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Abstract: The discrete hedging rule for reservoir operation includes time-varying trigger volumes
used for the onset and termination of water rationing, which complicates its optimization problems.
A dynamically dimensioned search can be easily applied to complex optimization problems, but the
performance is relatively limited in constrained optimization problems such as deriving reservoir
operation rules. A dynamically dimensioned search allowing for a flexible search range is proposed
in this study to efficiently solve constrained optimization problems. The modified algorithm can
recursively update the search ranges of decision variables with limited overlaps. The above two
algorithms are applied to derive hedging rule curves for three reservoirs. Objective function values
are closely converged to optimum solutions, with fewer evaluations using the modified algorithm
than those using the traditional algorithm. The modified algorithm restrains an overlapped search
range of decision variables and can reduce redundant computational efforts caused by unreasonable
candidate solutions that violate inequality conditions.

Keywords: optimization; constraint; dynamically dimensioned search; hedging rule; reservoir

1. Introduction

A purpose of a reservoir is to regulate natural river flow fluctuations by storing the
excess water during the wet period, which is then released during the dry period to meet
municipal, agricultural, and instream flow [1,2]. Severe and prolonged droughts, however,
may lead to reservoir releases that are insufficient to satisfy the planned water supply. As
one of the reservoir operation rules to cope with droughts, the hedging rule promotes
minor shortages in advance of deficits to reduce the probability of emptying the reservoir,
and consequently of severe impacts [3–5].

Researchers have generally derived hedging rules for reservoir operation from opti-
mization models, such as linear, nonlinear, and dynamic programming [6–13]. Recently,
several studies have proposed methods to derive optimal hedging rules using evolution-
ary or heuristic algorithms such as genetic algorithms, particle swarm optimization, and
dynamically dimensioned search algorithms [14–18]. The derivation of optimum hedging
rules must consider many factors to cope with droughts efficiently, e.g., the percentage of
water rationing and trigger volume (onset and termination of hedging) varying with time
or phase. Many factors make the optimization problem difficult by increasing the number
of decision variables and constraints. Thus, a proper optimization method and strategy are
essential in complex optimization problems utilizing/generating hedging rules.

In some previous researches, the typical decision variables were trigger volumes in
the optimization problem for the hedging rules [19–22]. Shih and Revelle [23] suggested a
discrete hedging rule consisting of several rationing phases. They then implemented mixed-
integer linear programming to seek the monthly trigger volumes of each rationing phase.
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In their optimization model to determine the optimal discrete hedging rule, they used many
constraint equations to define and to separate the zones, and assigned the supply quantity
at each zone. For this reason, some subsequent studies focused on the discrete hedging rule
applying linear programming or nonlinear programming [7,13,15,23]. It is often impractical
or unsuitable to apply linear and nonlinear programming to solve constrained optimization
problems because the amount of computation required becomes unmanageable as the
problem size increases; the constraints violate the required assumptions [24]. Furthermore,
a reservoir operation model based on the discrete hedging rule requires many prescribed
decision variables. Thus, linear programming requires excessive computational time when
solving large-sized optimization problems [25]. Dynamic programming also requires sig-
nificant computational time in large-sized optimization problems with constraints.

Some researchers have applied heuristic methods to solve optimization problems in
the water resources field due to the flexibility and efficiency in searching for optimum
solutions [26–29]. Usage of the heuristic methods may alleviate the above difficulties. Re-
cently, researchers have suggested various heuristic algorithms to emulate several natural
phenomena or to use stochastic algorithms to solve complex optimization problems [30–32].
They are the genetic algorithm (GA), the Shuffled Complex Evolution-University of Arizona
(SCE-UA), and the dynamically dimensioned search algorithm (DDS).

Schematic diagrams of the GA, SCE-UA, and DDS algorithms are presented in Figure 1.
GA and SCE-UA are meta-heuristic methods that belong to the class of evolutionary algo-
rithms. GA searches for the optimal solution using biological operators such as mutation,
crossover, and selection (Figure 1a). GA has two major parameters that influence the
determination of candidate solutions: mutation probability and crossover probability. If the
mutation probability is too small, the candidate solution groups are generated only by the
combination of the initial solution groups. That is, with the too-small mutation probability,
it may be difficult to search for a good solution. When the mutation probability is too high,
it may cause a loss of a good solution. Therefore, GA requires tuning to determine an
appropriate combination of parameters. More details about GA can be found in [30,33–35].
The SCE-UA employs a process called competitive complex evolution (CCE) algorithm to
search for a global optimization (Figure 1b). The SCE generates an initial solution within the
feasible space of the parameter and divides it into complexes. Each complex evolves using
a downhill simplex algorithm (reflection and contraction) [36]. The evolved complexes are
shuffled. The process of evolution and shuffle is repeated until the convergence condition is
satisfied [31,34,37,38]. However, Chu et al. [39] suggests that when SCE-UA was designed,
SCE-UA was constructed primarily for and tested on low-dimensioned problems. Chu
et al. [39] reveals that SCE-UA tends to malfunction on high-dimensional problems, due
to the fact that shuffled points may converge within a subspace of the original search
space [40,41]. The DDS is a single-solution-based heuristic neighborhood search algorithm
and has been produced by Tolson and Shoemaker [32]. Unlike evolutionary algorithms,
the DDS is designed to find good global solutions within a specified maximum number
of function evaluations. The DDS globally searches for candidate solutions early in the
exploration, and the search dimension gradually decreases as the number of function
iterations increases. The candidate solution is determined by perturbing the current best
solution in the randomly sampled dimensions only [42].

Kang et al. [43] compared the three heuristic methods (i.e., the DDS, SCE-UA, and
GA) from their ability to search for reasonable solutions close to the global minima of the
six test functions: the Bukin, Schubert, Michalewicz, Griewank, Rastrigin, and Schwefel
functions. The evaluation results showed that the DDS was better than SCE-UA and GA for
the overall performance. According to the results of Kang et al. [43], as mentioned by Chu
et al. [39], the performance of SCE-UA tended to underperform as the decision variables
of the test functions increased. The GA also showed underperformance as the number of
decision variables increased, similar to the SCE-UA. Then, they used the DDS to determine
the 36 unknown trigger volumes, consisting of three hedging phases varying monthly, for
the zone-based operation of a reservoir.
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(a) (b) (c)

Figure 1. Schematic diagram of the three heuristic algorithms. (a) Genetic algorithm; (b) Shuffled
Complex Evolution-University Arizona; (c) Dynamically dimensioned search algorithm.

In the discrete hedging rules, the trigger volume decreases from a minor rationing
phase to a severe rationing phase, which should constrain the optimization problems.
The traditional heuristic methods, however, are practically unconstrained optimization
algorithms, limiting only the searching range of the decision variable. If heuristic methods
are applied to unconstrained optimization for discrete hedging rules, many calculations
are redundant due to unreasonable solutions in the search for the optimal solutions. There-
fore, these algorithms must be used with additional mechanisms to implement constraints
when solving constrained optimization problems [44]. Many alternative approaches have
been introduced to solve constrained optimization problems, such as penalty functions,
multiple-objective optimization techniques, and hybrid methods combining mathematical
programming and evolutionary processes [45–47].

The purpose of the study is to improve the DDS algorithm to include constraints, and
to apply the algorithm to an optimization of the discrete hedging rule. The DDS can be
easily applied to complex optimization problems, but the performance is relatively inferior
in constrained optimization problems because the search range of one decision variable
may overlap with the search range of another. The overlapped search ranges may lead
to the determination of unreasonable candidate solutions. Since the DDS terminates the
optimization based on the maximum number of function evaluations, the unreasonable
candidate solutions may cause a loss to a number of iterations. This study is to supplement
the limitations of the DDS identified in the previous studies. Since it is not easy to derive a
reasonable solution by implementing a one-time optimization process, Jin and Lee [48,49]
derived the hedging rule curves using the DDS via a repeating optimization strategy. This
strategy uses the solution derived from the previous optimization as the initial value of the
subsequently attempted optimization. Chu et al. [40] noted that optimization algorithms
developed using benchmark or random number functions to solve low-dimensional op-
timization problems have difficulties in high-dimensional problems. Furthermore, when
problem dimensionality increases, these algorithms lose their effectiveness because the
power of randomization drops geometrically [50–52]. Finally, Chu et al. [40] noted that
algorithm developers should focus on solving problems instead of intricate benchmark
functions.

The study here proposes a dynamically dimensioned search allowing a flexible search
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range (DDS-FSR) to efficiently solve constrained optimization problems that can be speci-
fied by the problems for deriving hedging rule curves in the reservoir. In the optimization
problem for the reservoir operation rule curve, the constraint is that the trigger volume
of the moderate drought phase must be greater than the severe drought phase inspired
the concept of the DDS-FSR. The DDS-FSR is modified based on the DDS. The difference
between the two algorithms is as follows:

• The DDS has constant specified-search boundaries of decision variables until the
optimization is terminated.

• If the two decision variables are under an inequality constraint, the DDS-FSR can
exclude infeasible areas for the decision variable by converting the upper or lower
boundary for the decision variable to the current best solution for the other decision
variable.

2. Methods
2.1. Discrete Hedging Rules

Lund [53] describes various reservoir operation rules: standard operation rule, hedg-
ing rule, pack rule, and zone-based operation rule. The hedging rule can effectively manage
water supply to cope with droughts. The hedging rule rations water supply below target
levels and can lessen future water shortages. Shih and Revelle [23] presented a discrete
hedging rule that uses the trigger volume to ration the release of each hedging phase. The
optimization model for the discrete hedging rule decides the trigger volumes, which might
vary monthly for the different rationing phases. The Korean drought contingency plan
comprises four stages: concern, caution, alert, and severe. The discrete hedging rule’s
rationing phases need to correspond to the above four stages. The discrete hedging rule,
including the four rationing phrases used in the research, is shown in Figure 2 [13].

Figure 2. The discrete hedging rule with the water rationing strategy of the Korean drought contin-
gency plan. The left figure is the schematic diagram of the discrete hedging rule, and the right figure
is the water rationing strategy in the Korean drought contingency plan.

In Figure 2, V1,p is the trigger volume for concern phase above which no restrictions on
water use are placed. V2,p, V3,p, and V4,p are the trigger volumes below which caution, alert,
or severe phase are implemented, respectively, for month p. V5 is the storage of low-water
level for a reservoir. Dp is the total planned water supply for month p. α1,p, α2,p, α3,p, and
α4,p are rationing factors for different drought phases in all month p. The rationing factor is
a ratio of release corresponding to the drought phase and the total planned water supply.
St−1 is the storage at the end of last period t − 1, and It is the current period inflow. The
available water can be defined as St−1 plus It.’ When, for example, the available water
is on caution phase, the release Rt equals α2,pDp. In the case of multi-purpose dams
in the Republic of Korea, the total planned water supply is divided into municipal water,
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agricultural water, and instream flow water, based on the usage purpose. As shown in
Figure 2, the Korean drought contingency plan presents different water strategies for each
usage purpose of water supply. For example, the municipal water supply for each drought
phase is described as follows:

• Normal: Release the monthly planned municipal water supply;
• Caution: Release the monthly contracted water supply with local governments/industrial

complexes, etc.;
• Alert: Release the monthly actual usage surveyed on last year basis among the con-

tractual water supply;
• Severe: Release 80% of the monthly actual usage.

In the alert and severe phases, the agricultural water is supplied 80% of the actual
usage from April to June, which is 10% more than from July to September, considering the
initial vegetative period of crops (Figure 2).

The trigger volumes from the concern to the severe drought phases decrease and are
mutually apart for the following reasons: the drought phase sequentially escalates, and
the water managers need time for decision-making to cope with droughts. Programming
can easily establish specific trigger volumes in the period, p, using the following constraint
equations.

V1,p − V2,p > 0 (1)

However, the traditional heuristic methods are poor at including the inequality con-
straints of Equation (1) because the search range of one decision variable may overlap with
the search range of another. The following section introduces a simple strategy to narrow
overlaps on search ranges of decision variables in the DDS algorithm, which makes it easier
to satisfy Equation (1).

2.2. Dynamically Dimensioned Search Allowing a Flexible Search Range

As a simple method to effectively satisfy the above constraints, the DDS-FSR is sug-
gested, which may narrow overlaps on the searching ranges of decision variables while
searching for an optimum solution.

The DDS is a point-to-point stochastic-based heuristic global searching algorithm
suggested by Tolson and Shoemaker [32] to estimate the parameters of watershed run-off
models. The main feature of the DDS was motivated by past experience from the manual
calibration of watershed runoff and reservoir simulation models. They developed the
DDS to search for an optimum solution of decision variables close to the global optimum
solution within the specified maximum number of function evaluations. In early evalua-
tions, the algorithm searches globally, searching for all decision variables. As the number
of iterations approaches the maximum number of function evaluations, the algorithm
locally searches for some decision variables. The transition from global to local search is
achieved by dynamically and stochastically reducing the number of dimensions perturbed
in the neighborhood of the current best solution. The search process of the DDS consists
of three operators: sampling operator, perturbing operator, and decision operator. The
sampling operator, controlled by sampling criteria probability (P), selects some decision
variables perturbed from all the decision variables. The sampling criteria probability is a
monotonically decreasing function of the iteration number (i), and the maximum number of
function evaluations (m), written by Equation (2). The sampling operator assigns a random
number uniformly distributed between 0 and 1 to each decision variable in an iteration.
The sampling operator will perturb the decision variable whose random number assigned
is less than the sampling criteria probability.

P(i) = 1 − ln(i)/ ln(m) (2)

The perturbing operator perturbs the current best solution, as shown in Figure 3, to
generate the candidate solution for a selected decision variable. For the other decision
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variables not selected by the sampling operator, the current best solutions are the candidate
solutions.

In Figure 3, the variable xj is the decision variable that is an element of the decision vec-
tor X = [x1, x2, · · · , xj, · · · , xJ ]

T and the variable xbest
j is the current best solution searched

up to the current iterations. The values xmax
j and xmin

j are upper and lower bounds for

decision variable xj. The vectors Xmax and Xmin are the set of xmax
j and xmin

j defined with
the same dimension as X. The parameter r is the neighborhood perturbation size that
Tolson and Shoemaker [32] have recommended by 0.2. The function N(0,1) is a standard
normal distribution function with a mean of zero and a standard deviation of one. In
summary, the user-defined Xmax, Xmin, and r significantly affect the determination of the
search ranges of the candidate solutions.

Figure 3. The schematic diagram of the perturbing operator in the DDS.

The decision operator serves to determine whether the candidate solution yields an
objective function value inferior to the current best value. For example, when the objective
function value of the candidate solution is superior to the current best value, the candidate
solution is updated to the best solution.

The DDS was developed for unconstrained problems or bound-constrained problems.
A simple way to optimize constrained problems using the DDS is the penalty methods,
which seek the solution by replacing the original constrained problem with a sequence
of unconstrained sub-problems, where the constraint functions are combined with the
objective function to define a penalty function. In other words, the penalty method is
to discard an infeasible solution by imposing a big number on the objective function
if the candidate solution violates the constraints in the optimization problem seek to
minima [54,55]. When solving the constrained optimization problem using the DDS, one
can formulate the problem as follows:

Minimize z = f (X) + ω
J

∑
j=2

CLj (3)

X = [x1, x2, · · · , xj, · · · , xJ ]
T (4)

CLj =

{
1, if xj−1 − xj < 0
0, otherwise

(5)

where z is the objective function of the optimization problem with a penalty term; X is
the set of the decision variables; ω is the big number; and CLj is the binary variable that
determines whether the candidate decision variables violate the inequality. Searching
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for the optimal solution to the mentioned problem (Equations (3)–(5)) using the DDS is
inefficient because the candidate solution might violate the inequality during the searching
process (Figure 4a).

This study modified the perturbing operator as shown in Equation (6) to efficiently
search for the optimal solution to the optimization problem with the inequality presented
in Equations (3)–(5). Figure 4a shows all the decision variables have the same searching
zone, and some ranges of candidate decision variables overlap, which yields unreasonable
solutions. Figure 4b is the schematic diagram of a method to determine the search range
of the DDS-FSR. Each decision variable has a reduced searching zone, and the ranges of
candidate decision variables hardly overlap.

σ1 = r(xmax
1 − xbest

2 )
σj = r(xbest

j−1 − xbest
j+1) , f or j = 2, · · · , J − 1

σJ = r(xbest
J−1 − xmin

J )

(6)

(a) (b)

Figure 4. Comparison of search processes in the DDS and the DDS-FSR. (a) DDS; (b) DDS-FSR.

2.3. Reservoir Simulation and Optimization Model

The parameters of the monthly reservoir simulation model with hedging rule curves
are monthly trigger volumes (V1,p, V2,p, V3,p, V4,p) and water rationing factors (α1,p, α2,p,
α3,p, α4,p) in each drought phase for month p.

In the case of the Republic of Korea, the water rationing factor can be calculated
according to the strategy of the water rationing (Figure 2). The water rationing factor is
the ratio of release corresponding to the drought phase for the month to the total planned
water supply, and can be calculated as follows. For example, the water rationing factor of
the caution phase (α2,p) for the month p can be formulated as follows:

α2,p =
AMDp + AADp

Dp
(7)

where AMDp is the actual usage of municipal water supply for the month p, and AADp
is the actual usage of agricultural water supply for the month p. Dp is the total planned
water supply for the month p, and it is the sum of the planned municipal, agricultural, and
instream flow water supply for the month p. Therefore, in this study, the optimization for
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the parameters of the monthly reservoir simulation model was restricted to hedging rule
curves. The hedging rule curves are bent lines that connect the monthly trigger volumes
for each drought phase.

Optimizing the monthly trigger volumes for each drought phase with the DDS or the
DDS-FSR requires formulation of the objective function and constraints equations. The
objective function is the minimization of the three terms:

1. The sum of water supply shortage for the total period T;
2. The penalty term to restrain the reversal of trigger volumes in drought phase severity;
3. The penalty term to restrain water supply failures within the optimization period.

Minimize z =
T

∑
t=1

WSt + ω1

4

∑
dp=2

12

∑
p=1

REVdp,p + ω2

T

∑
t=1

Failt (8)

WSt = Dp − Rt (9)

where WSt is the water supply shortage in period t. Dp is the total planned water supply
for the month p corresponding to period t, and Rt is the release in period t. REVdp,p is the
binary variable that is a value of 1 or 0 related to the violation of the inequality, and dp are
the drought phases (1: concern, 2: caution, 3: alert, and 4: severe). For example, if v2,p, the
trigger capacity of the relatively serious drought phase, is greater than v1,p, REV2,p becomes
1, and a big number is imposed on z. ω1 and ω2 are big numbers. Rt is determined by the
conditions of the water rationing for derived hedging rule curves. Failt is a binary variable
that is a 0 or 1 related to the release. When the water supply fails (Rt equal 0), Failt becomes
1, and a big number is imposed on z. After determining reservoir release, reservoir storage
at the end of period t can be calculated by following the water balance equation:

St = St−1 + It − Rt − Wt (10)

where St is the storage at the end of period t, It is the inflow in period t, and Wt is the spill in
period t. Table 1 shows the condition to classify the drought phase and their corresponding
water rationing.

The parameters of the monthly reservoir simulation model with the hedging rule
curves are monthly trigger volumes of the four drought phases. Thus, there are 48 decision
variables (4 phases × 12 months) in the optimization problem for the hedging rule curves.

Table 1. Conditions and equations of the water rationing for reservoir simulation with the discrete
hedging rule.

Classification
Simulation Model

Drought Phases Condition Release

Release
determination

Normal St−1 + It > V1,p Rt = Dp
Concern V2,p < St−1 + It ≤ V1,p Rt = α1,pDp
Caution V3,p < St−1 + It ≤ V2,p Rt = α2,pDp

Alert V4,p < St−1 + It ≤ V3,p Rt = α3,pDp
Severe V5 < St−1 + It ≤ V4,p Rt = α,p4Dp

Fail St−1 + It ≤ V4,p Rt = 0

3. Study Area and Data

To compare the performance of the DDS and the DDS-FSR in the optimization prob-
lems with constraint equations, the two algorithms were applied to the optimization
problems for hedging rule curves to three reservoirs with their own data, e.g., historic
inflow, monthly planned water supply, and watershed area. The study cases are for the
Andong (AD), Imha (IH), Hapcheon (HC), and Namgang (NG) reservoirs, which have
records of failure to water supply due to droughts among the multi-purpose dams in the
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Nakdong River basin in the Republic of Korea (Figure 5). A diversion pipeline connects
the AD and IH reservoirs that are operated as a reservoir in practice. In this study, the AD
and IH reservoirs were regarded as an equivalent reservoir, and one operation rule was
derived.

Figure 5. Location map of the adopted multi-purpose reservoirs.

The monthly planned water supply of each reservoir is presented in Figure 6. The
water supply shown in Figure 6 is the monthly planned water supply of each dam designed
at the time of construction. The water supply from the multi-purpose dam in the Rep. of
Korea is divided into the municipal water supply, agricultural water supply, and instream
flow, based on the purpose of the water supply. The planned water supply is calculated as
a volume that satisfies about 97% of the temporal reliability from the water balance analysis
for more than 20 years, considering the current and future demand. The temporal reliability
(relT) is defined as the probability that the water supply is in a satisfactory state. Rel can be
written as follows:

relT =
ns

T
× 100% (11)

where nS is the number of periods (month) during which demand is fully met, and T is the
total number of periods considered. The water demand is estimated using statistical data
in the economic, humanities, and social fields in the past and present, and using indicators
of mid-term financial plans by the government and local governments. In other words,
the municipal water demand is estimated using the population, daily water usage per
person, industrial complex site area, and daily water usage by industry in the water supply
area, and agricultural water demand is estimated based on data from surveys on farmland,
fields and paddies areas, etc. Instream flow demand is estimated considering the following
items: the necessary flow rate to preserve water quality and aquatic ecosystems, to prevent
saltwater intrusion, to protect water intake sources, and to maintain groundwater levels.
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(a) (b)

(c)

Figure 6. Monthly planned water supply: (a) Andong-Imha; (b) Hapcheon; (c) Namgang.

The reservoir project data and annual average inflow are presented in Table 2. The
historical records for each reservoir, which are storage, inflow, and release in the reservoir,
are shown in Figures A1–A3. The annual planned water supply of AD-IH is 1517 million m3,
which is 94% of the annual average inflow and 107% of the active capacity. The annual
planned water supply of HC is 94% of the annual average inflow and 105% of the active
capacity. AD-IH and HC, which are assigned much annual water supply compared to
the average annual inflow, are bound to be vulnerable to droughts, and operation rules
for water rationing are necessary. NG drains a relatively wide basin area compared to
the capacity afford to supply, whereas the enforced water rationing was recorded from
2008 to 2009 due to an annual inflow of 799 million m3 in 2008 (Figure A3). One of
the meteorological characteristics of South Korea is that more than 70% of the annual
precipitation is concentrated in the monsoon season (25 June to 25 September). For this
reason, NG, which has an active capacity of 27% of the annual average inflow, spills most of
the inflow during the monsoon season. The small active capacity of NG can be vulnerable
to long-term drought, as NG has to release the annual planned water supply about three
times the active capacity. For reference, NG may need to expand the dam to store more
water, but it is challenging to expand a dam height due to topographical and environmental
factors.

Table 2. Reservoir project data and annual average inflow.

Reservoir
Watershed

Area
(km2)

Annual
Average Inflow

(106 m3)

Storage of Normal
High Water Level

(106 m3)

Storage of
Low-Water Level

(106 m3)

Active
Capacity
(106 m3)

AD-IH 2945 1613 1772 351.0 1421
HC 925.0 637.4 724.1 151.0 599.0
NG 2285 2105 182.4 16.15 166.3
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Table 3 presents that the water rationing factors for each drought phase are calculated
by applying the Korean water rationing strategy (2) to the planned water supply (6) of
each reservoir. What is noteworthy in Table 3 is the water rationing factor for the severe
phase of the NG from April to September Due to the drought in the NG from 2008 to
2009 (Figure A3), even the optimization results of applying the Korean water rationing
strategy (agricultural water is released at the severe phase) could not avoid the failure of
the water supply. Thus, the water rationing factor for the severe phase of the NG was
calculated assuming that agricultural water was not released from April to September at
the severe phase. While the reservoir capacity of NG is small, the annual average inflow
is large, and the agricultural water supply is significantly dependent on the inflow of the
monsoon season. Accordingly, in a severe drought, the supply of agricultural water may
affect the supply of municipal water in the case of NG. Not supplying agricultural water at
the severe phase may not be a reasonable option. The Korean water rationing strategy is
also not appropriate as a water rationing strategy for NG to cope with drought. Therefore,
an additional plan is needed for an appropriate water rationing strategy, considering the
characteristics of the reservoir capacity, planned water supply, and inflow, rather than a
uniform water rationing strategy in Korea.

Table 3. Rationing factor for monthly varying water rationing strategy.

Month
Andong-Imha Hapcheon Namgang

α1,p α2,p α3,p α4,p α1,p α2,p α3,p α4,p α1,p α2,p α3,p α4,p

January 0.74 0.41 0.41 0.33 0.86 0.77 0.77 0.54 0.74 0.29 0.29 0.23
February 0.75 0.42 0.42 0.34 0.91 0.82 0.82 0.58 0.75 0.28 0.28 0.22

March 0.74 0.42 0.42 0.34 0.79 0.71 0.71 0.50 0.74 0.30 0.30 0.24
April 0.76 0.43 0.43 0.34 0.65 0.56 0.56 0.39 0.73 0.39 0.37 0.25
May 0.83 0.40 0.38 0.32 0.74 0.61 0.61 0.42 0.73 0.40 0.38 0.24
June 0.89 0.35 0.33 0.28 0.85 0.63 0.63 0.44 0.88 0.88 0.73 0.11
July 0.86 0.34 0.33 0.27 0.74 0.55 0.55 0.39 0.89 0.89 0.66 0.09

August 0.88 0.28 0.27 0.22 0.75 0.53 0.53 0.37 0.90 0.90 0.66 0.09
September 0.85 0.34 0.33 0.27 0.95 0.78 0.78 0.55 0.84 0.73 0.56 0.14

October 0.78 0.42 0.42 0.34 0.83 0.73 0.73 0.51 0.75 0.28 0.28 0.22
November 0.77 0.45 0.45 0.36 0.84 0.75 0.75 0.53 0.75 0.28 0.28 0.22
December 0.74 0.43 0.43 0.34 0.87 0.78 0.78 0.55 0.74 0.29 0.29 0.23

4. Results and Discussion

Applying the DDS and the DDS-FSR to the optimization models of section two yielded
the hedging rule curve values, the parameters in the reservoir simulation models. Then,
their performances were evaluated for practical optimization problems. The input data to
derive hedging rule curves were monthly historical inflow records, planned water supply,
and water rationing factors (Table 3) for each reservoir. The optimization period for AD-IH
was from 1992 to 2020, for HC it was from 1989 to 2020, and for NG it was from 2002 to
2020 (Table 4). The objective function of the optimization problem is to minimize the water
supply shortage within the optimization period. To verify the optimization results, the total
water supply shortage for each reservoir was calculated based on the record data within
the optimization period (Table 4). In the case of AD-IH, it can be shown in Figure A1 that
three long-term droughts occurred in the optimization period, and the drought periods are
as follows: August 1994 to February 1998, September 2006 to January 2010, and July 2013
to June 2016. HC was also rationed for a long time due to a long-term drought similar to
AD-IH (Figure A2). In the case of AD-IH, it can be shown in Figure 3 that three long-term
droughts occurred in the optimization period, and the drought periods are as follows:
August 1994 to February 1998, September 2006 to January 2010, and July 2013 to June 2016.
HC was also rationed for a long time due to the long-term drought similar to AD-IH. NG
released less than 50% of the monthly total planned water supply due to difficulties in
securing water from August 2008 to February 2009 (Figure A3). Accordingly, due to the
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small inflow in the monsoon season in 2018, NG was preemptively rationed from December
2018 to June 2019 to avoid the same situation as in 2008.

Table 4. The historical records for the total water shortage and the optimization period to derive the
hedging rule curves for each reservoir.

Reservoir Optimization Period Total Water Supply Shortage (106 m3)

AD-IH January 1992∼ December 2020 9481
HC January 1989∼ December 2020 4562
NG January 2002∼ December 2020 765

The neighborhood perturbation size (r) and the maximum number of function evalu-
ations (m) also govern the performance of the DDS. The neighborhood perturbation size
affected the range of decisions for candidate solutions, and the maximum number of func-
tion evaluations influenced optimization time and the quality of the derived best solution.
Thus, the DDS and the DDS-FRS were evaluated under the conditions in Table 5.

Table 5. Summary of the test cases to compare performance between the DDS and DDS-FSR.

Case
Maximum Number of

Function Evaluations (m)
Neighborhood Perturbation

size (r)

1 100,000 0.2
2 100,000 0.1
3 50,000 0.2
4 50,000 0.1
5 20,000 0.2
6 20,000 0.1
7 10,000 0.2
8 10,000 0.1

The initial values of the decision variables for each case were the same values that
made the penalty term zero, included in the objective function (Equation (3)). Table 6 shows
the search boundary of the trigger volumes for the DDS-FSR and the DDS. It is not easy to
define the search boundaries of the unknown trigger volumes because the trigger volumes
in a subset are constrained by each other. Thus, in optimizing the hedging rule curves using
the DDS, the search boundaries were defined as the storage of low-water level (S-LWL) and
storage of normal high water level (S-NHWL). In the DDS-FSR, the upper bound of V1,p
and the lower bound of V4,p are fixed search bounds as the user-defined data: S-NHWL
and S-LWL, respectively. The others (e.g., the lower bound of V1,p, the lower and upper
bounds of V2,p and V3,p, and the upper bound of V4,p) can be flexibly changed to the best
solution of the current iteration during the optimization process.

Table 6. The search boundary of decision variables to optimize the hedging rule curves from the
DDS-FSR and the DDS: S-LWL is the storage of low-water level; S-NHWL is the storage of normal
high water level; Vbest

dp,p is the best solution at the current iteration.

Trigger Volume
DDS-FSR DDS

Lower Bound Upper Bound Lower Bound Upper Bound

V1,p Vbest
2,p S-NHWL

S-LWL S-NHWLV2,p Vbest
3,p Vbest

1,p
V3,p Vbest

4,p Vbest
2,p

V4,p S-LWL Vbest
3,p

The optimized objective function values revealed the performances of the two algo-
rithms in Table 7. The two algorithms were performed with 10 trial optimizations for
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each case and reservoir. Table 7 shows the mean, maximum (worst), minimum (best), and
standard deviation (St. dev) of the objective function values. As shown in Table 7, for all
cases, the two algorithms derived a significantly decreased total water supply shortage
compared to the historical records in Table 4. However, comparing the performances of the
two algorithms, the DDS-FSR has better values for most of the cases except for case 2 (r =
0.1, m = 100,000) in HC than those from the DDS. Specifically, in case 1 for NG, the DDS
results converged on the global optimum value of 0 only five times in 10 trials, whereas the
DDS-FSR results converged on 0 in all the trials. As seen in cases 1 and 2 with m = 100,000,
the improvements between the two methods were slight in the converged value of the
objective function. The DDS-FSR, however, outperformed the DDS on cases 7 and 8 with
a small maximum number of function evaluations of 10,000. On average, the optimized
objective function values of the DDS-FSR improved by 11% in AD-IH, 4% in HC, and 33%
in NG compared to the DDS in case 7 (r = 0.2, m = 10,000).

Table 7. Comparison of statistics of the converged objective function values between the DDS and
DDS-FRS for the cases: the underlined value is superior to the other (unit: 106 m3).

Case Reservoir
DDS DDS-FSR

Best Mean Worst St. Dev Best Mean Worst St. Dev

1
AD-IH 3831 3912 3996 43 3806 3874 4008 56

HC 1983 2001 2058 21 1941 1972 1988 18
NG 0 3 8 4 0 0 0 0

2
AD-IH 3814 3887 3964 48 3803 3859 3907 32

HC 1948 1985 2047 24 1959 1995 2079 33
NG 0 2 9 4 0 1 9 3

3
AD-IH 3935 4058 4345 111 3843 3885 3990 43

HC 1984 2025 2192 59 1953 1987 2030 23
NG 8 15 26 7 0 5 9 4

4
AD-IH 3876 3993 4202 91 3836 3891 3935 29

HC 1955 2006 2111 42 1979 2000 2028 18
NG 0 8 17 6 0 1 8 2

5
AD-IH 3948 4361 4867 330 3964 4132 4673 238

HC 2014 2072 2155 44 1975 2027 2112 47
NG 17 28 43 8 9 19 26 5

6
AD-IH 3978 4366 6072 583 3902 4088 4537 186

HC 1983 2056 2196 60 1998 2045 2175 51
NG 8 18 34 9 0 11 26 8

7
AD-IH 4337 4814 6510 590 4066 4301 4650 202

HC 2016 2157 2451 126 1985 2067 2116 36
NG 25 40 59 12 17 27 43 6

8
AD-IH 4193 4568 4977 254 4040 4450 4893 207

HC 2022 2078 2190 59 2017 2073 2179 45
NG 18 36 51 10 17 27 42 8

Figures 7–10 reveal some performances of the DDS and DDS-FSR by showing the
converging processes of the objective function value. The plotted convergence processes
the results from the 10 optimizations (gray line) and the mean values for each iteration
(blue line). In Figures 7–10, the horizontal axis indicates the number of iterations, and the
vertical axis indicates the current best value of the objective function. The DDS-FSR is faster
than the DDS in convergence to an optimal function value. Specifically, in the convergence
processes of the two methods for case 7 (Figures 9 and 10), the optimized results of the
DDS-FSR are not only better, but also smaller in the deviations than the results from the
DDS. Those results mean the following: the DDS-FSR can guide to a more promising search
ranges as the continuously updated search boundaries; by minimizing overlapped search
ranges, the DDS-FSR can avoid the candidate solutions that enlarge the penalty term of the
objective function to imply the constraints. Furthermore, the DDS shows the difficulties of
random functions and benchmark functions in the high-dimensional optimization problem
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mentioned in Chu et al. [39,40] as an example in Figure 10. On the other hand, it can be
seen in Figure 9 that the DDS-FSR has improved the difficulties of the DDS to some extent
in the high-dimensional optimization problem by flexibly changing the search range.

(a) (b) (c)

Figure 7. Convergence processes of the objective function value under the condition of case 1
(r = 0.2, m = 100,000) through 10 random optimization trials with the DDS-FRS: (a) Andong-Imha;
(b) Hapcheon; (c) Namgang.

(a) (b) (c)

Figure 8. Convergence processes of the objective function value under the condition of case 1 (r = 0.2,
m = 100,000) through 10 random optimization trials with the DDS: (a) Andong-Imha; (b) Hapcheon;
(c) Namgang.
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(a) (b) (c)

Figure 9. Convergence processes of the objective function value under the condition of case 7
(r = 0.2, m = 10,000) through 10 random optimization trials with the DDS-FRS: (a) Andong-Imha;
(b) Hapcheon; (c) Namgang.

(a) (b) (c)

Figure 10. Convergence processes of the objective function value under the condition of case 7 (r = 0.2,
m = 10,000) through 10 random optimization trials with the DDS: (a) Andong-Imha; (b) Hapcheon;
(c) Namgang.

The unreasonable candidate solutions cause redundant iterations. Figures 11 and 12
present the candidate solutions for the two methods. Figure 12b shows an example of the
unreasonable candidate solution in which the trigger volume of the severe drought phase
(orange line) in December is greater than those of the concern and caution. In addition to
the unreasonable candidate solutions presented in this paper (Figure 12b,d), a number of
unreasonable candidate solutions were found in all the cases with DDS.

The DDS-FSR can reduce useless computations in function evaluations by minimizing
the overlapped search range of decision variables. However, in cases 1 and 2, the opti-
mization results of AD-IH and HC showed differences of about 1% between the DDS and
the DDS-FSR. Those small differences were because the maximum number of function
evaluations is so many that useless computation may be trivial.
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(a) (b)

(c) (d)

Figure 11. The attempted candidate solutions during the discrete hedging rule optimization for HC
using the DDS-FSR, (a) the tried candidate solution at the initiation, (b) the tried candidate solution
at the 30,000th, (c) the tried candidate solution at the 70,000th, (d) the tried candidate solution at the
100,000th.

(a) (b)

Figure 12. Cont.
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(c) (d)

Figure 12. The attempted candidate solutions during the discrete hedging rule optimization for HC
using the DDS, (a) the tried candidate solution at the initiation, (b) the tried candidate solution at
the 30,000th, (c) the tried candidate solution at the 70,000th, (d) the tried candidate solution at the
100,000th.

The reservoir simulation results based on the hedging rule curves of HC, derived by
the DDS-FSR in case 1 (r = 0.2, m = 100,000), are shown in Figures 13 and 14 for 2007 to
2020 among the simulation results from 1989 to 2020. In the reservoir simulation results
from 1989 to 2020, the total water supply shortage was 2010 million m3, which is 44% of
the recorded total water supply shortage (4562 million m3) at HC. In the simulation results
from 2007 to 2020, shown in Figures 13 and 14, the total water supply shortage was 1056
million m3, which is 46% of the recorded total water supply shortage (2283 million m3) at
HC in the same period. Thus, as suggested by previous studies related to hedging reservoir
operation rules [12,13,15,23,26,43,48], it is analyzed that the hedging rule curves derived
by DDS-FSR can also effectively cope with drought.

Figure 13. The reservoir simulation results for HC. The top plot shows the simulated monthly storage;
the bottom plot shows the simulated monthly available water and the derived hedging rule curves
for HC.
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Figure 14. The reservoir simulation results for HC. The top plot shows the simulated monthly release
and total planned water supply; the bottom shows the simulated monthly drought phase.

5. Conclusions

The discrete hedging rule can effectively manage water rationing from a reservoir
to cope with droughts. The discrete hedging rule for reservoir operation includes time-
varying trigger volumes used for the onset and termination of water rationing, which
complicate its optimization problems by increasing the number of decision variables and
constraints. The DDS can be easily applied to complex optimization problems, but its
performance is relatively limited in constrained optimization problems such as deriving
reservoir operation rules.

The DDS-FSR is proposed in this study to efficiently solve constrained optimization
problems. The modified perturbing operator of the DDS-FSR can recursively update the
search ranges of decision variables with limited overlaps.

The DDS and DDS-FSR were applied to derive the hedging rule curves for three
reservoirs under three combinations of optimization parameters. The optimized objective
function values and convergence processes revealed the performances of the two algorithms.
The DDS-FSR closely converged to the optimum solutions at fewer evaluations than the
DDS in all cases. Specifically, the smaller the maximum number of function evaluations
was, the better the optimization performance of the DDS-FSR compared to the DDS. Those
results mean the following: the DDS-FSR can guide to more promising search ranges as
the continuously updated search boundaries; restraining the overlapped search ranges of
decision variables, the DDS-FSR can avoid the candidate solutions that enlarge the penalty
term of the objective function to imply the constraints. In other words, the DDS-FSR
converged to a solution more efficiently and effectively than the DDS in the optimization
problem for the hedging rule curves.

In practice, optimization problems might involve various constraints. The DDS-FSR
was proposed as a simple strategy to optimize specific problems with the penalty term
implying inequality constraint equations.
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Appendix A. The Historical and Reservoir Operation Records for Andong-Imha,
Hapcheon, and Namgang Reservoirs

Figure A1. The historical records for Andong-Imha reservoir. The top plot shows the historical record
of monthly inflow, the middle plot shows the reservoir operation records for storage, the bottom
plot shows the monthly planned water supply and water supply records, and the areas filled with
translucent red present the water supply shortage.
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Figure A2. The historical records for Hapcheon reservoir. The top plot shows the historical record of
monthly inflow, the middle plot shows reservoir operation records for storage, the bottom plot the
monthly planned water supply and water supply records, and the areas filled with translucent red
present the water supply shortage.

Figure A3. The historical records for Namgang reservoir. The top plot shows the historical record of
monthly inflow, the middle plot shows reservoir operation records for storage, the bottom plot the
monthly planned water supply and water supply records, and the areas filled with translucent red
present the water supply shortage.
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