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Abstract: In this study, the viability of three metaheuristic regression techniques, CatBoost (CB),
random forest (RF) and extreme gradient tree boosting (XGBoost, XGB), is investigated for the
prediction of monthly streamflow considering satellite precipitation data. Monthly streamflow data
from three measuring stations in Turkey and satellite rainfall data derived from Tropical Rainfall
Measuring Mission (TRMM) were used as inputs to the models to predict 1 month ahead streamflow.
Such predictions are crucial for decision-making in water resource planning and management
associated with water allocations, water market planning, restricting water supply and managing
drought. The outcomes of the metaheuristic regression methods were compared with those of artificial
neural networks (ANN) and nonlinear regression (NLR). The effect of the periodicity component was
also investigated by importing the month number of the streamflow data as input. In the first part of
the study, the streamflow at each station was predicted using CB, RF, XGB, ANN and NLR methods
and considering TRMM data. In the second part, streamflow at the downstream station was predicted
using data from upstream stations. In both parts, the CB and XGB methods generally provided
similar accuracy and performed superior to the RF, ANN and NLR methods. It was observed that the
use of TRMM rainfall data and the periodicity component considerably improved the efficiency of
the metaheuristic regression methods in modeling (prediction) streamflow. The use of TRMM data
as inputs improved the root mean square error (RMSE) of CB, RF and XGB by 36%, 31% and 24%,
respectively, on average, while the corresponding values were 37%, 18% and 43% after introducing
periodicity information into the model’s inputs.

Keywords: streamflow prediction; metaheuristic regression approaches; satellite precipitation
data; TRMM

1. Introduction

Streamflow is one of the most important components of the terrestrial water cycle. It
describes the flow of water that enters the watershed as precipitation, reaching its destina-
tion through natural drainage into lakes and oceans by flowing through creeks, streams,
and rivers [1,2]. While high streamflow in a channel (stream or river) can cause flooding
and waterlogging, low streamflow can adversely affect dependent riverine ecosystems [3,4].
In both cases, the consequences can be dire, resulting in severe socio-economic losses and
ecosystem fragmentation [5,6]. Hence, it is necessary to accurately predict streamflow so
that a significant portion of these damages can be effectively mitigated. Further, since
surface water reservoirs are principally used to supply water to satisfy urban drinking
water requirements, accurate streamflow forecasting is required for the efficient planning
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and management of these systems [7,8]. Several variables, including the climate and hy-
drology, the hydraulic properties of the stream, elevation, and the presence of upstream
controls, affect streamflow. As the uncertainty and hydro-climatic load on a stream and
river network increase, it becomes increasingly difficult to precisely forecast streamflow,
making it an arduous task to reduce or control its vulnerability.

Broadly speaking, streamflow prediction models can be classified as either linear or
non-linear [9,10]. Traditional linear regression models, such as autoregressive integrated
moving average models and multiple linear regression techniques, have been used for
streamflow forecasting [11,12]. These models can perform well in forecasting long lead
time streamflow forecasts, but their performance is limited by the assumption of linearity
of the streamflow [10]. Since streamflow time series are inherently non-linear owing to their
stochastic nature and dependency on different external control (exogenous) variables [13],
non-linear modeling techniques such as artificial neural networks (ANN), support vector
regression (SVM), extreme learning machine (ELM), and tree-based regression techniques
such as random and rotation forest (RF) have been widely applied in streamflow forecast-
ing [10]. Most of these models are basically machine learning models that leverage time
series data to make accurate predictions. These models are also being successfully used to
forecast other natural and hydro-geo-climatic phenomena [14–16].

The development and use of ANN and ANN ensemble (hybrid) models in streamflow
forecasting have been documented in several studies [17–19]. In several case studies, the
application of ELM, SVM, and RF models to understand the potential of these models in
streamflow forecasting revealed that each showed varying performance under different
hydro-climatic and geographic conditions [19,20]. Though all the above-mentioned models
performed decently in forecasting streamflow, obtaining a higher correlation coefficient
(e.g., R2 above the range of ~0.8) between the actual and forecasted streamflow remains
challenging [21]. To overcome this difficulty, generally, novel or hybrid ensemble models are
being developed in combination with traditional non-linear streamflow forecasting models.
Further, newly developed advanced metaheuristic techniques which are being used in
other time-series forecasting applications (e.g., finance) from the machine learning domain
are also occasionally being used in streamflow forecasting to determine if they can improve
the prediction accuracy of streamflow forecast models [22,23]. Boosting algorithms are one
such metaheuristic technique that has been recently applied to forecast streamflow [23–25].

Boosting algorithms like gradient tree boosting have been shown to forecast stream-
flow with high accuracy [23], and ensemble parallel tree boosting models like extreme
gradient tree boosting (XGBoost) have also recently been used in related research [26,27].
Although very similar to RF in its structure and implementation, XGBoost varies by how
the trees are developed and combined [28]. While RF is implemented by bagging where
the final forecast is the average of all decision trees, XGBoost uses the error residuals from
previous decision tree models to fit the subsequent models, and the final forecast is a
weighted sum of all the tree forecasts. Similar to these models, a new model has been
developed using gradient boosting on decision trees with categorical feature support, also
referred to as CatBoost [29]. CatBoost has several advantages over traditional models,
i.e., fast computing efficiency, native ability to handle categorical features, and the use
of symmetric trees for swifter execution and to overcome overfitting by implementing
ordered boosting [30]. Although CatBoost has not been applied in streamflow forecasting
(to the best of the authors’ knowledge), recent studies have documented the superior ability
of CatBoost models in forecasting other hydro-climatic variables including weather and
evapotranspiration [31,32].

In this study, three tree-based metaheuristic regression approaches, namely XGBoost,
RF, and CatBoost, were used to model streamflow at three different locations in the Black
Sea region in Turkey. The performance of all the three models was analyzed using different
performance and error indices, and the results of each of these models were compared with
ANN and nonlinear regression (NLR). Additionally, satellite rainfall data derived from
Tropical Rainfall Measuring Mission (TRMM) were also used as model inputs to study
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if providing additional hydro-climatic variables improved the accuracy of the models.
This paper presents some important observations regarding the use of the XGBoost and
CatBoost models in streamflow forecasting and discusses how the performance of these
models could be improved further in streamflow forecasting applications.

2. Methods and Materials

Three metaheuristic regression approaches, i.e., CB, RF, XGB, along with ANN and
NLR were implemented in the present study to predict monthly streamflow considering
precipitation data from TRMM. The modeling procedure is illustrated in Figure 1. The CB,
RF and XGB methods are briefly explained in the following sections.

Water 2022, 14, x FOR PEER REVIEW 3 of 20 
 

 

using different performance and error indices, and the results of each of these models 
were compared with ANN and nonlinear regression (NLR). Additionally, satellite rainfall 
data derived from Tropical Rainfall Measuring Mission (TRMM) were also used as model 
inputs to study if providing additional hydro-climatic variables improved the accuracy of 
the models. This paper presents some important observations regarding the use of the 
XGBoost and CatBoost models in streamflow forecasting and discusses how the perfor-
mance of these models could be improved further in streamflow forecasting applications. 

2. Methods and Materials 
Three metaheuristic regression approaches, i.e., CB, RF, XGB, along with ANN and 

NLR were implemented in the present study to predict monthly streamflow considering 
precipitation data from TRMM. The modeling procedure is illustrated in Figure 1. The CB, 
RF and XGB methods are briefly explained in the following sections. 

 
Figure 1. The modeling procedure of the metaheuristic regression methods implemented in this 
study. 

  

Figure 1. The modeling procedure of the metaheuristic regression methods implemented in this study.



Water 2022, 14, 3636 4 of 20

2.1. CatBoost

CatBoost a recent open-source boosting (ensemble strategy) algorithm proposed by
Yandex engineers (documentation of CatBoost model is available at https://catboost.ai/)
(accessed on 30 October 2022) [30–33]. It stems from the concepts of decision trees and
gradient boosting. With oblivious (‘Oblivious trees’ are grown symmetrically, using the
same features for splitting and learning criterion across each level of the tree.). decision
trees as base predictors, CatBoost is well-balanced, less prone to overfitting, and saves
significant time during testing phase. Let us consider dataset
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= (ai.bi)i=1,...,n, where
ai =

(
a1

i . . . . . . . . am
i
)

is a random vector of m features and bi ∈ R is an output feature of
either numerical or binary response. The data (ai.bi) are independent and follow some
unknown N(·,·) distribution. A train function F : Rm → R that minimizes the expected
loss L(F) = EL(b.F(a)) is the ultimate objective of any learning model, where L denotes a
smooth loss function [29,30]. A sequence of relatively closer approximations Ft : Rm → R ,
t = 0,1,2 . . . . is built iteratively in a greedy fashion using a gradient boosting procedure.
Based on a generalized additive approach, Ft is derived from antecedent approximation
Ft−1, such that Ft = Ft−1 + αht, where ht is a base predictor function (ht : Rm → R ) and
α denotes the step size [30]. With the objective of minimizing the expected loss, the base
predictor is usually opted from family of functions H:

ht = argmin
h∈H

L
(

Ft−1 + h
)
= argmin

h∈H
EL
(

y.Ft−1(x) + h(x)
)

(1)

The minimization problem is usually solved by functional gradient descent, either by
considering a (negative) gradient step or by using the Newton second-order approximation
method [29,33]. Generally, least-squares approximation is used to solve for ht(x). However,
in CatBoost (an implementation of gradient boosting), decision tree ‘h’ is obtained as:

hth(x) = ∑K
k=1 mkI{x∈Dk} (2)

h(x) = ∑K
k=1 mkI{x∈Dk}, where Dk are the disjointed regions that correspond to the tree’s

leaves and mk denotes the leaf values of the obtained trees [33].
CatBoost makes improvements to the gradient boosting procedure and employs a

more effective ‘Ordered Target Statistics’ strategy to learn the model, making use of all
training data. Hence, CatBoost outperforms even for heterogeneous data situations. For
further in-depth details and mathematical concepts of CatBoost, readers may refer to the
following literature [29,30,33,34].

2.2. eXtreme Gradient Boosting (XGBoost)

One of the fundamental issues in tree learning is to discover the best split; hence,
eXtreme Gradient Boosting (XGBoost) (an extension to gradient boosted decision trees) was
created, achieving superior results [35]. XGBoost employs a greedy algorithm that initiates
from a single leaf and iteratively augments branches to the tree to find the best split [36]. It
is not possible to train several trees in parallel using XGboost, but it can generate distinct
tree nodes in parallel. The distributed weighted quantile sketch algorithm included in
XGBoost aids in determining the best split points and handle weighted datasets. The
weights of individual tree can be scaled down by a constant, thus reducing the impact of
a single tree on the final score. To penalize the highly complex model, XGBoost employs
both Lasso and Ridge Regression regularization. Additionally, it comes with a built-in
cross-validation method at each iteration to avoid over-fitting. XGBoost has the advantages
of effective tree pruning, parallel processing, and regularization. Finally, features like
shrinkage and column subsampling speed up the computations of the parallel algorithm.
For further in-depth details and mathematical concepts of XGBoost, the reader may refer to
the following literature [35,37,38]. Figure 2 illustrates the structure of the XGBoost model.

https://catboost.ai/
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2.3. Random Forest (RF)

Random forest, an extension of the bagging method, is the most versatile supervised
machine learning algorithm, wherein multiple individual decision trees are merged to form
an ensemble [39]. The bagging approach selects a random sample of data from a training
batch to generate several data samples and then train them independently. From ‘k’ number
of data records, RF picks up ‘n’ number of data records to construct individual decision
trees for each sample. One-third of the training sample is set aside as test data, referred to as
the out-of-bag (oob) sample. Each decision tree provides an output and, based on majority
voting or averaging, RF generates output for classification or regression tasks, respectively.
Random forest allows for evaluating the importance of variables or their contribution to a
model. When a variable is removed from a model, indices such as Gini importance and
mean decrease in impurity (MDI) are commonly used to determine how much the model’s
accuracy has dropped. The RF model, unlike Decision Trees, is more robust to training
sample selection and noise. Since it takes the average of all approximations from individual
trees, overfitting is not seen due to the cancelling out of biases. For further in-depth details,
the reader may refer to the following literature [39–42].

2.4. Case Study

The present study uses monthly mean streamflow data from three stations, Durucasu
(station no: 1413, latitude: 36.11 N, longitude: 40.74 E, altitude: 301 m), Sutluce (station
no: 1414, latitude: 36.12 N, longitude: 40.43 E, altitude: 510 m) and Kale (station no:
1402, latitude: 36.51 N, longitude: 40.77 E, altitude: 190 m), situated in Black Sea Region
(BSR) of Turkey (Figure 3). The utilized data comprised continuous values throughout
the period of 1998–2007; there were no gaps in the data from any of the stations. The
highest rainfall in Turkey is observed in this region (BSR). The eastern part of the BSR
receives 2200 mm of annual rainfall. This region has a wet-humid climate with a yearly
average relative humidity of 71% and average temperatures of 4 ◦C and 22 ◦C in winter
and summer, respectively. Yearly average total rainfall is about 842 mm and most of this
(19.4%) occurs in summer [43]. Streamflow data were obtained from Turkish State Water
Works. Precipitation data were obtained from the Tropical Rainfall Measuring Mission
(TRMM), which provides continues satellite data over the BSR region. Such data were
previously tested by comparing land data, and a high level of accuracy was observed by the
researchers [43–47]. Table 1 sums up the statistical characteristics of the streamflow data.
As shown, the streamflow data have high skewness, ranging from 1.60 to 2.43. The ranges
of the training data do not cover those of the testing data; this could cause difficulties in
predicting streamflow beyond the extreme values provided to the model in the training
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stage. The TRMM provides monthly precipitation data on grid bases. We selected the
closest grids to the streamflow stations. Thus, for the Durucasu Station, TRMM from
grid points #1524 (latitude: 36.125 N, longitude: 40.625 E) and #1602 (latitude: 36.125 N,
longitude: 40.875 E) was used. For the Sutluce Station, data from grid #1446 (latitude:
36.125 N, longitude: 40.375 E), and for the Kale Station, data from grid #1525 (latitude:
36.375 N, longitude: 40.625 E) and grid #1526 (latitude: 36.625 N, longitude: 40.625 E) were
utilized. The TRMM was launched in 1997. It is a joint project developed by NASA and
JAXA (the space agency of Japan). It uses both active and passive microwave instruments
with a low inclination orbit (35◦). Therefore, TRMM is the foremost satellite in the world
for the study of precipitation, storms and climate processes in the tropics (https://gpm.
nasa.gov/sites/default/files/document_files/TRMMSenRevProp_v1.2.pdf) (accessed on
30 October 2022).

Figure 3. The location of the Durucasu (1413), Sutluce (1414) and Kale (1402), Yesilirmak Basin
stations, situated in the Black Sea Region.

https://gpm.nasa.gov/sites/default/files/document_files/TRMMSenRevProp_v1.2.pdf
https://gpm.nasa.gov/sites/default/files/document_files/TRMMSenRevProp_v1.2.pdf
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Table 1. Statistical properties of the streamflow data.

Station Station No Phase
Streamflow Data

Qmax Qmin Qmean Sk CV STD

Durucasu 1413
Test 173 9 40.1 2.11 0.96 38.3

Train 169 4.6 32.5 2.43 0.9 28.6

Sutluce 1414
Test 39.6 5.9 14.1 1.54 0.56 7.7

Train 37.5 4.5 12.2 1.87 0.53 6.42

Kale 1402
Test 334 43.5 104.2 2.38 0.65 68.6

Train 387 47.7 126.7 1.6 0.60 76.4
Notes: Qmax: Maximum streamflow, Qmin: Minimum streamflow, Qmean: Mean streamflow, Sk: Skewness, CV:
Variation coefficient, STD: Standard deviation.

2.5. Application and Evaluation of the Methods

Three metaheuristic regression approaches, i.e., CB, RF and XGB, were compared in
predictions of monthly streamflow, considering precipitation data obtained from TRMM.
First, lagged streamflow data from three stations, Durucasu, Sutluce and Kale, were used
as inputs to the models. Then, a periodicity component, indicated by the month number
(MN) of the output (streamflow, Q at time t, Qt), was included in the input combinations.
Finally, the precipitation acquired from TRMM was added into the inputs to explore its
impact on accuracy of the models. In order to assess the performance of the implemented
methods, the following statistics were employed:

RMSE =

√
∑N

1 (Qo −Qp)
2

N
(3)

rRMSE = 100
(

RMSE
Qo

)
(4)

MAE =
1
N

N

∑
1

∣∣∣(Qo −Qp

)∣∣∣ (5)

EL,M = 1−
∑N

1

∣∣∣Qo −Qp

∣∣∣
∑N

1
∣∣Qo −Qo

∣∣ , EL,M ≤ 1 (6)

MAPE =
100
N

N

∑
i=1

∣∣∣Qo −Qp

∣∣∣ (7)

where RMSE is Root Mean Square Error, rRMSE is the relative RMSE, MAE is Mean
Absolute Error, EL,M is the Legate and McCabe’s Index, MAPE is the mean or average of
the absolute percentage errors [47], N is the quantity of datasets, Qo and Qp are observed
and predicted streamflow and Qo denotes the observed mean value.

3. Application and Results
3.1. Predicting Monthly Streamflow of Durucasu Station

In Table 2, the accuracies of the metaheuristic regression methods are compared
in predicting the monthly streamflow at the Durucasu Station for the test stage. In the
table, S1 in parenthesis is Scenario 1 involving Qt−1, while S123 indicates the scenario of
Qt−1, Qt−2, Qt−3. The corresponding scenarios with periodicity are shown by S1M or
S123M, respectively. The periodicity component is the month number of the streamflow
output, varying from 1 (January) to 12 (December). Therefore, we used the abbreviation M
for the scenarios involving periodicity information, while S1P refers the S1 with TRMM
precipitation data. A comparison of the methods without considering TRMM data revealed
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that periodicity input improves the model accuracy in monthly streamflow prediction. For
example, the improvement in the RMSE of the CB, RF and XGB for the first scenario (S1)
was by 14.2%, 4%, 7% and 26.4%, respectively. The percentages were calculated using
relative error (RE) (RE = (Value 1 − Value 2)∗100/Value 1). The CB and XGB almost had
the same accuracy and they performed than RF with respect to all evaluation statistics. The
right part of the Table 2 clearly shows that considering TRMM precipitation considerably
improved the efficiency of the implemented methods in predicting monthly streamflow.
Adding precipitation input increased the accuracy of CB with S1 input by 24%, 23%, 29%
and 45% compared to RMSE, rRMSE, MAE and EL,M, respectively. This improved the
corresponding statistics by 35%, 36%, 34% and 49% for the RF(S1) and 20%, 21%, 20% and
36% for the XGB(S1) models, respectively. Similar to the discharge-based models, here, the
periodicity also considerably improved the model efficiency. For example, improvements
in RMSE, rRMSE, MAE and EL,M of 29, 28, 25 and 17% were observed for the CB with
inputs of S1 and TRMM precipitation, of 3.7%, 2.7%, 12.2% and 8.2% for the RF with the
same inputs, and of 39, 38, 38 and 39% for the XGB with the same inputs. Among the
metaheuristic regression models, XGB with S1, periodicity and TRMM precipitation as
inputs had the best accuracy, with the lowest RMSE (12.33 m3/s), rRMSE (0.31) and MAE
(8.77 m3/s) and the highest EL,M (0.68) in predicting monthly streamflow. It was followed
by the CB model with the same inputs. The equation of the NLR is:

Q1413 = 1.34
(

MN−0.33 + P1.17 + Q0.554
t−1

)
(8)

where Q1413 is the current streamflow at the Durucasu Station (Code: 1413), MN is the
Month number, P is the TRMM Precipitation current month and Q0.554

t−1 is the streamflow
of one month prior.

Table 2. The accuracies of the CB, RF, XGB, ANN and NLR methods in predictions of monthly
streamflow at the Durucasu Station (Code: 1413) in the testing phase.

Without TRMM Data With TRMM Data

Model
(Scenario)

Model
Inputs RMSE rRMSE MAE EL,M MAPE Model

(Scenario)
Model
Inputs RMSE rRMSE MAE EL,M MAPE

CB (S1) Qt−1 24.11 0.60 16.48 0.40 48.12 CB (S1P) Qt−1, P 18.32 0.46 11.71 0.58 45.35

CB (S12) Qt−1,
Qt−2

26.08 0.65 15.90 0.42 47.5 CB (S12P) Qt−1,
Qt−2, P 24.24 0.60 13.55 0.51 46.15

CB (S123)
Qt−1,
Qt−2,
Qt−3

26.76 0.67 17.18 0.38 48.19 CB (S123P)
Qt−1,
Qt−2,

Qt−3, P
27.63 0.69 15.59 0.43 46.12

RF (S1) Qt−1 23.19 0.58 16.21 0.41 50.2 RF (S1P) Qt−1, P 15.03 0.37 10.63 0.61 46.15

RF (S12) Qt−1,
Qt−2

26.99 0.67 17.74 0.36 53.2 RF (S12P) Qt−1,
Qt−2, P 17.60 0.44 11.43 0.59 48.26

RF (S123)
Qt−1,
Qt−2,
Qt−3

24.85 0.62 15.78 0.43 52.1 RF (S123P)
Qt−1,
Qt−2,

Qt−3, P
17.41 0.43 11.64 0.58 47.15

XGB (S1) Qt−1 25.33 0.63 17.60 0.36 46.12 XGB (S1P) Qt−1, P 20.16 0.50 14.13 0.49 45.19

XGB (S12) Qt−1,
Qt−2

26.02 0.65 19.73 0.28 48.2 XGB
(S12P)

Qt−1,
Qt−2, P 15.73 0.39 10.28 0.63 46.15

XGB (S123)
Qt−1,
Qt−2,
Qt−3

24.97 0.62 17.46 0.37 49.78 XGB
(S123P)

Qt−1,
Qt−2,

Qt−3, P
16.35 0.41 11.64 0.58 48.12

ANN (S1) Qt−1 27.86 0.69 19.18 0.39 53.2 ANN
(S1P) Qt−1, P 22.18 0.55 15.40 0.53 50.23

ANN (S12) Qt−1,
Qt−2

28.10 0.70 21.31 0.31 55.45 ANN
(S12P)

Qt−1,
Qt−2, P 16.99 0.42 11.31 0.68 52.13

ANN
(S123)

Qt−1,
Qt−2,
Qt−3

26.72 0.66 18.86 0.40 57.8 ANN
(S123P)

Qt−1,
Qt−2,

Qt−3, P
17.49 0.44 12.45 0.64 52.14

NLR (S1) Qt−1 30.65 0.76 20.71 0.42 55.18 NLR (S1P) Qt−1, P 24.40 0.61 16.32 0.58 53.14
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Table 2. Cont.

Without TRMM Data With TRMM Data

Model
(Scenario)

Model
Inputs RMSE rRMSE MAE EL,M MAPE Model

(Scenario)
Model
Inputs RMSE rRMSE MAE EL,M MAPE

NLR (S12) Qt−1,
Qt−2

30.35 0.75 23.44 0.34 58.49 NLR
(S12P)

Qt−1,
Qt−2, P 18.35 0.46 12.44 0.71 55.12

NLR (S123)
Qt−1,
Qt−2,
Qt−3

28.59 0.71 20.37 0.43 56.4 NLR
(S123P)

Qt−1,
Qt−2,

Qt−3, P
18.71 0.47 13.70 0.69 52.15

CB (S1M) Qt−1,
MN 20.69 0.52 13.74 0.50 42.2 CB

(S1MP)
Qt−1,

MN, P 13.05 0.33 8.79 0.68 25

CB (S12M)
Qt−1,
Qt−2,
MN

23.16 0.58 14.26 0.48 45.35 CB
(S12MP)

Qt−1,
Qt−2,

MN, P
24.04 0.60 13.11 0.51 24.5

CB
(S123M)

Qt−1,
Qt−2,
Qt−3,
MN

22.04 0.55 13.20 0.52 45.21 CB
(S123MP)

Qt−1,
Qt−2,
Qt−3,

MN, P

25.11 0.63 13.83 0.50 25.6

RF (S1M) Qt−1,
MN 22.09 0.55 13.81 0.50 43.24 RF (S1MP) Qt−1,

MN, P 14.48 0.36 9.33 0.66 25.23

RF (S12M)
Qt−1,
Qt−2,
MN

21.95 0.55 13.36 0.52 48.26 RF
(S12MP)

Qt−1,
Qt−2,

MN, P
15.63 0.39 9.87 0.64 25.48

RF
(S123M)

Qt−1,
Qt−2,
Qt−3,
MN

22.35 0.56 13.02 0.53 48.97 RF
(S123MP)

Qt−1,
Qt−2,
Qt−3,

MN, P

16.16 0.40 10.42 0.62 26.5

XGB
(S1M)

Qt−1,
MN 18.65 0.51 14.70 0.47 40.23 XGB

(S1MP)
Qt−1,

MN, P 12.33 0.31 8.77 0.68 29.12

XGB
(S12M)

Qt−1,
Qt−2,
MN

18.07 0.45 12.69 0.54 41.24 XGB
(S12MP)

Qt−1,
Qt−2,

MN, P
14.26 0.36 9.26 0.66 28.45

XGB
(S123M)

Qt−1,
Qt−2,
Qt−3,
MN

18.1 0.45 11.54 0.58 43.5 XGB
(S123MP)

Qt−1,
Qt−2,
Qt−3,

MN, P

14.02 0.35 10.22 0.63 28.75

ANN
(S1M)

Qt−1,
MN 21.28 0.53 14.29 0.48 42.12 ANN

(S1MP)
Qt−1,

MN, P 16.01 0.15 22.21 0.47 31.12

ANN
(S12M)

Qt−1,
Qt−2,
MN

22.34 0.52 13.58 0.48 43.15 ANN
(S12MP)

Qt−1,
Qt−2,

MN, P
16.33 0.15 23.10 0.47 31.15

ANN
(S123M)

Qt−1,
Qt−2,
Qt−3,
MN

21.92 0.51 14.29 0.47 44.12 ANN
(S123MP)

Qt−1,
Qt−2,
Qt−3,

MN, P

15.53 0.14 21.54 0.46 32.12

NLR
(S1M)

Qt−1,
MN 24.40 0.61 15.14 0.45 47.35 NLR

(S1MP)
Qt−1,

MN, P 30.26 0.29 23.38 0.45 32.14

NLR
(S12M)

Qt−1,
Qt−2,
MN

23.67 0.58 15.29 0.46 48.2 NLR
(S12MP)

Qt−1,
Qt−2,

MN, P
29.05 0.29 22.44 0.43 32.17

NLR
(S123M)

Qt−1,
Qt−2,
Qt−3,
MN

24.64 0.61 14.38 0.45 47.65 NLR
(S123MP)

Qt−1,
Qt−2,
Qt−3,

MN, P

29.96 0.29 23.85 0.47 35.14

Figure 4a compares the prediction accuracies of the metaheuristic regression models
together with ANN and NLR in predictions of monthly streamflow at the Durucasu Station
using the Taylor diagram. From such a diagram, we can compare the standard deviation
(STD), RMSE and correlation of the model predictions. The XGB model with inputs of S1,
periodicity and TRMM precipitation had a closer STD to the measured one than to other
methods, although this model was closely followed by CB with the same inputs.
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From the two scatterplots, we can see that the use of TRMM data as input considerably
improves the efficiency of all three methods, yielding less scattered predictions. Both
the XGB model with inputs of S1 and periodicity and the XGB model with inputs of S1,
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periodicity and TRMM precipitation function better than the other models in predicting
monthly the streamflow at the Durucasu Station. Figure 6a,b, compares the time variation
of the model predictions in two cases (with/without TRMM data). As shown, getting
precipitation information from TRMM data improves model performance in all ranges (low,
mean and maximum flows).
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Figure 6. Time variation graphs of the observed and predicted stream flows by CB, RF, XG, ANN
and NLR: (a) Durucasu (S1M), (b) Durucasu (S1MP) (c) Sutluce (S1M), (d) Sutluce (S1MP), (e) Kale
(S1M), (f) Kale (S1MP), (g) Kale (S1314M) and (h) Kale (S1314MP).

3.2. Predicting Monthly Streamflow at Sutluce Station

Table 3 sums up the test results of the three metaheuristic regression methods in
predicting monthly streamflow at the Sutluce Station. The left part of the table (without
TRMM data) reveals that involving periodicity in the model inputs considerably improves
performance; for example, the improvement in RMSE of the CB, RF and XGB models with
S1 input was by 52, 20 and 44%, respectively. The CB model with periodicity and two
lagged streamflow data as inputs (Qt−1, Qt−2, MN) performed better than the other models,
with the lowest RMSE (3.37 m3/s), rRMSE (0.24), and MAE (2.58 m3/s) and the highest
EL,M (0.56) in the test stage. From the right part of Table 3, it can be observed that including
TRMM precipitation data improved the model efficiency in both cases, with and without
periodicity. Importing P data to the model input improved the RMSE, rRMSE, MAE and
EL,M by 56, 56, 40 and 68% for the CB model with S1 input, by 29, 28, 27 and 30% for the RF
model with the same input and by 13.5, 14.3, 4.9 and 25% for the XGB model with the same
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input, respectively. For the CB model, having periodicity, TRMM precipitation and one
lagged streamflow data as inputs (Qt−1, MN, P) offered better performance than the other
models. Similar to the previous station, here, an improvement was seen when periodicity
was used as input; increases in RMSE, rRMSE, MAE and EL,M were by 38, 39, 42 and 70%
for the CB model with inputs of S1 and TRMM precipitation, by 20, 19, 18 and 3719% for
the RF model with the same input and by 47, 47, 44 and 231% for the XGB model with the
same input, respectively. The equation of the NLR is:

Q1414 = 0.98
(

MN−0.28 + P0.096 + Q0.84
t−1

)
(9)

where Q1414 is the current streamflow at the Sutluce Station (Code: 1414).

Table 3. The accuracies of the CB, RF, XGB, ANN and NLR methods in predictions of monthly
streamflow at the Sutluce Station (Code: 1414) in the testing phase.

Without TRMM Data With TRMM Data

Model
(Scenario)

Model
Inputs RMSE rRMSE MAE EL,M MAPE Model

(Scenario)
Model
Inputs RMSE rRMSE MAE EL,M MAPE

CB (S1) Qt−1 7.83 0.56 5.18 0.12 53.2 CB (S1P) Qt−1, P 5.02 0.36 3.71 0.37 45.2

CB (S12) Qt−1,
Qt−2

4.91 0.35 3.46 0.41 54.8 CB (S12P) Qt−1,
Qt−2, P 5.14 0.37 3.41 0.42 46.5

CB (S123)
Qt−1,
Qt−2,
Qt−3

4.96 0.35 3.41 0.42 55.4 CB (S123P)
Qt−1,
Qt−2,

Qt−3, P
5.59 0.4 3.56 0.40 46.8

RF (S1) Qt−1 5.77 0.41 4.01 0.32 55.2 RF (S1P) Qt−1, P 4.47 0.32 3.16 0.46 48.5

RF (S12) Qt−1,
Qt−2

4.98 0.35 3.35 0.43 55.6 RF (S12P) Qt−1,
Qt−2, P 4.20 0.3 3.05 0.48 48.9

RF (S123)
Qt−1,
Qt−2,
Qt−3

5.17 0.37 3.63 0.38 56 RF (S123P)
Qt−1,
Qt−2,

Qt−3, P
4.69 0.33 3.32 0.44 47.5

XGB (S1) Qt−1 7.84 0.56 5.18 0.12 52.32 XGB (S1P) Qt−1, P 6.91 0.49 4.94 0.16 43.5

XGB (S12) Qt−1,
Qt−2

6.12 0.43 4.46 0.24 53.6 XGB
(S12P)

Qt−1,
Qt−2, P 4.88 0.35 3.40 0.42 42.9

XGB (S123)
Qt−1,
Qt−2,
Qt−3

5.30 0.38 3.88 0.34 53.87 XGB
(S123P)

Qt−1,
Qt−2,

Qt−3, P
5.39 0.38 3.61 0.39 44.5

ANN (S1) Qt−1 8.62 0.62 5.59 0.13 57.2 ANN
(S1P) Qt−1, P 7.60 0.54 5.38 0.18 52.3

ANN (S12) Qt−1,
Qt−2

6.61 0.47 4.77 0.26 58.9 ANN
(S12P)

Qt−1,
Qt−2, P 5.27 0.38 3.67 0.46 53.2

ANN
(S123)

Qt−1,
Qt−2,
Qt−3

5.67 0.41 4.27 0.36 57.4 ANN
(S123P)

Qt−1,
Qt−2,

Qt−3, P
5.77 0.41 3.86 0.43 54.1

NLR(S1) Qt−1 9.48 0.68 5.98 0.14 57.6 NLR (S1P) Qt−1, P 8.36 0.60 5.92 0.19 51.6

NLR (S12) Qt−1,
Qt−2

7.14 0.51 5.20 0.28 58.2 NLR
(S12P)

Qt−1,
Qt−2, P 5.69 0.41 4.00 0.49 53.1

NLR (S123)
Qt−1,
Qt−2,
Qt−3

6.07 0.43 4.65 0.39 58.4 NLR
(S123P)

Qt−1,
Qt−2,

Qt−3, P
6.17 0.44 4.09 0.46 52.6

CB (S1M) Qt−1,
MN 3.80 0.27 2.91 0.51 42.15 CB

(S1MP)
Qt−1,

MN, P 3.10 0.22 2.16 0.63 15.8

CB (S12M)
Qt−1,
Qt−2,
MN

3.37 0.24 2.58 0.56 43.15 CB
(S12MP)

Qt−1,
Qt−2,

MN, P
4.08 0.29 2.82 0.52 16.3

CB
(S123M)

Qt−1,
Qt−2,
Qt−3,
MN

4.49 0.32 2.91 0.51 42.18 CB
(S123MP)

Qt−1,
Qt−2,
Qt−3,

MN, P

4.50 0.32 2.86 0.51 15.8

RF (S1M) Qt−1,
MN 4.63 0.33 3.15 0.51 43.32 RF (S1MP) Qt−1,

MN, P 3.60 0.26 2.58 0.63 18

RF (S12M)
Qt−1,
Qt−2,
MN

4.43 0.31 2.94 0.50 44.18 RF
(S12MP)

Qt−1,
Qt−2,

MN, P
3.78 0.27 2.59 0.56 19.5
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Table 3. Cont.

Without TRMM Data With TRMM Data

Model
(Scenario)

Model
Inputs RMSE rRMSE MAE EL,M MAPE Model

(Scenario)
Model
Inputs RMSE rRMSE MAE EL,M MAPE

RF
(S123M)

Qt−1,
Qt−2,
Qt−3,
MN

4.56 0.32 2.99 0.49 45.78 RF
(S123MP)

Qt−1,
Qt−2,
Qt−3,

MN, P

3.88 0.28 2.63 0.55 18.9

XGB
(S1M)

Qt−1,
MN 4.37 0.31 3.59 0.51 40.59 XGB

(S1MP)
Qt−1,

MN, P 3.65 0.26 2.75 0.53 20.8

XGB
(S12M)

Qt−1,
Qt−2,
MN

4.38 0.31 2.98 0.50 39.18 XGB
(S12MP)

Qt−1,
Qt−2,

MN, P
3.67 0.25 2.76 0.59 21.5

XGB
(S123M)

Qt−1,
Qt−2,
Qt−3,
MN

4.17 0.3 2.86 0.52 40.12 XGB
(S123MP)

Qt−1,
Qt−2,
Qt−3,

MN, P

3.77 0.27 2.52 0.59 22.6

ANN
(S1M)

Qt−1,
MN 27.86 1.97 5.28 0.42 42 ANN

(S1MP)
Qt−1,

MN, P 3.92 0.28 1.03 0.54 21.1

ANN
(S12M)

Qt−1,
Qt−2,
MN

27.30 1.95 5.28 0.42 43.5 ANN
(S12MP)

Qt−1,
Qt−2,

MN, P
3.80 0.27 1.08 0.54 21.6

ANN
(S123M)

Qt−1,
Qt−2,
Qt−3,
MN

26.75 1.91 5.49 0.43 42.26 ANN
(S123MP)

Qt−1,
Qt−2,
Qt−3,

MN, P

4.12 0.29 1.05 0.53 23.5

NLR(S1M) Qt−1,
MN 5.41 0.38 3.59 0.39 43 NLR

(S1MP)
Qt−1,

MN, P 5.01 0.36 3.34 0.43 25.3

NLR
(S12M)

Qt−1,
Qt−2,
MN

5.46 0.39 3.45 0.39 43.6 NLR
(S12MP)

Qt−1,
Qt−2,

MN, P
4.81 0.34 3.37 0.43 24.2

NLR
(S123M)

Qt−1,
Qt−2,
Qt−3,
MN

5.25 0.37 3.70 0.37 42.5 NLR
(S123MP)

Qt−1,
Qt−2,
Qt−3,

MN, P

4.81 0.34 3.27 0.43 25.6

The Taylor diagram provided in Figure 4b shows that the CB model with inputs of
S1, periodicity and TRMM precipitation had lower RMSE, higher correlation and closer
STD to the measured one than the other models. From the scatterplots in Figure 5c,d, it is
clear that the CB with inputs of S1, periodicity and TRMM precipitation had less scattered
predictions. Additionally, it is clear that the use of TRMM data considerably improved the
accuracy of the models. As shown from time variation graphs in Figure 6c,d, the models
utilizing TRMM data could follow the measured streamflow much more closely than the
discharge-based models.

3.3. Predicting Monthly Streamflow at the Kale Station

A comparison of metaheuristic regression methods in predicting monthly streamflow
at the Kale Station is made in Table 4 for the test stage. It is apparent from the table (see
the left part, without TRMM data) that considering periodicity in the input considerably
improved the efficiency of the various methods; for example, improvements in RMSE,
rRMSE, MAE and EL,M were by 31, 30, 32 and 158% for the CB model with S1 input, by 26,
25 28 and 174% for the RF model with the same input and by 43, 43, 40 and 133% for the
XGB model with the same input, respectively. Among the three metaheuristic regression
methods, the XGB model with two lagged streamflow data and periodicity (Qt−1, Qt−2,
MN) as inputs offered the best accuracy, with the lowest RMSE (44 m3/s), rRMSE (0.42)
and MAE (30.03 m3/s) and the highest EL,M (0.29) in the test stage. It is apparent from
the second part of the Table 4 (see the right part, with TRMM data) that the use of P
data acquired from TRMM considerably improved the accuracy both with and without
periodicity. For example, it improved the RMSE, rRMSE, MAE and EL,M by 29, 29, 100
and 6373% for the CB model with S1 input, by 29, 28 100 and 8968% for the RF model



Water 2022, 14, 3636 14 of 20

with the same input and by 39, 40, 100 and 3977% for the XGB model with the same input,
respectively. The equation of the NLR is:

Q1402 = 3.24
(

MN−0.06 + P1.19 + Q0.68
t−1

)
(10)

where Q1402 is the current streamflow at the Kale Station (Code: 1402).

Table 4. Accuracies of the CB, RF, XGB, ANN and NLR methods in predictions of monthly streamflow
at the Kale Station (Code: 1402) in the testing phase.

Without TRMM Data With TRMM Data

Model
(Scenario)

Model
Inputs RMSE rRMSE MAE EL,M MAPE Model

(Scenario)
Model
Inputs RMSE rRMSE MAE EL,M MAPE

CB (S1) Qt−1 71.88 0.69 53.03 −0.26 42.3 CB (S1P) Qt−1, P 51.41 0.49 36.7 −16.83 39.5

CB (S12) Qt−1,
Qt−2

61.36 0.59 44.83 −0.06 45.2 CB (S12P) Qt−1,
Qt−2, P 50.26 0.48 37.09 0.12 38.6

CB (S123)
Qt−1,
Qt−2,
Qt−3

63.89 0.61 49.82 −0.18 44.8 CB (S123P)
Qt−1,
Qt−2,

Qt−3, P
56.25 0.54 44.09 −0.05 37.6

RF (S1) Qt−1 66.98 0.64 50.21 −0.19 45.3 RF (S1P) Qt−1, P 47.51 0.46 34.15 −17.23 43.5

RF (S12) Qt−1,
Qt−2

59.93 0.57 44.52 −0.06 48.5 RF (S12P) Qt−1,
Qt−2, P 51.04 0.49 37.66 0.11 42.5

RF (S123)
Qt−1,
Qt−2,
Qt−3

63.25 0.61 46.81 −0.11 46.8 RF (S123P)
Qt−1,
Qt−2,

Qt−3, P
55.60 0.53 40.59 0.04 43.8

XGB (S1) Qt−1 83.01 0.8 60.21 −0.43 43.4 XGB (S1P) Qt−1, P 50.49 0.48 37.83 −17.53 40.5

XGB (S12) Qt−1,
Qt−2

66.86 0.64 50.37 −0.20 43.5 XGB
(S12P)

Qt−1,
Qt−2, P 56.27 0.54 40.95 0.03 40.15

XGB (S123)
Qt−1,
Qt−2,
Qt−3

66.67 0.64 48.71 −0.16 44.8 XGB
(S123P)

Qt−1,
Qt−2,

Qt−3, P
58.15 0.56 42.81 −0.02 41.5

ANN (S1) Qt−1 91.31 0.88 64.42 −0.46 48.9 ANN
(S1P) Qt−1, P 55.54 0.54 41.23 −19.11 43.5

ANN (S12) Qt−1,
Qt−2

72.21 0.70 55.41 −0.22 50.2 ANN
(S12P)

Qt−1,
Qt−2, P 60.77 0.59 44.64 0.03 44.8

ANN
(S123)

Qt−1,
Qt−2,
Qt−3

71.34 0.69 53.09 −0.18 49.5 ANN
(S123P)

Qt−1,
Qt−2,

Qt−3, P
62.22 0.60 46.66 −0.02 44.9

NLR (S1) Qt−1 100.44 0.97 68.93 −0.50 50.2 NLR (S1P) Qt−1, P 61.09 0.59 44.94 −20.83 44.32

NLR (S12) Qt−1,
Qt−2

77.99 0.75 60.40 −0.24 53.2 NLR
(S12P)

Qt−1,
Qt−2, P 65.63 0.63 48.66 0.03 43.9

NLR (S123)
Qt−1,
Qt−2,
Qt−3

76.33 0.74 56.81 −0.20 54.9 NLR
(S123P)

Qt−1,
Qt−2,

Qt−3, P
66.58 0.64 50.39 −0.02 43.72

CB (S1M) Qt−1,
MN 49.68 0.48 35.86 0.15 38.1 CB

(S1MP)
Qt−1,

MN, P 29.11 0.28 24.87 0.41 30.6

CB (S12M)
Qt−1,
Qt−2,
MN

49.78 0.48 37.32 0.11 36.5 CB
(S12MP)

Qt−1,
Qt−2,

MN, P
44.30 0.43 33.19 0.21 31.2

CB
(S123M)

Qt−1,
Qt−2,
Qt−3,
MN

50.17 0.48 37.45 0.11 38.9 CB
(S123MP)

Qt−1,
Qt−2,
Qt−3,

MN, P

44.84 0.43 36.02 0.15 30.8

RF (S1M) Qt−1,
MN 49.68 0.48 36.20 0.14 38 RF (S1MP) Qt−1,

MN, P 33.41 0.32 26.79 0.41 32.35

RF (S12M)
Qt−1,
Qt−2,
MN

53.77 0.52 40.00 0.05 40.3 RF
(S12MP)

Qt−1,
Qt−2,

MN, P
46.99 0.45 34.55 0.18 33.54

RF
(S123M)

Qt−1,
Qt−2,
Qt−3,
MN

58.40 0.56 42.03 0.00 39.5 RF
(S123MP)

Qt−1,
Qt−2,
Qt−3,

MN, P

51.63 0.5 36.86 0.13 35.6

XGB
(S1M)

Qt−1,
MN 47.71 0.46 36.29 0.14 40.1 XGB

(S1MP)
Qt−1,

MN, P 29.32 0.28 23.80 0.41 28.5
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Table 4. Cont.

Without TRMM Data With TRMM Data

Model
(Scenario)

Model
Inputs RMSE rRMSE MAE EL,M MAPE Model

(Scenario)
Model
Inputs RMSE rRMSE MAE EL,M MAPE

XGB
(S12M)

Qt−1,
Qt−2,
MN

44.00 0.42 30.03 0.29 40.3 XGB
(S12MP)

Qt−1,
Qt−2,

MN, P
45.25 0.43 31.59 0.25 28.4

XGB
(S123M)

Qt−1,
Qt−2,
Qt−3,
MN

45.36 0.44 33.94 0.19 42.8 XGB
(S123MP)

Qt−1,
Qt−2,
Qt−3,

MN, P

42.30 0.41 30.22 0.28 26.5

ANN
(S1M)

Qt−1,
MN 33.58 0.32 36.20 0.14 43.4 ANN

(S1MP)
Qt−1,

MN, P 31.21 0.29 24.74 0.44 35.8

ANN
(S12M)

Qt−1,
Qt−2,
MN

32.24 0.31 36.20 0.14 45.2 ANN
(S12MP)

Qt−1,
Qt−2,

MN, P
30.27 0.29 25.98 0.43 35.3

ANN
(S123M)

Qt−1,
Qt−2,
Qt−3,
MN

32.57 0.31 37.29 0.14 43.5 ANN
(S123MP)

Qt−1,
Qt−2,
Qt−3,

MN, P

29.65 0.29 24.25 0.46 35.7

NLR
(S1M)

Qt−1,
MN 50.66 0.49 36.08 0.14 41.3 NLR

(S1MP)
Qt−1,

MN, P 32.13 0.30 26.51 0.37 37.2

NLR
(S12M)

Qt−1,
Qt−2,
MN

52.69 0.51 35.36 0.13 43.5 NLR
(S12MP)

Qt−1,
Qt−2,

MN, P
32.45 0.31 27.31 0.35 37.8

NLR
(S123M)

Qt−1,
Qt−2,
Qt−3,
MN

52.18 0.50 36.44 0.14 44.4 NLR
(S123MP)

Qt−1,
Qt−2,
Qt−3,

MN, P

33.42 0.32 25.18 0.36 38.9

Among the three metaheuristic regression methods utilizing TRMM data as inputs,
the XGB(S1MP) and CB(S1MP) with one lagged streamflow, TRMM precipitation and
periodicity (Qt−1, P, MN) as inputs had almost the same accuracy, with both performing
better than the RF model in the test stage. By using periodicity information, considerable
improvements were observed; for example, improvements in the RMSE, rRMSE, MAE
and EL,M were by 43, 43, 32 and 102% for the CB model with inputs of S1 and TRMM
precipitation by 30, 30, 21.55 and 102% for the RF model with the same input and by 42,
42, 37 and 102% for the XGB with the same input, respectively. By importing periodicity
information, considerable improvements were observed; for example, improvements in
the RMSE, rRMSE, MAE and EL,M were by 43, 43, 32 and 102% for the CB inputs of S1 and
TRMM precipitation, by 30, 30, 21.55 and 102% for the RF with the same input and by 42,
42, 37 and 102% for the XGB with the same input, respectively.

Figure 3 provides a Taylor diagram comparing the three methods with respect to
correlation coefficient(R), RMSE and STD. The XGB model, with inputs of S1, periodicity
and TRMM precipitation had a closer STD to the measured one than the others, closely
followed by the CB model with the same input. As observed from Figure 4c,d, the use
of TRMM data considerably improved the accuracy of all models. We can also see this
improvement in time variation graphs provided in Figure 5e,f.

3.4. Predicting Monthly Streamflow at the Kale Station Using Upstream Data

Predicting monthly streamflow using data from upstream stations is essential. In
some cases, data are missing from some stations because of technical problems, especially
in the developing countries like Turkey. In this section, three metaheuristic regression
methods are employed to find an efficient prediction model. Monthly streamflow data
from the Kale Station were predicted using data of two upstream stations, Durucasu and
Sutluce. Here, periodicity and TRMM data were also considered. Table 5 compares the
accuracy of three methods with respect to some evaluation criteria utilized in the previous
applications. It is clear from the table that in both cases (with/without TRMM data),
considering periodicity generally improved the accuracy; for example, the RMSE decreased
from 33.51 m3/s to 30.48 m3/s for the CB(S1314) model, from 32.60 m3/s to 28.04 m3/s for
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the RF(S1314) model and from 48.59 m3/s to 38.63 m3/s for the XGB(S1314) model. In both
cases (with/without periodicity), adding TRMM data improved the efficiency; for example,
a decrease was observed in RMSE from 30.48 m3/s to 25.79 m3/s for the CB(S1314M) model,
from 32.60 m3/s to 27.78 m3/s for the RF(S1314) model and from 48.59 m3/s to 28.22 m3/s
for the XGB(S1314) model. Among the implemented models, CB(S1314MP) produced the
best streamflow predictions, with the lowest RMSE (25.79 m3/s) rRMSE (0.25), MAE
(20.39 m3/s) and the highest EL,M (0.52). The equation of the NLR is:

Q1402 = 6.53
(

MN−0.85 + P0.3 + Q0.004
1414 + Q0.92

1413

)
(11)

where Q1402 is the current streamflow at the Kale Station (Code: 1402), Q1414 is the current
streamflow at Sutluce Station and Q1413 is the current streamflow at the Durucasu Station.

Table 5. Accuracies of the CB, RF, XGB, ANN and NLR methods in predictions of monthly streamflow
at the Kale Station (Code:1402) using upstream data from the Durucasu (Code:1413) and Sutluce
(Code: 1414) stations in the testing phase.

Without TRMM Data With TRMM Data

Model
(Scenario)

Model
Inputs RMSE rRMSE MAE EL,M MAPE Model

(Scenario)
Model
Inputs RMSE rRMSE MAE EL,M MAPE

CB (S1314) Q1413,
Q1414

33.51 0.32 22.84 0.46 23.5 CB (S1314P)
Q1413,
Q1414,

P
31 0.3 23.76 0.44 18.5

CB
(S1314M)

Q1413,
Q1414,
MN

30.48 0.29 22.72 0.46 21 CB
(S1314MP)

Q1413,
Q1414,
MN, P

25.8 0.25 20.39 0.52 15.3

RF (S1314) Q1413,
Q1414

32.60 0.31 21.30 0.49 26.8 RF (S1314P)
Q1413,
Q1414,

P
27.7 0.27 20.44 0.52 23.1

RF
(S1314M)

Q1413,
Q1414,
MN

29.04 0.27 18.85 0.55 25 RF
(S1314MP)

Q1413,
Q1414,
MN, P

28.7 0.28 21.68 0.52 18.8

XGB (S1314) Q1413,
Q1414

48.59 0.47 30.38 0.28 23.5 XGB
(S1314P)

Q1413,
Q1414,

P
28.2 0.27 21.67 0.49 18.5

XGB
(S1314M)

Q1413,
Q1414,
MN

38.63 0.37 25.03 0.41 21 XGB
(S1314MP)

Q1413,
Q1414,
MN, P

27.1 0.26 21.22 0.52 15.65

ANN
(S1314)

Q1413,
Q1414

53.45 0.52 33.42 0.31 29.5 ANN
(S1314P)

Q1413,
Q1414,

P
31.02 0.30 23.62 0.52 18.5

ANN
(S1314M)

Q1413,
Q1414,
MN

41.72 0.40 27.53 0.45 27.5 ANN
(S1314MP)

Q1413,
Q1414,
MN, P

29.27 0.28 23.34 0.56 25.45

NLR
(S1314)

Q1413,
Q1414

58.80 0.57 36.09 0.34 33.2 NLR
(S1314P)

Q1413,
Q1414,

P
34.12 0.33 25.51 0.56 29.5

NLR
(S1314M)

Q1413,
Q1414,
MN

45.06 0.43 29.46 0.48 30.3 NLR
(S1314MP)

Q1413,
Q1414,
MN, P

31.61 0.30 24.97 0.61 27

The prediction results of the three metaheuristic regression methods are illustrated
in Figure 4d in a Taylor diagram. As shown in the diagram, the CB(S1314MP) model
achieved better accuracy with closer STD to the measured one and lower RMSE and higher
correlation than the other methods. In this regard, this model was closely followed by the
XG(S1314MP) model. From the scatter plots in Figure 5g,h and time variation graphs in
Figure 6g,h, the performance improvement by using TRMM data with the implemented
models is clearly seen.
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4. Discussion

In the presented study, three metaheuristic regression methods, CB, RF and XGB,
were implemented for monthly streamflow predictions. These approaches were then
compared with ANN and NLR methods. The applicability of TRMM precipitation data
as inputs to the aforementioned models was investigated by considering different input
scenarios comprising lagged streamflow as inputs as well as periodicity information (month
number). The overall results indicate that considering TRMM precipitation data as inputs
to the metaheuristic regression methods considerably improved their accuracy in monthly
streamflow predictions, i.e., improvements in RMSE and MAE of the CB models having one
lagged streamflow as input were by 24 and 29% for the Durucasu Station, by 56 and 40% for
the Sutluce Station and by 29 and 100% for the Kale Station. This implies that such data are
very useful in complex monthly streamflow predictions, especially in developing countries,
where precipitation measurements are not available or may be missing altogether for
technical reasons. These results are in agreement with the literature [45–47]. The accuracy
of TRMM precipitation data was assessed in [45]. The authors of that report compared the
monthly TRMM precipitation data covering the period of 1998–2010 with rain gauges from
16 meteorological stations in the Yarlung Zangbo River Basin and reported that there was a
strong correlation and little numerical biases between TRMM precipitation data and rain
gauges. By comparing its precipitation data with the 149 rainfall stations in Tunisia for
a 16-year period (1998–2013), the performance of TRMM was assessed [46]. The authors
found strong correlation between them.

It is observed from the results that adding a periodicity component to the inputs
of the models improved their prediction accuracy, both with and without TRMM data.
Improvements in the RMSE and MAE of the CB(S1) models were by 14 and 17% for the
Durucasu Station, by 52 and 44% for the Sutluce Station and by 31 and 32% for the Kale
Station. Similar observations were reported in a previous study [48]. Monthly streamflow of
a mountainous basin using machine learning methods (e.g., MARS, GMDH) was predicted
in a previous study [48]. The authors of that paper reported that the use of periodicity
information in the model inputs generally improved the accuracy of their predictions.

The results of streamflow predictions using upstream data revealed that such data
can provide more information than local data. A comparison of Tables 4 and 5 shows that
the use of upstream data (from the Durucasu and Sutluce stations) without local station
data (i.e., the Kale Station) considerably improved the model efficiency with respect to
RMSE, rRMSE, MAE and EL,M. Improvements in the RMSE and rRMSE of the CB model
with one lagged streamflow as input and without TRMM data were 53 and 54%, while the
corresponding percentages were 40 and 39% for the same model with TRMM data. These
are very useful findings for predictions of monthly streamflow, especially in the basins
where limited measurements are made.

From a comparison of the tables, it may be seen that the addition of more lagged
streamflow as inputs to the implemented models reduced their accuracy. These results
are in direct agreement with those of previous studies [49,50]. According to the reports
provided by the abovementioned references, increasing input quantity does not guarantee
better predictions and, in some cases, it may negatively affect variance. In other words,
increasing input quantity may create a more complex model with poor prediction accuracy.

Three neural network methods, i.e., feed forward neural networks (FFNN), gener-
alized regression neural networks (GRNN) and radial basis function (RBF) were used
to predict monthly streamflow at two stations, Gerdelli and Isakoy, in Turkey [51]. The
GRNN provided the best accuracy with the lowest RMSE of 9.25 and 14.2 m3/s for the
Gerdelli (Qmean = 12.29 m3/s) and Isakoy (Qmean = 17.86 m3/s) stations, respectively. Two
neuro-fuzzy methods were applied for predictions of monthly streamflow at two addi-
tional stations, Besiri and Baykan, in Turkey; the best results were obtained from the
subclustering-based neuro-fuzzy metho, which obtained an RMSE of 32.8 and 9.36 m3/s for
the Besiri (Qmean = 51.82 m3/s) and Baykan (Qmean = 21.36 m3/s) stations, respectively [52].
In the present study, the CB, as the best method, produced an RMSE of 12.33, 3.1 and
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29.11 m3/s for the Durucasu (Qmean = 40.1 m3/s), Sutluce (Qmean = 14.1 m3/s) and Kale
(Qmean = 104.2 m3/s) stations. This proves the accuracy of the implemented metaheuristic
regression method (CB) in monthly streamflow predictions. In addition, the CB method
has a simpler structure than the FFNN, GRNN, RBF and neuro-fuzzy methods.

5. Conclusions

In this study, the viability of three metaheuristic regression methods was investigated
for monthly streamflow predictions using streamflow data from three stations in Turkey
and satellite precipitation data from TRMM. The results were also compared with those
obtained using the ANN and NLR models. The outcomes revealed that satellite data are
very useful for monthly streamflow predictions, considerably improving the ability of
metaheuristic regression methods (e.g., CB, RF and XGB). Our assessment of the methods
with respect to statistical measures (e.g., RMSE, rRMSE, MAE, EL, M and CA) and visual
inspections (Taylor diagrams, scatterplots and hydrographs) revealed that the CB method
generally performed better than the XGB, RF, ANN and NLR methods. Additional im-
provement was observed by introducing periodicity information to the models. This input,
involving month number, is very easy to employ and its usage is highly recommended for
engineers and scholars. Including TRMM precipitation as input considerably improved
the accuracy of implemented methods. This satellite data is highly accurate and its usage
in streamflow predictions is strongly recommended by the authors. Monthly streamflow
at the downstream station was successfully predicted by the CB and XGB methods using
upstream data. In this application, the use of TRMM precipitation information and a
periodicity component provided additional accuracy to the implemented models. These
findings may provide useful information for managers and decision makers, especially in
developing countries, where precipitation data are missing or absent altogether because of
technical issues.
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