
Citation: Attia, A.; Govind, A.;

Qureshi, A.S.; Feike, T.; Rizk, M.S.;

Shabana, M.M.A.; Kheir, A.M.

Coupling Process-Based Models and

Machine Learning Algorithms for

Predicting Yield and

Evapotranspiration of Maize in Arid

Environments. Water 2022, 14, 3647.

https://doi.org/10.3390/w14223647

Academic Editors: Renato Morbidelli,

Jinglei Wang, Baozhong Zhang and

Yufeng Luo

Received: 27 October 2022

Accepted: 10 November 2022

Published: 12 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Coupling Process-Based Models and Machine Learning
Algorithms for Predicting Yield and Evapotranspiration of
Maize in Arid Environments
Ahmed Attia 1 , Ajit Govind 2, Asad Sarwar Qureshi 1 , Til Feike 3, Mosa Sayed Rizk 4 ,
Mahmoud M. A. Shabana 5 and Ahmed M.S. Kheir 2,5,*

1 Sustainable Natural Resources Management Section, International Center for Biosaline Agriculture,
Dubai 14660, United Arab Emirates

2 International Center for Agricultural Research in the Dry Areas (ICARDA), Maadi 11728, Egypt
3 Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Strategies and

Technology Assessment, 14532 Kleinmachnow, Germany
4 Maize Research Department, Field Crops Research Institute, Agricultural Research Center, Giza 33717, Egypt
5 Soils, Water and Environment Research Institute, Agricultural Research Center, 9 Cairo University Street,

Giza 12112, Egypt
* Correspondence: a.kheir@cgiar.org or drahmedkheir2015@gmail.com; Tel.: +20-1011329465

Abstract: Crop yield prediction is critical for investigating the yield gap and potential adaptations
to environmental and management factors in arid regions. Crop models (CMs) are powerful tools
for predicting yield and water use, but they still have some limitations and uncertainties; therefore,
combining them with machine learning algorithms (MLs) could improve predictions and reduce
uncertainty. To that end, the DSSAT-CERES-maize model was calibrated in one location and vali-
dated in others across Egypt with varying agro-climatic zones. Following that, the dynamic model
(CERES-Maize) was used for long-term simulation (1990–2020) of maize grain yield (GY) and evapo-
transpiration (ET) under a wide range of management and environmental factors. Detailed outputs
from three growing seasons of field experiments in Egypt, as well as CERES-maize outputs, were used
to train and test six machine learning algorithms (linear regression, ridge regression, lasso regression,
K-nearest neighbors, random forest, and XGBoost), resulting in more than 1.5 million simulated yield
and evapotranspiration scenarios. Seven warming years (i.e., 1991, 1998, 2002, 2005, 2010, 2013, and
2020) were chosen from a 31-year dataset to test MLs, while the remaining 23 years were used to
train the models. The Ensemble model (super learner) and XGBoost outperform other models in
predicting GY and ET for maize, as evidenced by R2 values greater than 0.82 and RRMSE less than
9%. The broad range of management practices, when averaged across all locations and 31 years of
simulation, not only reduced the hazard impact of environmental factors but also increased GY and
reduced ET. Moving beyond prediction and interpreting the outputs from Lasso and XGBoost, and
using global and local SHAP values, we found that the most important features for predicting GY
and ET are maximum temperatures, minimum temperature, available water content, soil organic
carbon, irrigation, cultivars, soil texture, solar radiation, and planting date. Determining the most
important features is critical for assisting farmers and agronomists in prioritizing such features over
other factors in order to increase yield and resource efficiency values. The combination of CMs
and ML algorithms is a powerful tool for predicting yield and water use in arid regions, which are
particularly vulnerable to climate change and water scarcity.

Keywords: DSSAT models; random forest; XGBoost; super learner; lasso regression; hyperparameters
tuning; water use; feature importance

1. Introduction

Maize is the world’s third most important staple food crop, after rice and wheat [1].
In comparison to rice and wheat, maize has a lower protein content but a higher energy
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density, with 72% carbohydrate and 10% protein, as well as important minerals such as
calcium and iron, making it crucial for food security and nutrition [2].

The gap between food consumption and production has grown as a result of limited
water resources [3,4], climate change [5], rapid population growth [6], and global crises such
as pandemics and wars [7], particularly in water-scarce environments. This requires a lot of
attention to improve yield production and close the yield gap. One of the most important
environmental abiotic stresses that negatively impact the growth and final yield of many
crops is drought stress [8,9]. Determining evapotranspiration is therefore essential to better
manage irrigation water and avoid the detrimental impacts of drought stress on plants in
order to increase productivity and economic gains of the water–food nexus [10,11]. The ET
estimation models available in the literature may be broadly classified as (1) fully physically
based combination models that account for mass and energy conservation principles;
(2) semi-physically based models that deal with either mass or energy conservation; and
(3) black-box models based on artificial neural networks, empirical relationships, and
fuzzy and genetic algorithms [12–14]. Furthermore, different computing approaches for
monitoring and protecting water resources, such as satellite-based data [15], a new front
detection algorithm (GRADHIST) [16], and soft computing [17], were considered in the
literature. To predict yield and water use, various methods were used, including remote
sensing [18,19] and crop models [20,21].

Integration between environmental factors (i.e., soil types, temperatures, carbon diox-
ide concentrations (CO2), solar radiation, and available water content) and management
practices such as tillage, organic matter, irrigation, and cultivars, can be considered as
an integrated approach to enhance maize yield and water productivity, but still has less
attention so far due to its difficulty in application to typical field studies due to the large
number of factors across spatiotemporal scales. Crop models (CMs) offer the opportunity
to address such challenges by combining multiple factors [22,23] following the proper
testing against observational data. Many crop models were used to predict crop yield and
water use around the world [24], but the Decision Support System for Agro-technology
Transfer (DSSAT) is one of the most widely used crop models for adaptation and mitigation
development and ultimately supports decision making [25,26]. The CERES-Maize module
is one of the most widely used models in the DSSAT model for predicting maize yield
and water use [27,28]. However, in arid environments, deploying CERES-Maize to predict
maize yield and water use in response to factorial combinations of environmental factors
and management practices has received less attention, demonstrating the importance and
novelty of current research. Nevertheless, CMs have significant limitations when it comes
to making predictions, such as yield-limiting soil nutrients, physical limits in the soil,
and different pests, diseases, weeds, and other stresses that reduce production in farmers’
fields but are not currently taken into account in models [29,30]. The various soil and crop
processes and how they interact with the environment are approximated by imperfect
crop models used in impact assessment studies. The predictive power of these models
is frequently limited by large uncertainties related to model structure, choices of model
inputs, and parameter values, which exceed the spatiotemporal variability of observed
yields [31,32]. This emphasizes the requirement for the development of more effective
methods to identify the most significant sources of uncertainty and their underlying causes
in order to raise the caliber and transparency of upcoming impact assessments [33]. On
the other hand, machine learning algorithms (MLs) could create simulations by creating
connections between the inputs of agricultural production elements (such as soil, weather,
agronomic methods, and environmental effects) and the projected variables such as crop
output [34]. The algorithm “learns” a transfer function from the inputs in MLs, in contrast
with CMs, in order to estimate the intended output [35]. Recent research has shown that ML
can be used to estimate ET in a variety of terrestrial ecosystems [36,37]. However, few stud-
ies have been conducted to estimate ET using a hybrid crop model–ML approach. Because it
considers CMs restrictions, MLs offers certain advantages over CMs while having lengthier
runtimes defined by the quantity of variables/data we input [38]. Therefore, we combine
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CMs with different ML algorithms to create a hybrid approach with robust predictions and
less uncertainty. Recently, there are different ML algorithms used in crop yield predictions
including random forest, support vector machine [39], linear regression, LASSO regression,
extreme gradient boosting (XGBoost), LightGBM [40], and convolutional neural networks
(CNN) [41]. Nonetheless, such studies used only ML algorithms without coupling them
with crop models, as well as using simple treatments of management practices, confirming
the significance of our study which combined CMs with multiple ML algorithms under a
broad range of environmental factors and management practices. In addition to the base
ML models, we developed a super learner (SL) that stacks the base models for higher
accuracy and precision. The SL is based on optimality theory, which ensures that for large
sample sizes, the SL will perform as well as possible given the specified algorithms [42]. It
is an ensemble method that allows researchers to combine multiple prediction algorithms
into a single one [43]. Permutation feature importance is a technique that can be used
to minimize bias in biological investigations where independent variables may comprise
numerical and categorical features [44]. Coupling crop models with ML algorithms in pre-
diction has been used in some recent studies, but most of them ignored using a multimodel
approach and only used the default method in testing the models for limited treatments
rather than G × M × E interactions. Meanwhile, in the current study, we used MME to
predict yield and water use after testing the models with the warmest years and taking into
account the G × M × E interactions, confirming the work’s novelty.

Therefore, the main objective of this work is to explore the potential of coupling dy-
namic crop models (CERES-Maize) with machine learning algorithms for robust prediction
of maize yield and water use in different environments. The specific objectives to ensure the
main aim include (1) validation of CERES maize under different environments, cultivars,
and treatments for maize crop; (2) deploying CMs for long-term prediction (1990–2020) of
maize yield and water use under a broad range of environmental and management factors;
(3) training and testing several ML algorithms using the detailed outputs of CMS long term
simulations; and (4) exploring the most important features from different algorithms that
achieved accurate prediction of maize yield and water use in different locations.

2. Materials and Methods
2.1. Calibration of DSSAT Model

The DSSAT model was calibrated using eight-year site field experiments conducted
on arid sandy soil in Ismailia, Egypt [27,45]. Objectives of these experiments were to
investigate maize yield and water use in response to several management practices for a
total number of treatments of 44 in which all had the final grain yield reported and plant
and/or soil measurements (Table 1, [27]). Detailed description of these experiments and
the calibration procedure are described in Attia et al. [27]. Figure 1 shows the results of
phenology and grain yield of maize and soil moisture content and evapotranspiration
prediction by the DSSAT model compared with the observed data. The calibrated model
was then validated by comparing the phenology and leaf area index of maize as well as
the grain and biomass yield prediction at various locations representing different soils and
agro-climate zones (Figure 2). The data were extracted from the national maize research
program by the Agricultural Research Center (ARC) of Egypt during 2018 to 2020 that
included the anthesis and physiological maturity dates, leaf area index, and grain and
biomass yields. In this dataset, two maize cultivars were considered: high yield cultivar
(SC10) and standard cultivar (TWC324). Supplementary Materials Figure S1 summarizes
the story of data collection, modeling, and ML algorithm predictions of yield and water
use. The daily climatic parameters such as maximum and minimum temperatures, relative
humidity, solar radiation, and wind speed for different locations are presented in the
Supplementary Materials, Figure S2.
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Table 1. Calibrated values of cultivar-specific parameters for medium-maturity maize variety (CV,
SC10) in the DSSAT-CERES-Maize model (v. 4.7.5) for maize experiments in Ismailia, Egypt.

P1 (C Days) P2 (Days) P5 (C Days) G2 (Number) G3 (mg day−1) PHINT (C Days)

Calibration range 130–380 0–2 600–1100 400–1100 4–11.5 35–65

Calibrated values 320 0.8 968 794 8.5 51

P1: Degree days above a base temperature of 8 °C from seedling emergence to the end of the juvenile phase;
P2: day length sensitivity coefficient that is the delay in days for each hour increase in photoperiod above the
longest photoperiod at which development proceeds at maximum rate (12.5 h); P5: degree days above a base
temperature of 8 ◦C from silking to physiological maturity; G2: maximum possible number of kernels plant−1;
G3: kernel filling rate during the linear grain filling stage and under optimum conditions (mg day−1); and PHINT:
the interval in thermal time (degree days, ◦C day) between successive leaf tip appearances (Phyllochron interval).
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Figure 1. (A) Model calibration for maize phenology and grain yield and (B) soil moisture content and
evapotranspiration using detailed experimental dataset in Ismailia, Egypt described in [17]. Irrigation
treatments included high irrigation water level (I1) during the calibration process, and lower irrigation
level (I2) during validation level. Automatic irrigation based on the maximum allowable depletion
(50% MAD) was used in I1, while deficit irrigation based on 50% ET was considered in I2.

2.2. Development of the Simulated Dataset

The calibrated model was used to perform a factorial simulation experiment to develop
a simulated dataset for ML development and analysis. The factorial combination included
two categories: (i) environmental variables and (ii) management variables (Table 2). The
environmental variables included minimum and maximum temperature, solar radiation,
CO2 concentration, soil type (texture), soil available water content, and soil organic matter.
Within the temperature and CO2 concentration, there were five levels of the baseline plus
four increment levels, whereas the solar radiation included the baseline level only. Other
environmental variables were related to the four sites that were used in the study, each
of which had soil type, available water content, and organic matter content. For instance,
at the Ismailia site the soil texture is sandy, the available water content is 65 mm/m, and
the soil organic carbon is 0.46 (Table 2). The management variables included: radiation
use efficiency (cultivar) calibrated value plus two other levels; planting date (DOY); recom-
mended planting date plus and minus 3 weeks from the recommended date; four irrigation
levels according to the percent of soil moisture depletion; compost application with three
levels; and tillage operation represented by no-till and conventional tillage. The recom-
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mended planting date is 15 May at Ismailia, Sakha, and Giza and 25 July at Aswan. The
combination of 29 factorial levels (temperature, CO2 concentration, solar radiation, cultivar,
DOY, irrigation, compost, and tillage) in four sites for 31 years (1990–2020) resulted in
more than 1.5 million simulated scenarios of yield and evapotranspiration. Each scenario
represented an instance of a full factorial design; therefore, all possible scenarios were
simulated. R software v. 4.1.2 [46] was utilized to facilitate editing of the “File X” and
run the model for the factorial levels each year of the long term simulation using the
DSSAT package (https://cran.r-project.org/web/packages/DSSAT/index.html (accessed
on 1 March 2022)). The simulation profile started two weeks ahead of the first planting
date of the corresponding site and was run independently for 31 years, i.e., resetting to the
initial condition each year.
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Figure 2. Locations of the field experiments used in DSSAT maize calibrations and evaluations. Eight-
year site field experiments conducted on Ismailia used for CERES-Maize calibrations for phenology
and grain yield of maize as well as soil moisture content and evapotranspiration. Experiments of
other locations such as Sakha, Sharqia, Giza, and Aswan over three growing seasons were used to
validate the model by comparing the observed phenology, leaf area index, grain yield, and biomass
yield with analog-simulated values.

https://cran.r-project.org/web/packages/DSSAT/index.html
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Table 2. Environmental variables and management variables used as input features for model
building.

Feature Name Type Description Levels

Environmental variables
Minimum temperature Numeric Daily minimum temperature Baseline, +1, +2, +3, +4
Maximum temperature Numeric Daily maximum temperature Baseline, +1, +2, +3, +4

CO2 Numeric CO2 concentration Baseline (380 ppm), +20, +40,+60, +80
Solar radiation Numeric Daily solar radiation (MJ/m2/d) Baseline

Texture Factor Soil texture
Sandy, Silty Clay, Silty Clay Loam, and Clay
Loam for Ismailia, Giza, Sakha, and Aswan

sites, respectively

Available water content Numeric Average soil water holding capacity
(mm of water/m of soil depth)

65, 115, 145, and 120 for Ismailia, Giza, Sakha,
and Aswan sites, respectively

Soil organic carbon Numeric Percent of soil organic carbon in 60 cm
soil depth

0.46, 0.98, 1.54, and 1.34 for Ismailia, Giza,
Sakha, and Aswan sites, respectively

Management variables
Cultivar Numeric Calibrated radiation use efficiency Baseline (3.7), 4.07, 4.44

DOY Numeric Day of year

Weakly planting for 3 weeks before the
recommended planting date and 3 weeks

after the recommended planting date, plus
the recommended planting date totaling 7

planting dates

Irrigation * Numeric Percent of available soil moisture
content in the 30 cm soil depth 90%, 70%, 50%, and 30%

Compost Numeric Level of compost application 0, 5000 kg/ha and 10,000 kg/ha
Tillage Factor Tillage operation No tillage and conventional tillage

* Irrigation factor justified to be triggered at different levels of depletion from available water.

2.3. Machine Learning Models Development and Testing

Six machine learning models were developed to predict maize yield and evapo-
transpiration that included three types of linear regression (linear, ridge, and lasso),
and three tree-based methods (K-nearest neighbors, random forest, and extreme gra-
dient boosting (XGBoost)) using the scikit-learn machine learning package in Python
(https://scikit-learn.org/stable/, accessed 1 March 2022). The dataset was partitioned to
training and testing data, while data from the selected years (1991, 1998, 2002, 2005, 2010,
2013, and 2020) were used as the testing dataset (23%), whereas the remaining dataset was
used as training dataset (77%). The tested years were selected based on their higher content
of temperatures compared with other years. Hyperparameters tuning was performed to
optimize the models’ prediction of maize grain yield and evapotranspiration utilizing the
Hyperopt package in Python [30]. The Hyperopt employs a Bayesian approach to find the
best values of the hyperparameters over the specified parameters’ space. The objective
function aimed at minimizing the root mean square error between the testing data and
the fitted model prediction. This process was performed to find the best values of the
hyperparameters for all models except the multiple linear regression as a baseline for com-
parison (Table 3). Following the base model’s optimization, a super learner ensemble was
developed by stacking the optimized base models using out-of-fold predictions for base
models collected during the k-fold cross-validation. Model performance was evaluated us-
ing three statistical indicators of root mean square error (RMSE), relative RMSE (R-RMSE),
and coefficient of determination (R2) [31]. Interpretation of relative RMSE indicates that an
R-RMSE value < 10% means an “excellent” prediction, >10% and <20% means a “good”
prediction, >20% and <30% means a “fair” prediction, and >30% means a “poor” prediction.

https://scikit-learn.org/stable/
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Table 3. Hyperparameters space and optimized values for several machine learning models.

Model Hyperparameter Space Optimized Values for
Grain Yield

Optimized Values for
Evapotranspiration

Ridge regression ‘alpha’ ‘alpha’: (0,10000) ‘alpha’: 51.603 ‘alpha’: 3.326
Lasso regression ‘alpha’ ‘alpha’: (0,10000) ‘alpha’: 0.011 ‘alpha’: 0.044

K-nearest neighbors {‘leaf_size’,
‘n_neighbors’}

{‘leaf_size’: (1,50),
‘n_neighbors’: (1,30)}

{‘leaf_size’: 47,
‘n_neighbors’: 22}

{‘leaf_size’: 11,
‘n_neighbors’: 20}

Random forest

{‘max_depth’,
‘min_samples_leaf’,
‘min_samples_split’,

‘n_estimators’}

{‘max_depth’: (5,20),
‘min_samples_leaf’: (1,5),
‘min_samples_split’: (2,6),
‘n_estimators’: (100,500)}

{‘max_depth’: 9.874,
‘min_samples_leaf’:

4.584,
‘min_samples_split’:
4.145, ‘n_estimators’:

485.329}

{‘max_depth’: 9.087,
‘min_samples_leaf’:

1.971,
‘min_samples_split’:
5.769, ‘n_estimators’:

265.092}

XGBoost

{‘colsample_bytree’,
‘gamma’, ‘max_depth’,

‘min_child_weight’,
‘n_estimators’,

‘reg_alpha’,
‘reg_lambda’}

{‘colsample_bytree’:
(0.5,1), ‘gamma’: (1,9),
‘max_depth’: (3,18),

‘min_child_weight’: (0,10),
‘n_estimators’: (80,280),

‘reg_alpha’: (40,180),
‘reg_lambda’: (0,1)}

{‘colsample_bytree’:
0.803, ‘gamma’: 2.01,

‘max_depth’: 3.0,
‘min_child_weight’:

7.0, ‘n_estimators’: 14,
‘reg_alpha’: 53.0,

‘reg_lambda’: 0.432}

{‘colsample_bytree’:
0.562, ‘gamma’: 5.565,

‘max_depth’: 3.0,
‘min_child_weight’:

10.0, ‘n_estimators’: 63,
‘reg_alpha’: 162.0,

‘reg_lambda’: 0.816}

2.4. Feature Importance and Meta-Model Comparison with DSSAT Model

Feature importance for Lasso model as an example of linear regression models and
for XGBoost as an example of tree-based models was estimated using Tree Explainer by
the shape package in Python (https://shap.readthedocs.io/en/latest/index.html, accessed
1 March 2022) [32]) to identify the strongest predictors. The Tree Explainer method uses
Shapley values to illustrate the global importance of features and their ranking as well as
the local impact of each feature on the model output. The analysis was performed on the
model prediction of a representative sample from the testing dataset. Further evaluation of
the models’ predictions was performed by comparing the meta-model’s prediction against
the DSSAT model prediction at a fifth independent site located at Sharqia (Figure 2). The
weather data for this site were provided to the DSSAT model as well as the soil data which
are closely similar to the GIZA site. In order to be consistent with the input features used
in the model training, the soil-related environmental variables (texture, OC, and AWC)
were taken from the GIZA site. The simulated dataset included two sets: (i) the first set
responded to varying the management variables only without modifying the environmental
variables and (ii) the second set responded to varying the environmental variables only
that included the soil inputs for the other three sites at Ismailia, Sakha, and ASWAN while
keeping all management variables constant at the recommended practice (planting date:
15 May at Ismailia, Giza, Sakha, and Sharqia and 25 July at Aswan; irrigation: 90%; cultivar:
3.7%; and tillage: conventional tillage). The grain yield and evapotranspiration of maize
were predicted by the super learner model given the input features provided to the DSSAT
model. The outputs of the super learner model and the DSSAT model were compared
and graphed.

3. Results and Discussion
3.1. Validation of DSSAT Maize Model

The calibrated model was then validated using different datasets of maize phenology
and yield in different locations varied from lower temperature in Sakha located at the North
Nile delta, to moderate temperature in Giza, and higher temperature in Aswan in south
Egypt (Figures 2 and 3). The validation results showed a good agreement between observed
and simulated phenology, LAI (Figure 3A), biomass yield, and grain yield (Figure 3B).
The findings of these features were confirmed by different statistical indicators such as
RMSE, normalized root mean square error (nRMSE), and mean percentage error (MPE)
(Supplementary Materials, Table S1). These indicators showed lower values for phenology,

https://shap.readthedocs.io/en/latest/index.html
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grain yield, biomass, and non-stressed irrigation treatment (I1), while there was little
increase in these indicators with LAI and stressed irrigation treatment (I2). This confirms
the high accuracy of model calibration and the potential of using CERES-Maize in long-term
simulation even in different locations. Pasquel et al. [47] found that using only RMSE is not
enough to evaluate the models, while multi indicators can be considered, confirming the
importance of using different statistical indicators in our study. Some features showed little
overestimation or underestimation due to some uncertainties in the warmest location and
the second cultivar (TWC324) which is considered more sensitive to higher temperatures
than SC10 [18]. Nevertheless, both cultivars share a similar genetic background with closely
similar yield potential.
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Figure 3. (A) Model evaluation for maize phenology and leaf area index and (B) maize biomass and
grain yields at three different locations shown in Figure 2. Each feature (location, color) represents
two cultivars (SC10 and TWC324) and three growing seasons (2018, 2019, and 2020).

3.2. Evaluation of Trained ML Algorithms

In general, the tested ML algorithms predicted maize grain yield and water use
with greater accuracy, as indicated by R2 > 75% and RRMSE < 10% (Table 4). Meanwhile,
comparison among the base models showed that the tree-based ML XGBoost model excelled
others. Therefore, it was selected to perform feature importance analysis in addition to
the lasso regression as the baseline model. These findings were consistent with [38,48]’s
findings that XGBoost outperformed other ML algorithms in yield predictions. Interestingly,
the SL model achieved the highest accuracy compared with others which can be attributed
to the rapid development of soft computing; ensemble models can produce more accurate
predictions than a single machine learning model [33].
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Table 4. Evaluation metrics for various machine learning algorithms built to predict maize yield and
evapotranspiration for the testing dataset (1991, 1998, 2002, 2005, 2010, 2013, and 2020).

RMSE (kg ha−1) R-RMSE (%) R2 RMSE R-RMSE R2

Grain Yield (kg ha−1) Evapotranspiration (mm)

Linear regression 1467 9.76 0.77 64 7.23 0.79
Ridge regression 1468 9.77 0.77 64 7.24 0.80
Lasso regression 1467 9.76 0.77 64 7.23 0.79

K-nearest neighbors 1287 8.56 0.82 36 4.12 0.93
Random forest 1296 8.62 0.82 39 4.44 0.92

XGBoost 1285 8.55 0.82 37 4.27 0.93
Super learner model 1185 7.88 0.85 35 4.03 0.94

3.3. Predicted Grain Yield and Water Use by DSSAT and ML Algorithms under Broad Range of
Management and Environmental Practices

Predicted maize grain yield and water use by DSSAT and ML algorithms differed
in response to changing the management and environmental variables, indicating good
agreements between DSSAT and ML predictions (Figure 4). We changed the management
variables (cultivar, sowing window, irrigation, compost, and tillage) while keeping the
environmental factors constant for each feature of GY and ET (Figure 4A,C) at a fifth
independent location in Sharqia (Figure 2). Then, while keeping management constant,
changed the environmental factors (such as maximum and minimum temperatures, CO2,
solar radiation, soil texture, AWC, and SOC) (Figure 4B,D) by running the model at all
locations and therefore varying the soil inputs. Predicted maize grain yield ranged from
7000 to 13,500 kg ha−1 with little variation when management factors were changed
(Figure 4A), whereas when environmental factors were changed, GY ranged from 4000 to
13,500 kg ha−1 (Figure 4B). This suggests that environmental factors have a greater impact
on maize yield than management practices, but the latter is critical for mitigating the hazard
impact caused by environmental variables. This is mainly due to rising temperatures,
which shorten crop growth periods and damage cell division and amyloplast replication
in maize kernels, resulting in a smaller grain sink and, ultimately, a lower yield [34].
However, changes in different management variables alleviated such reductions and kept
the yield ranging from 7000 to 13,500 kg ha−1. Previous research found that technological
advancements in genetics, agronomy, and resource use methods account for a sizable share
of the improvements in agricultural production [35–37]. Nonetheless, due to the difficulty
of using a broad range in the field, such studies used a narrow range of management
practices. Crop-based models and ML algorithms have the potential to manage a wide
range of practices if properly calibrated and trained. This validates the importance of the
current study in investigating the effects of environmental variables on maize grain yield,
as well as the potential of integrating many management factors as potential adaptations
using CMs and MLs algorithms. Prior studies concluded that, model ensembles have been
found to be superior yield forecasters in crop and other modeling applications than any
single simulation model [38–41]. We observed the same pattern with ML multi-models in
this investigation. In fact, equally weighted ensemble meta-models outperformed single
models in terms of yield and evapotranspiration prediction.

Under management practices, the predicted ET by both CMs and ML algorithms
were very close to each other (Figure 4C), while DSSAT predicted values were slightly
overestimated in the case of environmental changes (Figure 4D). This could be due to
the large number of training iterations and parameter tuning in ML, which could result
in higher prediction accuracy and less uncertainty. The hyperparameters of a machine
learning model must be tuned to fit it to different problems. The best hyperparameter
configuration for machine learning models has a direct effect on model performance. It
frequently necessitates extensive knowledge of machine learning algorithms and hyper-
parameter optimization techniques. Although there are several automatic optimization
techniques, their strengths and drawbacks differ when applied to different types of prob-
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lems. According to various studies [49,50], hyperparameter tuning outperforms other
optimization methods. Furthermore, ML algorithms use inputs from CM model outputs as
well as the original and initial dataset to create a hybrid approach that improves prediction
over individual crop models [42]. This confirms that a hybrid approach of CMs and MLs is
far superior to using some of them individually for robust yield and water use predictions.
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Figure 4. (A) Maize GY (kg ha−1) by DSSAT vs. ensemble ML models in response to varying the
management variables shown in Table 2 and keeping the environmental variables constant with
the soil profile of GIZA site; (B) maize GY (kg/ha) by DSSAT vs. ensemble ML models in response
to varying the environmental variables while keeping the management variables constant at the
recommended practice; (C) seasonal ET (mm) by DSSAT vs. ensemble ML models in response to
varying the management variables; and (D) seasonal ET (mm) by DSSAT vs. ensemble ML models in
response to varying the environmental variables. The DSSAT model and ML models were compared
at a fifth independent location (Sharqia) than those used in the model calibration and evaluation (five
locations). Yellowish regions indicate higher density.
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3.4. The Most Important Variables

The important features of predicted GY and ET were presented for lasso regression
as a standard model and for XGBoost as the best model (Figures 5–8). To investigate the
most important features of each proposed model, we predicted maize grain yield and
evapotranspiration using different management and environmental variables (Table 2).
Determining the most important features is critical to assisting farmers and agronomists
in focusing on such features to increase yield and resource efficiency values over other
factors [25]. In this case, we used the SHAP method to represent and explain the important
features that contribute more to the ML outputs. Features with higher shapely values con-
tribute more to predicted yield and evapotranspiration, while features with lower Shapley
values contribute less. To determine the global importance, the average absolute Shapley
value per feature across the entire dataset (management and environment) is calculated
(Figures 5–8, left). Furthermore, the local explanation summary indicates the direction of
the relationship between a feature and the model output. Positive SHAP-values indicate
increased grain yield or ET, while negative SHAP-values indicate decreased components
(Figures 5–8, right). Figure 4 depicted the important features of GY predicted by the
lasso regression model. Available water content (AWC), soil organic carbon, maximum
temperature, planting date (DOY), minimum temperature, solar radiation, irrigation, and
cultivar type were the most important factors associated with the predicted GY by the
lasso regression model (Figure 4, left). The SHAP-values (Figure 4, right), showed that the
features of increasing AWC, delaying planting date, solar radiation, irrigation, resistant
cultivar, CO2, and compost correlated positively with maize grain yield. Meanwhile, rising
temperatures significantly reduced the predicted maize grain yield. In the case of yield
predictions by the XGBoost model, data showed that the important features could be
arranged in the following sequence order: maximum temperature, minimum temperature,
AWC, soil organic carbon, irrigation, cultivars, soil texture, solar radiation, and planting
date (Figure 6, left). The SHAP-values derived from such features revealed that maximum
and minimum temperature correlated negatively with predicted grain yield, whereas other
features increased yield with a significant contribution from irrigation. Low temperatures
increase growth duration, which allows crops to intercept more radiation, so high corn
yield is associated with low temperatures, high solar radiation, and irrigation [43]. We can
infer from this analysis that heat-tolerant cultivars (SC10) can be used to lessen yield losses
because they can partially offset the effects of high temperatures on leaf area, photosynthetic
rate, and growth and development [43].

The lasso regression model predicted ET by twelve features (Figure 7) and XGBoost
(Figure 8). The global important features from lasso regression were ordered as AWC >
SOC > irrigation > soil texture > minimum temperature > solar radiation > planting date >
maximum temperature > cultivar > CO2 > compost > tillage (Figure 7, left). When compared
with other features, increasing the minimum temperature and sowing date reduced the
predicted ET (Figure 7, right). Unlike the lasso regression model, the predicted ET by the
XGBoost model showed a different order in the important features as irrigation > AWC >
soil texture > SOC > planting date > minimum temperature > solar radiation > maximum
temperature > cultivar type > CO2 > compost > tillage (Figure 8, left). Notably, irrigation
and other management practices, particularly soil organic carbon and changing planting
date, had the greatest impact on crop ET, mitigating the risk impact of environmental
factors, particularly temperature (Figure 8, right). Similar findings were observed by [44],
who stated that agronomic practice factors such as irrigation, fertilization, and agricultural
film contributed positively to the increase in water productivity, while climatic factors such
as daily mean temperature and solar radiation contributed less. Taking the most important
feature from the best model (XGBoost), it is possible to conclude that temperature was
the most important feature for the predicted GY, while irrigation was the most important
feature for the predicted ET. Multi-agronomic practices were effectively used as adaptation
tools to mitigate the impact of environmental factors.
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Figure 6. Feature importance for grain yield (kg ha−1) based on SHAP-values for the XGBoost
regression model. On the left, the mean absolute SHAP-values are depicted to illustrate global feature
importance. On the right, the local explanation summary shows the direction of the relationship
between a feature and the model output. Positive SHAP-values are indicative of increasing grain
yield whereas negative SHAP-values are indicative of decreasing grain yield.
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Figure 8. Feature importance for ET (mm) based on SHAP-values for the XGBoost regression model.
On the left, the mean absolute SHAP-values are depicted to illustrate global feature importance. On
the right, the local explanation summary shows the direction of the relationship between a feature
and the model output. Positive SHAP-values are indicative of increasing grain yield whereas negative
SHAP-values are indicative of decreasing grain yield.

4. Conclusions

In this paper, we combined the DSSAT CERES maize model with six machine learning
models to predict maize grain yield and evapotranspiration in Egypt’s various agroclimatic
zones and under a variety of management practices and environmental factors. First, the
DSSAT CERES maize model was calibrated for yield, phenology, and evapotranspiration us-
ing analogous observed datasets in some locations, followed by validation using data from
other locations. The combination of 29 factorial levels (temperature, CO2 concentration, so-
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lar radiation, cultivar, planting date, compost, and tillage) in 4 sites for 31 years (1990–2020)
resulted in over 1.5 million yield and evapotranspiration simulated scenarios. The detailed
outputs from DSSAT models were used to train and test different Ml algorithms. Following
all ML algorithms’ training and testing, the XGBoost model outperformed the other ML
regression models in predicting maize grain yield and evapotranspiration, confirmed by
higher values of R2 and lower RMSE and RRMSE. Despite yield reductions and increased
evapotranspiration as temperatures rose, management practices (i.e., irrigation, cultivar
changes, sowing date changes, compost, and tillage) mitigated such negative impacts and
improved yield and reduced ET. Furthermore, the proposed ML algorithms identified the
most important features that significantly contributed to yield and ET predictions, which
can assist farmers and decision makers in prioritizing such features over other factors in
order to increase yield and resource efficiency values. In arid regions and similar environ-
ments, a hybrid approach of CMs-MLs could be used successfully to predict yield and water
use under a wide range of management practices and environmental factors. Nonetheless,
expanding the current approach to include crop models–machine learning–deep learning as
a hybrid under future climate change could be viewed as a prospective ensemble method,
particularly in arid and semi-arid environments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14223647/s1, Figure S1: Flowchart summarizes the study road
map for modeling and machine learning simulations; Table S1: Goodness-of-fit statistics of calibration
and evaluation of the DSSAT model of anthesis and maturity dates, maximum leaf area index (Max
LAI), final biomass, grain yield, and evapotranspiration (ET, mm) under non-stress (I1) and stress
(I2) conditions.
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