented
within other geological conditions.
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