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Abstract: Roughness of rock fractured surfaces is one of the most important factors controlling fluid
flow in rock masses. Roughness quantification is of prime importance for modelling the flow of
ground waters as well as reservoir fluid mechanics. In this study, with the aid of high-resolution 3D
X-ray CT scanning and image processing techniques, the roughness of four different rock types is
reconstructed with a resolution of 16.5 microns. Moreover, the correlation and structure functions are
used to analyse height fluctuations as well as statistical intermittency of the studied rock fractured
surfaces. It is observed that at length scales smaller than a critical length scale, fractures surfaces
are correlated and show multifractality. Monofractals are neither intermittent nor correlated; hence,
a meaningful link between statistical intermittency and the correlation function of multifractals is
expected. However, a model that considers this relationship and predicts multifractal spectra of
disordered systems is still missing. A simple power law that can exactly forecast the multiscaling
spectrum of rock fracture process zone is being introduced. It is explained how the exponent of this
power function λi is related to the crossover length of correlation function ξ, and how this critical
length scale can be objectively identified.

Keywords: roughness; multifractal; rock fracture; intermittency

1. Introduction

Quantitative roughness analysis of rock materials is not only the key to understand
mysteries associated with nonlinear inelastic fracture mechanics at small enough length
scales, but also a powerful and applicable tool in many rock engineering fields [1–3].

The main goal of this work is to establish a relationship between the correlation and
intermittency of rock fractured surfaces. This link not only broadens our horizons about
the statistical physics of multifractal phenomena but also is a promising approach in order
to objectively determine the crossover length (or time) ξ of physical phenomena. ξ is a
very important parameter in studying the phase transition of natural phenomena [4]. If
a fracture is considered as a phase transition [5], ξ is a cross-over length scale that shows
a transition from continuous damage percolation at δr � ξ to the first order at δr � ξ
where material can be considered as linear elastic [6], where δr denotes separation or length
scale. This phase transition is not very sharp in quasi-brittle rock materials and takes place
in a range of length scales because of the mixed first-order and continuous character [7].
Therefore, determining the true ξ as the statistical critical point at which the phase transition
takes place, which is reminiscent of the effective length of the fracture process zone lpz [8],
is of prime importance and the key to modelling fracture properties of quasi-brittle mate-
rials [9,10]. Considering this link, the height–height correlation function [11] or structure
function [12] and correlation (auto-covariance) function are integrated in order to model
the multiscale spectrum of fracture process zone (FPZ).

2. Materials and Methods

For this work, four different rock types including sandstone, marble and two granites
with different grain sizes have been studied. The fractured surfaces are generated by
performing notched semi-circular bending tests and under controlled conditions. The
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topography of fractured surfaces, illustrated in Figure 1, has been reconstructed from 3D
X-ray computed tomography data with a spatial resolution d of about 16.5 µm. This method
is superior to contact methods affected by the tip geometry of probes [13]. The average
grain size of the studied rocks is quantified by some 2D slices of tomographic images and
ranges from about 0.1 mm for the sandstone to around 1 mm for the marble. It is notable
that before any post-processing on fractured surfaces, the global slope in the direction
of crack propagation is removed by applying the gradient method such that the average
height at the first and last lines of the height map in the propagation direction is the same.
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scales 𝜖 to 𝐶𝜖(𝛿𝑟) = 0 at which 𝛿𝑟 = 𝜉. Then, the generalized Hurst exponent 𝐻(𝑞) is 

calculated for both monoaffine (𝛿𝑟 > 𝜉) and multiaffine (𝛿𝑟 < 𝜉) regimes. As opposed to 
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𝑐 ∗ 𝜆𝑐, it means the initial estimate of 𝜉 was correct and both the true 𝜉 and 𝜆𝑐 are cor-

rectly identified; otherwise, this estimate should be adjusted until 𝜆𝑖 = 𝑐 ∗ 𝜆𝑐. 𝑐 is a con-

stant, and based on experimental observations in this study, its value is considered to be 

related to the logarithmic mean log𝑒 10/ log10 10 ≈ 2.3. After the first iteration, the point 

of convergence of multiscale correlation functions and 𝜆𝑖 are used to modify 𝜆𝑐, and op-
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Figure 1. The 3D X-ray computed tomography images of the fractured area and topographic images of
fractured surfaces of sandstone (a), marble (b) fine-grained granite (c), and coarse grained granite (d).
The x-axis and z-axis correspond to the crack propagation direction and the crack front direction,
respectively. The real length of reconstructed CT images is around 18 mm in the propagation direction.

Figure 2 is schematically illustrating the adopted methodology for modelling the
multiscaling spectrum of FPZ of studied rocks. First, an initial guess of cross-over length ξ
is made by extrapolating the slope of the correlation function λc calculated at some length
scales ε to Cε(δr) = 0 at which δr = ξ. Then, the generalized Hurst exponent H(q) is
calculated for both monoaffine (δr > ξ) and multiaffine (δr < ξ) regimes. As opposed to
monoaffine regime, at multiaffine one H(q) nontrivially changes with q. This intermittency
can be modelled with a perfect power law characterised by an exponent λi. If λi = c ∗ λc, it
means the initial estimate of ξ was correct and both the true ξ and λc are correctly identified;
otherwise, this estimate should be adjusted until λi = c ∗ λc. c is a constant, and based
on experimental observations in this study, its value is considered to be related to the
logarithmic mean loge 10/ log10 10 ≈ 2.3. After the first iteration, the point of convergence
of multiscale correlation functions and λi are used to modify λc, and optimize the initial
guess of ξ, accordingly.
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Figure 2. The outline of the adopted methodology for modelling the multiscaling spectrum of FPZ of
studied rocks.

3. Results and Discussions
3.1. Roughness Correlation

These fractured surfaces exhibit anisotropic scaling properties. In order to identify
the effective ξ by means of the correlation function, height variations of fractured surfaces
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∆h(ε) at some length scales ε are made statistically isotropic. ωε(X) the operator has been
used for such purpose [14]:

ωε(X) =
1
2

log
(〈

∆h(ε)2
〉

Θ

)
−Ωε, (1)

where log(∆h) denotes the natural logarithm, whose base value is e. It measures the average
height variations around each point, on a height field h(X), with its neighbours over a circle of
radius ε = d ∗ p (p = 1, 2, 3, 4, 5 px). ε is a product of spatial resolution and the number of
pixels used for calculating ∆h(ε); Ωε is chosen such that the average of ωε(X) overall X is zero.
The pair length scale ε and direction n ( ε,n) = (16.5,8), (33,12), (49.5,16), (66,20), (82.5,28) is used
to compute

〈
∆h(ε)2〉

Θ = 1
n ∑n−1

k=0

[
h
(
xi, zj

)
− h
(
xi + ε ∗ cos(2πk/n ), zj + ε ∗ sin(2πk/n )

)]2
where Θ ∈ [0, 2π) rad. For instance, at a length scale of ε = 16.5 µm, 8 different data points
are used to calculate the height difference for each point. xi and zj are the coordinates of
a point on h(X) in crack propagation and crack front directions, respectively. Figure 3 is
showing the correlation functions Cε(δr) = 〈ωε(X)ωε(X + δr)〉 θ of ωε fields averaged over
4 directions θ ∈ [0, π) = πk/4 rad (k = 0, 1, 2, 3). The best-fit line of correlation functions
Cε(δr) = −λc log(δr/ξ) + ε passing through the point of convergence and the true ξ with
the slope λc = λi/c for different rock types are shown (under the assumption that ε = 0).
It is notable that λc is dimensionless, since slopes of auto-correlation (dimensionless) and
auto-covariance (dimensional) functions are the same. Indeed, Cε(δr) indicates scale-
dependency of the material’s disorder since ωε quantifies local height variations and
removes global slopes caused by macroscopic and dynamic effects.
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3.2. Multifractality of Roughness 
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Figure 3. Spatial correlations ofωε for sandstone (a), marble (b) fine-grained granite (c), and coarse
grained granite (d). The correlations are represented for ωε computed at different scales ε. The
true cutoff length ξ is represented for each case. Dashed red lines are showing the initial guess for
estimating λc; green solid lines are passing through the point of convergence (red points) and the
true ξ with the slope λc = λi/c; and black dashed lines are showing different iterations that are
converging to the green lines.

3.2. Multifractality of Roughness

Following [15], the qth root of the qth moment of a statistical distribution of the height
fluctuations p(∆h), known as qth-order structure function Sq, is utilized to demonstrate
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scale-dependency of the roughness of quasi-brittle fractured surfaces, and their transition
from monoaffine to multiaffine surfaces at small enough separations:

Sq(δr) = 〈|∆h(δr)|q
〉1/q

=
〈
|h(X + δr)− h(X)|q

〉1/q
X ∝ δrζq∗1/q, (2)

where angular brackets denote the ensemble average.
The concept of multiaffine fractals was introduced in the study of roughness anal-

ysis of growing surfaces [16]. FPZ is a multiaffine phenomenon showing different scal-
ing properties in different directions θ ∈ [0, π) rad at different separations. However,
it shall be shown that its average scaling properties over all directions show a multi-
fractal process. In order to compute the multiscaling spectrum of the fracture process
zone, Sq(θ, δr) has been calculated over admissible coordinates

(
xoi, zoj

)
. xoi and zoj

are the coordinates of a point on a height field with zero average, 〈h(X)〉 = 0, in crack
propagation and crack front directions, respectively. It is a very time-consuming pro-
cess to compute many moments of structure function over all admissible coordinates
and directions with small intervals for large data sets in order of million data points.
m = 12 moments, q = {0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 2.5, 3, 4, 5, 6}, n = 4 directions, and
θ = πk/n rad (k = 0, 1, . . . , n− 1) have been selected, which are accurate enough for
analysing the intermittency of the studied rocks. Moreover, an interval l = 2 px for
calculating Sq(θ, δr) is used. Thus, ∆h(δr) has been calculated between the following

admissible coordinates h
(

xoil , zojl + δr
)
− h
(

xoil , zojl

)
for selected moment and angle sets.

It is notable that for a few smaller subsets Sq(θ, δr) have been calculated among both se-
lected and all admissible coordinates h

(
xoi, zoj + δr

)
− h
(
xoi, zoj

)
in different directions

n = {4, 12, 36}, and differences between calculated average scaling properties
〈
Sq(δr)θ

〉
were negligible. Admissible coordinates would be different considering separation and
direction. Maximum separation has always been about half of the minimum dimension of
the studied surfaces to compute moments at different separations over enough and similar
data points. Overall, 34 to 37 different separations δr ∈ [16.5, 13200] µm have been selected
considering the dimensions of studied surfaces. Multiscaling spectra of FPZ of studied
rocks are presented in Figure 4.

3.3. Determining the Cut-Off Length

It is observed that heart rate time series display different multiscaling exponents
because of long-range correlations [17]. The BDM model is proposed to provide a link
between multifractality and long-range correlation of financial time series [18]:

H(q) = H − (q− 1)
λc

2
, (3)

in which H ≡ ζ1, and λc is the slope of the correlation function of a multifractal process.
This means that H(q) = H if there is no correlation, i.e., λc = 0, which is the case for
monofractals. Otherwise, H(q) decrease linearly with q for λc > 0. The BDM model has
been used to analyse the multifractal behaviour of FPZ [14]. However, this linear model
could not provide a good estimation of such non-linear multifractal spectra of the studied
rocks. In this study, an experimental power law is introduced that can exactly predict the
statistically isotropic multiscaling spectrum of rock FPZ:

H(q) = H
(

q−λi
)

, (4)

in which λi is the intermittency (slope of the multiscaling spectrum) of a multifractal
process. This model is derived from experimental observation of the intermittent behaviour
of the multiscaling spectrum of FPZ of the studied rock materials.
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Figure 4. Multiscaling spectra of the rock fractured surfaces: sandstone (a), marble (b) fine-grained
granite (c), and coarse grained granite (d). The spectra are computed both below (blue curve) and
above (red curve) ξ. Both regimes are predicted with power laws; the best fit lines and their equations
are represented with the same colour. Intermittency of multifractal regimes (δr < ξ ) are showing
perfect power laws with R2 ≈ 1 and some exponents between 0.25 and 0.5. Monofractal regimes
(δr > ξ), however, show insignificant intermittency whose exponents are less than 0.05. Coefficients
of presented equations represent H(1) = ζ1/1, which is sometimes considered as a Hurst exponent.
Its values range from 0.5 to 0.6 for monofractal regimes, and from 0.65 to 0.85 for multifractal regimes.

By applying a log–log transformation, Equation (4) can be read as log H(q) = −λi log q+ log H.
From Figure 4, it is indisputable that this log–log transformation is showing a perfect linear
relationship that is unique to power functions. λi computed from this relationship has
been used to adjust λc and optimize the initial guess of ξ. From Figure 3, it can be clearly
seen that apparent correlation functions computed at different scales meet each other at
a particular point, which is the true correlation function and reflects the intrinsic length
of the material disorder. The coordinates of this point are the key to determine the true ξ
by modifying λc based on computing λi. By repeating the loop shown in Figure 1 a few
times (from 5 to 8 iterations in this study) both the intermittency of the multifractal process
and the true cross-over length of the correlation function can be objectively identified. A
comparison among experimental data, the BDM model and the proposed model is made in
Figure 5, which shows the success of the proposed model in predicting multiscaling spectra
of the rock fractured surfaces at small enough length scales.

If λi = c ∗ λc, then 1− log(ζq/H)
log(q) = −c ∗ C∗ε (δr)−ε

log(δr/ξ)
, and this equation can be rearranged

as follows:
log
(
ζq/H

)
log(q)

− c ∗ C∗ε (δr)
log(δr/ξ)

= 1− c ∗ ε

log(δr/ξ)
, (5)

where C∗ε (δr) is an auto-correlation function that is normalized by the variance of ωε field.
In the monoaffine regime, ζq/H = q, there is no correlation C∗ε (δr) ≈ 0, and Equation (5)
is read as 1− 0 = 1. In the transition zone, the correlation from ε at δr = ξ would tend to
zero as δr tends to infinity. In the multiaffine regime, ζq/H = q1−λi , there is a correlation of
0 < C∗ε (δr)− ε < 1, and Equation (5) read as 1− λi + c ∗ λc = 1.
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Figure 5. Experimental and predicted multiscaling spectra of the rock fractured surfaces:
sandstone (a), marble (b) fine-grained granite (c), and coarse grained granite (d). Predicted spectra
by the proposed model are very close to experimental ones.

3.4. Limitations and Future Work

The question that remains open here is as follows: what is the relationship between
the slope of the correlation function and the intermittency? To answer this question, finding
a meaningful link between the correlation function and the structure function is the first
step. Two kinds of these links that can trigger some interesting future research are provided
as follows.

The power spectrum, on the one hand, is the Fourier transform of the auto-covariance
function of a wide-sense stationary random process (Wiener–Khinchin theorem). Height
variations in the monofractal regime can be considered as a fractional Brownian motion
with stationary increments and their spectral density S( f ) scales with the frequency f as a
power law: S( f ) ∝ f−β where β = 2H(2) + 1 [19]. On the other hand, the spectral density
is proportional to the second moment of distribution of height variations

〈
|∆h(δr)|2

〉
∝ δrα

where α = 2H(2) = β− 1. For monofractals a relationship between H(q) = H and β can
be defined as Dq = q + 1− H = q + 3−β

2 . However, when it comes to multifractals with
nonstationary increments, this link between the correlation function and structure function
needs some modifications. In other words, like the generalized fractal dimension and Hurst
exponent, a generalization for spectral analysis is required. Wigner–Ville spectral analysis
is introduced as the unique generalized spectrum for spectral analysis of non-stationary
processes [20]. There is also a statistical relationship between the structure function and
correlation function:

〈
|∆h(δr)|2

〉
= 2

(
σ2 − Cε(δr)

)
, where σ2 =

〈
h(X)2

〉
≈
〈

h(X + δr)2
〉

is the variance of a height map. This equation is working very well for the second moment,
but the question is how it can be expanded for other moments. Moreover, this relationship
ignores the effect of local averaging on the height map (to compute ωε field). Along with
this theoretical issue, it seems the coefficient c plays a very important role in understanding
multifractal phenomena and can be used to estimate the crossover length of multiphase
phenomena. Further measurements in different fields are required to have a better compre-
hension of the proposed model in this study. The outcomes of this research can pave the
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way to deciphering multiscaling features of quasi-brittle fractured surfaces and model the
roughness of the fractured rocks.

4. Conclusions

In this study, the intermittency of the roughness of fractured surfaces of different
rock types is quantified. Based on the studied fractured surfaces the intermittency can be
modelled by perfect power laws that can be further used to analyse multiscale properties
of the roughness of fractured surfaces at length scales smaller than the cut-off length, an
important topic in fluid mechanics. Moreover, a repetitive loop is introduced to determine
the cut-off length, which is the length scale at which a transition from multi- to monofrac-
tality of the fracture surfaces can be observed, by making a connection between the slope
of intermittency and slope of the correlation function of the same surface. Finally, some
directions for future research are introduced that can further enhance our understanding of
the multiscaling features of rough surfaces.
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