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Abstract: Hydrological drought forecasting is essential for effective water resource management
planning. Innovations in computer science and artificial intelligence (AI) have been incorporated into
Earth science research domains to improve predictive performance for water resource planning and
disaster management. Forecasting of future hydrological drought can assist with mitigation strategies
for various stakeholders. This study uses the transformer deep learning model to forecast hydrologi-
cal drought, with a benchmark comparison with the long short-term memory (LSTM) model. These
models were applied to the Apalachicola River, Florida, with two gauging stations located at Chatta-
hoochee and Blountstown. Daily stage-height data from the period 1928–2022 were collected from
these two stations. The two deep learning models were used to predict stage data for five different
time steps: 30, 60, 90, 120, and 180 days. A drought series was created from the forecasted values
using a monthly fixed threshold of the 75th percentile (75Q). The transformer model outperformed
the LSTM model for all of the timescales at both locations when considering the following averages:
MSE = 0.11, MAE = 0.21, RSME = 0.31, and R2 = 0.92 for the Chattahoochee station, and
MSE = 0.06, MAE = 0.19, RSME = 0.23, and R2 = 0.93 for the Blountstown station. The
transformer model exhibited greater accuracy in generating the same drought series as the observed
data after applying the 75Q threshold, with few exceptions. Considering the evaluation criteria, the
transformer deep learning model accurately forecasts hydrological drought in the Apalachicola River,
which could be helpful for drought planning and mitigation in this area of contested water resources,
and likely has broad applicability elsewhere.

Keywords: hydrological drought; AI; transformers; LSTM; deep learning; forecast

1. Introduction

Drought is a ubiquitous, complex, and multidimensional global problem, driven by
both natural and human perturbations [1]. Because drought has a wide range of temporal
and spatial scales, it is directly related to the socioeconomic and political activities of society
given its negative impacts—e.g., agricultural failure, reduced water consumption, ecolog-
ical disruption, etc. [2]. The temporal and spatial scales over which water deficits occur
usually define the types and impacts of droughts. Droughts have generally been categorized
as meteorological, hydrological, agricultural, and socioeconomic [3]. The phenomenon of
drought is progressive and begins with precipitation, referred to as meteorological drought.
Protracted meteorological drought leads to hydrological drought, causing a deficit in water
supply—e.g., streamflow, lakes, reservoirs, and groundwater [4]—because precipitation
shortfalls manifest in a hydrological system after a long period [5], ranging from several
weeks to months and beyond.

The literature is replete with the urgent need for improved hydrological drought pre-
diction and/or forecasting [6–12] for early warning, adaptation and mitigation strategies,
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and water resource decision-making. Nonetheless, the nature and complexity of drought
make forecasting challenging. A crucial first step in drought monitoring and forecasting is
the definition [8], identification, and quantification of drought. In the 1960s, a plethora of
drought indices emerged based on the definition of drought and the use of environmental
variables for quantification. Later, the standardized precipitation index (SPI) [13] became
prominent and widely accepted among researchers. Several drought indices—such as
the standardized drought index (SDI) [14], standardized water supply index (SWSI) [15],
standardized precipitation–evapotranspiration index (SPEI) [16], standardized runoff in-
dex (SRI) [17], Palmer drought severity index (PDSI) [18], soil moisture drought index
(SMDI) [19], and standardized hydrological drought index (SHDI) [20], among others
(Table 1)—were developed for the quantification and monitoring of droughts. Because of
their versatility and ease of use in evaluating hydrological drought over a wide range of spa-
tiotemporal scales, with strong comparability, these standardized indices have been widely
adopted [9]. Nonetheless, these indices are used to hindcast and characterize drought
conditions, where the results are passed to data-driven models for drought forecasting.

Another challenge for accurate hydrological drought forecasting is the length of the
time series and the selection of appropriate models. At least 30 years of daily histor-
ical time-series data are required to adequately understand drought characteristics [8].
Data-driven, conceptual, and physical hydrological models have been widely used for
drought forecasting [12]. Conceptual and physical hydrological models are data-intensive
because they consider basin processes, creating accurate, complex models developed
using available environmental parameters such as soil, geology, land use, elevation, wa-
ter abstraction, etc. [21]. However, data-driven models do not consider catchment pro-
cesses, given that they are less data-intensive and act as black-box hydrological mod-
els, i.e., based on input–output relationships instead of physical mechanisms. While a
plethora of literature has used data-driven approaches for meteorological drought fore-
casting (e.g., [22–24]), fewer studies have attempted data-driven models for hydrological
drought forecasting (e.g., [5,7,9,11,12,20,25–27]), while other studies (e.g., [6,28–36]) have
focused on drought hindcasting and evaluation of model prediction (Table 1). There is a
clear distinction between forecasting and hindcasting. While hindcasting—also known
as re-forecasting—entails the prediction of past historical hydro-climatological episodes,
forecasting is the inherently probabilistic prediction of future hydro-climatological events.
This distinction is sometimes mistaken in the literature, where some researchers are actually
predicting past historical episodes of extremes and then evaluating the accuracy of their
predictions. To implement a forecast, researchers are expected to hold some assumed future
data and attempt to predict it before evaluating the outcome.

Despite the complexity and nonlinear nature of drought, data-driven models have
shown promising results in hydrological drought forecasting for water resource manage-
ment [33]. Deep learning (DL) models have become increasingly crucial in modeling
hydrological extremes [37]. The architecture of DL models understands the complex tem-
poral characteristics of hydrological systems. Different kinds of data-driven models have
been employed for hydrological drought predictions (Table 1), including autoregressive
moving average (ARIMA), support-vector regression (SVR), adaptive neuro-fuzzy infer-
ence systems (ANFIS), long short-term memory (LSTM), convolutional neural networks
(CNNs), artificial neural networks (ANNs), extreme learning models (ELMs), decision trees,
and Markov chains, among many others. All of these models have their strengths and
weaknesses. With a simple structure, ARIMA models are computationally fast; however,
they are reliant on historical data and are incapable of forecasting future data. Generaliza-
tion capability is the main strength of SVR, but it has poor performance with noisy data.
The ANFIS model has limitations with significant inputs but has strong numerical knowl-
edge [38,39]. CNNs find it easy to detect more extended patterns but may not accurately
represent nonlinear system processes in a signal. ANNs can adequately work with noisy
data with a parallel processing ability, but they require trial and error to determine their
optimal architecture, given its non-constant nature. The ELM is an improved version of
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the ANN, with better computational time and capacity to attain optimal solutions [40].
Yaseen et al. [40] have argued that the limitation of the ELM lies in the single layer, af-
fecting the learning performance, which can lead to inaccurate predictions. Regardless of
the shortcomings of these models and the complexity and nonlinear nature of drought,
data-driven models have shown promising results in hydrological drought forecasting for
water resource management.

Table 1. Machine and DL models used in hydrological hindcasting and forecasting.

Forecasting

Authors Models Indices Lead Time

[5] ANN and SVM WBC Annual (18 years)
[7] ANN, RBMs, and DBN SSI Monthly (6, 12, 24)
[9] ANFIS, ANN, DLNN, SVM, FRBS, and DT SRI Monthly (3)
[11] ANN combined with different optimization algorithms SHDI Monthly (1, 3, 6)
[12] ELM SHDI Monthly (1, 3)
[20] ANN SPEI Monthly (1–6)
[25] ARIMA SRI Monthly (1–6)
[26] ANN and SVR SPEI Monthly (8 years)
[27] Meta-Gaussian SRI Monthly (1–2)

Hindcasting

Authors Models Indices Timescales

[6] ANN, ANFIS, SVM, and DT SRI Monthly (2, 6, 9, 12)
[28] LSTM SRM Monthly (12)
[29] SVR, GEP, and MT SSI Monthly (1–6)
[30] MC SHI Monthly, weekly
[31] BNM SRI Weekly (1, 4, 8, 12, 16, 20)
[32] BNM SRI Monthly (1–2)
[33] DT, NB, RF, and SVM — Monthly (10)
[34] ANFIS and GMDH SDI Monthly (1, 3, 6, 9, 12)
[35] CANFIS, MLPNN and MLR SDI Monthly (1, 3, 6, 9, 12, 24)
[36] RF and GBM SSI, SDI Monthly (12)

Notes: Models: artificial neural network (ANN), support-vector machine (SVM), restricted Boltzmann machines
(RBMs), deep belief network (DBN), adaptive neuro-fuzzy inference system (ANFIS), deep learning neural network
(DLNN), fuzzy rule-based system (FRBS), decision tree (DT), autoregressive integrated moving average (ARIMA),
support-vector regression (SVR), long short-term memory (LSTM), gene expression programming (GEP), M5
model trees (MT), Markov chain (MC), naïve Bayes (NB), random forest (RF), co-active neuro-fuzzy inference
system (CANFIS), multilayer perceptron neural network (MLPNN), group method of data handling (GMDH),
multiple linear regression (MLR), gradient boosting regression model (GBM). Indices: water-earing coefficient
(WBC), standardized streamflow index (SSI), standardized runoff index (SRI), standardized hydrological drought
index (SHDI), standard precipitation–evaporation index (SPEI), standardized hydrological index (SHI), streamflow
drought index (SDI).

Of these models, LSTM is unique because it has the memory of the last information for
use in the following input; however, it requires more resources and time to train long data
sequences [28]. The LSTM model—an advanced learning algorithm and architecture for
deep learning—can extract features that can aid in understanding complex relationships for
large time-series data. LSTM was developed to improve recurrent neural networks (RNNs),
which suffer from unstable gradient problems with the characteristic of forgetting the first
input sequence. LSTM has proven superior to several deep feedforward neural networks
(FNNs) in several tasks [37]. It is computationally powerful and topologically reasonable
when compared to conventional FNNs. LSTM can simulate the chaotic characteristics
inherent in time-series data, given that it is suitable for time-series signals with high and
low frequencies. The advantages of LSTM made it ideal for comparison with transformer
models. Transformers have emerged as data-driven models for time-series forecasting [41].
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Transformers have been applied successfully in sequence modeling, with superla-
tive performance across several domains, including computer vision, speech recognition,
natural language processing, and long-term time-series data. The main advantage of
transformers is their use of multi-head self-attention mechanisms to learn the sequence’s
timescale relationships, making them more useful for recurrent patterns with long-term
dependencies [42]. However, self-attention has been described as permutation-invariant or
anti-order. Transformer models have been used in economic and traffic planning, energy
consumption, disease, and weather propagation forecasting. Several researchers have at-
tempted the use of transformers in Earth system research for time-series forecasting. Apart
from Minixhofer et al. [43], who used transformers for meteorological drought forecasting,
no known research within the literature has used the DL transformer model for hydrological
drought forecasting. Therefore, the overarching research question is whether transformer
models can forecast hydrological drought for different timescales. To answer this question,
this study (1) compares transformer models to LSTM for forecasting hydrological drought,
(2) uses the transformer model to predict future hydrological drought, and (3) characterizes
hydrological drought using flood frequency analysis.

2. Materials and Methods
2.1. Case Study

The Apalachicola River lies within the Apalachicola–Chattahoochee–Flint (ACF) River
System and drains an area of about 50,505 km2 (Figure 1a). The river drains into the Gulf of
Mexico as part of the largest river that enters the gulf. The river and the Apalachicola Bay are
valuable estuarine systems and vital biodiversity hotspots [44] with diverse plant species
and land in conservation reserves [45]. Water resources are a matter of contention between
the states of Georgia, Alabama, and Florida; thus, drought forecasting has a potential
role to play in resource battles, in addition to the hydro-ecological systems of the entire
basin. Recent years have shown trends of increasing drought [46]. The entire watershed
has witnessed fluctuations in discharge and stage levels, with major droughts [44] and
decreases in the duration of flood inundation, aggravated by riverbed degradation [47]. In
most years, September through November is the period of lowest flow, although there can
be flood events—particularly those associated with tropical storms and hurricanes.

2.2. Data and Methods

Hydrological time series of daily stage-level data were collected from two gauge
stations—Chattahoochee (1928–2021) and Blountstown (1928–2021)—operated by the
United States Geological Survey (USGS) (Figure 1b). Approximately 1% of the data were
missing, and we used linear interpolation to fill in the missing data.

2.2.1. LSTM

The LSTM network was developed to address the vanishing gradient and exploding
challenges in long sequences of data. In the structure of the model, the cell is the basic
building block. The cell state employs three gates: input, forget, and output gates. The
input gate decides what inputs to allow, the forget gate selects the critical information to
keep or discard, and the output gate controls the information passing through. A detailed
description of the LSTM architecture (Figure 2) used in this research is given by Dikshit
and Pradhan [8]. The model layer encodes sequential information through the recurrent
network from the input layer. It outputs a vector with a size of four from a densely
connected network that equates to the total number of steps before the forecast. Firstly,
when constructing an LSTM, information that is not required should be identified and
removed from the cell. The process of information exclusion during identification is usually
performed by the sigmoid function, which then returns the output of the final LSTM unit
(ht−1) at time t− 1 and the present input (xt).
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The part of the old output is further eliminated by the sigmoid function (σ). This is
the first step, and it is regarded as the forget gate ( ft), given as follows:

ft = σ
(

1 
 

𝜛 f ∗ [ht−1, xt] + ϑ f

)
(1)

where the vector, ft, ranges from 0 to 1, coinciding with the cell state Ct−1. The closer ft is
to 0, the more likely that the previous data have been forgotten. Conversely, if the vector
is closer to 1, the data are more likely to have been remembered.

1 
 

𝜛 f = weight matrices
and ϑ f = bias for the forget gate. The second step within the network is to determine
which new data from the stage data are to be stored in the cell state (Equation (2)). The
σ layer checks what information is to be updated or ignored (1 or 0). The tanh function
(Equation (3)) provides weight to the historical values, thereby determining the degree
of significance (from −1 to 1). The information updated by the σ layer and the values
decided by tanh are then multiplied to update the cell state (Equation (4)). The new and
old memories are merged with Ct−1, leading to C̃t.

it = σ(

1 
 

𝜛 i ∗ [ht−1, xt] + ϑi) (2)

C̃t = tanh(

1 
 

𝜛 u ∗ [ht−1, xt] + ϑu) (3)

Ct = Ct−1 ∗ ft + C̃t ∗ it (4)

where it = input gate,

1 
 

𝜛 i = weights for the input gate, ϑi = bias for the input gate,

1 
 

𝜛 u = updated weights, and ϑu = updated biases (Equations (2)–(4)). During the third step,
the network decides what value to output (Equation (5)). A σ layer is used to determine
the output from the cell state. Subsequently, the output values released from the sigmoid
gate are multiplied by values generated from the tanh in the cell state (Ct) in Equation (6).



Water 2022, 14, 3611 7 of 19

Ot = σ(

1 
 

𝜛 o ∗ [ht−1, xt] + ϑo) (5)

ht = Ot ∗ tanh(Ct) (6)

where ht = new output value, Ot = output gate,

1 
 

𝜛 o = vector of weights for the output
gate, and ϑo = bias vector for the output gate.

Two approaches are usually used in LSTM for forecasting longer lead times: recursive
or direct methods. Here, the direct approach was used, given that the parameters of the
previous time step were used to predict future times [48]. A regularization dropout of 0.3
was applied after several trials. A total of 100 neurons were utilized in the LSTM layer
and 1 in the dense layer. The model was performed for five timescales, resulting in five
LSTM models from each timescale (30, 60, 90, 120, and 180 days). We used the Keras and
Scikit-learn application programming interfaces (APIs), which are open-source libraries in
the Python programming language, to complete the model building and evaluation.

2.2.2. Transformers

The transformer-based forecasting model used in this research was modeled after [49],
which is the classic transformer architecture (Figure 3) with encoder and decoder lay-
ers comprising self-attention and fully connected feedforward sublayers. The encoder
layer consists of an input, a positional encoder layer, and a stack of up to 6 original inter-
changeable layers. The input layers delineate the time-series data into a dimension dmodel
(i.e., delay embedding dimension) via a fully connected network. This is a crucial step in
implementing a multi-head attention structure (Figure 3). The sine–cosine functions ex-
pressed in Equation (7) were used as the positional encoding for the time series’ sequential
information by adding the individual elements of the input vector alongside a positional
encoding vector. This encoding was incorporated into the model instead; it was used to
furnish each time-series element with information about its position. In short, the model’s
input was improved by inserting the time-series data in an orderly manner.

Assuming that x is the position of an element in the time-series data,
→
px ∈ Rd is the

analogous encoding, while d is the dimension of the encoding. Therefore, the function is
defined as follows:

→
px

(i)
=

{
sin(wi.x), i f i = 2

cos(wi.x), i f i = 2 + 1
(7)

where:
wi =

1

1000
2
d

(8)

where wi is the frequency for each dimension.
The resulting vector from the positional encoding is fed into four identical encoder lay-

ers. The individual encoder layer comprises two sublayers: a fully connected feedforward
sublayer (d f f ), and a self-attention sublayer. A normalization layer is created after each
sublayer. The encoder procedure generates a vector with a delay embedding dimension
as an input to the decoder. When using the classical transformer model, there are some
limitations posed by the quadratic time complexity with the self-attention procedure and
the error of the autoregressive decoder. The informer [50] offers a solution to this problem
by introducing a transformer architecture with reduced complexity and a direct multistep
forecasting strategy.

The decoder consists of an input layer, four interchangeable decoder layers (Figure 3),
and an output layer. The input layer delineates the decoder input from the encoder to a
dimension dmodel(delay embedding dimension) vector. The decoder incorporates a third
sublayer to implement a self-attention mechanism on the output from the encoder. The
last decoder layer is then mapped to the time sequence of interest. Here, we ensured that
the prediction of the historical data point depends on the past data point by using the
look-ahead masking procedure and one positional offset between the input and the output
of the decoder.
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i. Training

The model was trained to predict hydrological drought for 30, 60, 90, 120, and 180 days
into the future from the daily discharge data within a water year between 1928 and 2020 (i.e.,
33,602 training days). For example, using the 30-day predictions, the encoder input was
given as (x1, x2, . . . , x33602), with the decoder as (x33602, . . . , x33631), where the decoder
gave the output (x33603, . . . , x33632). The focus was placed on using a look-ahead mask, so
the model used the historical data points before the target data. Therefore, while predicting
(x33603, x33604), the look-ahead mask makes sure that the weights of attention are applied to
(x33602, x33603), preventing the decoder from leaving information about x33604, . . . , x33632
from the input. A minibatch size (i.e., the number of training examples for one iteration) of
32 was employed during the training.

ii. Optimizer

The RMSProp optimizer is essential in mitigating the rapid decay of the learning rate
(lr) with the use of “moving averages of squared past gradients” [51]. The gradient-based
algorithm is normalized with the squared average moving averages. The normalization
often offsets the step size, where the step of large gradients is decreased to avoid exploding,
while that of small gradients is increased to prevent vanishing. The optimizer uses an
adaptive lr and is not used as a hyperparameter. The lr therefore changes with time. It is
given as follows:

E
[

g2
]

t
= βE

[
g2
]

t−1
+ (1− β)

(
δC
δw

)2
(9)

wt = wt−1 −
lr√

E[g2]t

δC
δw

(10)
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where E[g] represents the moving average of squared gradients, δC
δw is the gradient of the

loss function vis-à-vis the weight, lr is the learning rate, and the moving average parameter
(β) has a default value of 0.9.

iii. Regularization

The encoder and decoder apply a dropout technique for the three sublayers (self-
attention, feed-forward, and normalization). For this model, the dropout value used for
each sublayer varies from 0.1 to 0.3 for the different timescales. To build this model, we
used the PyTorch and Scikit-learn application programming interfaces (APIs), which are
open-source libraries in the Python programming language.

2.2.3. Flood Frequency Analysis

Evaluation of the relationship between the probability and severity of flood or drought
is usually characterized by flood frequency distributions derived using a procedure called
flood frequency analysis. To identify the stage-height drought level, we adopted the thresh-
old approach first popularized by Yevjevich [52], which is currently in widespread practice.
A fixed or variable—i.e., daily, monthly, or seasonal—threshold is usually required. Here,
a fixed threshold was adopted, given that the focus was placed on selecting hydrological
drought from predicted data from the LSTM and transformer models. A daily threshold
level derived from the 75th percentile (75Q) of the daily flow–duration curve (FDC) was
applied, with the 70th–95th percentiles commonly used in drought studies for perennial
rivers [53].

2.2.4. Model Evaluation

Five models each were built for transformers (TR-30, TR-60, TR-90, TR-120, and
TR-180) and LSTM (LSTM-30, LSTM-60, LSTM-90, LSTM-120, and LSTM-180). For both
stations, 180 days of data (1 September 2021–27 February 2022) were predicted, and the
original values for this period were used as the testing data. Four evaluation metrics were
adopted: the mean squared error (MSE), mean absolute error (MAE), root-mean-square
error (RSME), and coefficient of determination

(
R2) [6,8,9,54]. The MSE appraises the

average squared difference between the observed and forecasted data. MAE measures the
errors between paired observations indicating similar phenomena. The RSME penalizes
large errors, where a lower value illustrates good performance, i.e., smaller values signify
insufficient errors. The R2 brings the dispersion from the observed data into clarity, as
described by the forecasted data; it ranges from 0 (signifying no correlation between the
observed and forecasted data) to 1 (indicating that the distribution of the observed and
forecasted data is identical).

MSE =
1
N ∑N

I−1(xi − yi)
2, 0 ≤ MAE < ∞ (11)

MAE =
1
N ∑N

i = 1

∣∣∣∣xi − yi

∣∣∣∣ , 0 ≤ MAE < ∞ (12)

RSME =

√√√√ ∑N
i = 1

∣∣∣∣∣∣xi − yi

∣∣∣∣∣∣2
N

, 0 ≤ RSME < ∞ (13)

R2 =

 ∑N
i = 1(xi − x)(yi − y)√

∑N
i = 1

(
(xi − x)2

)√
∑N

i = 1(yi − y)2


2

, 0 ≤ R2 ≤ 1 (14)

where xi is the observed data point with x as its mean, yi is the forecasted data point with y
as its mean, and N is the total number of observations.
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The stage time-series data from 1 October 1928 to 31 August 2021 were used as the
training and validation data, where 80% of the data were used for training and 20% for test-
ing. The MSE was used for validating the model using the training and validation samples.

3. Results

The transformer and LSTM (Figures 4 and 5) models can forecast unseen stage-level
data, albeit with variation in outcomes for the different timescales. While running the model,
the learning rate varied (10−6 to 10−4) for the different timescales. There was an observed
trend in the stage data, given the changes in water levels within the river because of the Jim
Woodruff Dam and other anthropogenic activities on the upper Apalachicola—especially
dredging [44,46,55,56].
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Figure 4. Outcomes of the DL models vs. different future forecasted stage data for Chattahoochee station.

The DL models predict stage values following the trends and patterns of the data
(Figures 4 and 5), but appear to either underestimate (LSTM) or overestimate (transformers)
high stage values for all timescales except for the 120-day timescale, where there is variation
in underestimation and overestimation for the two models. However, the 60-day forecast
for the Chattahoochee station for both models shows some overestimation at high stage
values. The transformer model proved to be a better model for predicting longer time series
for all periods when comparing the models using the metrics in Table 1. For the most part,
the MSE, MAE, and RSME were closer to 0 than 1, revealing that the forecasted values
were more related to the original value, with limited errors. The R2 for all predictions was
generally >90% for transformers and >75% for LSTM, signaling overall good prediction
from the DL models. The average values for all metrics are shown in Table 2.
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Table 2. Performance of transformer and LSTM models for stage-level (m) data.

Performance Indicators

DL Model
Timescale (Days)

Chattahoochee Blountstown

MSE MAE RMSE R2 MSE MAE RMSE R2

Transformers 30 0.02 0.12 0.14 0.90 0.02 0.12 0.15 0.91
60 0.12 0.26 0.35 0.89 0.04 0.15 0.18 0.92
90 0.12 0.20 0.35 0.94 0.08 0.26 0.33 0.92

120 0.04 0.12 0.21 0.92 0.05 0.17 0.22 0.93
180 0.23 0.37 0.48 0.96 0.09 0.25 0.29 0.97

Average 0.106 0.214 0.306 0.922 0.056 0.190 0.234 0.930

LSTM 30 0.07 0.20 0.26 0.77 0.04 0.17 0.21 0.85
60 0.14 0.28 0.38 0.85 0.11 0.21 0.32 0.87
90 0.16 0.33 0.40 0.92 0.06 0.16 0.26 0.89

120 0.08 0.15 0.28 0.90 0.05 0.23 0.23 0.89
180 0.14 0.18 0.37 0.87 0.07 0.15 0.26 0.94

Average 0.118 0.228 0.338 0.862 0.066 0.184 0.256 0.888
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The TR-30 and the TR-120 models showed promising results for both short-term
(30 days) and long-term (120 days) forecasts. The 60- and 90-day forecasts for the trans-
formers (TRs) showed that the MSE, MAE, RSME, and R2 were not as good as their
30- and 120-day counterparts (Table 2). In contrast, the LSTM models showed high values
for these metrics for the 90- and 120-day forecasts, signifying that the transformer mod-
els are better for forecasting long-term conditions. For all predictions, the LSTM models
performed slightly better than the transformer models when forecasting for 180 days be-
cause of the lower values of MSE, MAE, and RSME and the higher value of R2 for the
LSTM predictions. However, the RMSE for the transformer model showed a better overall
performance compared to the LSTM.

The forecasted values of the stage-level historical series from the two stations were
then recombined with the original time-series data to help select a daily drought series
using a fixed threshold of 75Q.

Because the transformers statistically revealed better results, only the predicted values
from the TR models were adopted for use in generating the drought series using the
flow–duration curves (FDCs) (Figure 6). Given that the TR-120 model produced good
results, the predicted values from the model were used to create the drought series for both
stations. The threshold stage levels for Chattahoochee and Blountstown were determined
to be 14.1 m and 10.5 m, respectively (Figure 6). The resultant threshold calculated using
the Weibull formulae [57] revealed that all of the observed data points that equaled or
exceeded the truncated level (75Q) exactly matched the counts for those that were forecasted
from September to December 2021 using the transformer model (Table 3). When stacking
the forecasted water-level data against the observed data, we examined the trend from
January 2021 to February 2022 to obtain a visual impression of how the transformer
models could replicate the trend (Figure 7). It is clear from the trend that the transformer
models performed well in forecasting the pattern of the trend, except for the Chattahoochee
station. This could be because the Chattahoochee station is closer to the dam than the
Blountstown station.

We examined how many points within the time-series data met the criteria for drought,
as well as whether the transformer model predicted those points as drought, by looking
at the accuracy % = 100− (measured value − predicted value ∗ 100/measured value) or
100 −(predicted value − measured value ∗ 100/measured value). The percentage accuracy
error was determined by querying the total amount of data points that equaled or exceeded
the 75Q, meaning how many days within the observed and predicted days were less than
14.1 m and 10.5 m for Chattahoochee and Blountstown, respectively. Table 3 shows the
percentage accuracy, revealing how many actual droughts were predicted as droughts
by the transformer models, shown as counts and percentages. Most of the hydrological
droughts detected in the observed drought series were equally identified in the forecasted
drought series, except for Chattahoochee’s 180-day period and Blountstown’s 30-, 90-, 120-,
and 180-day periods.

Table 3. Percentage accuracy of hydrological drought detected by the transformer models.

Chattahoochee Blountstown

Count (Drought Days) Count (Drought Days)

Model Observed Predicted % Accuracy Observed Predicted % Accuracy

TR-30 16 16 100 7 8 85.7
TR-60 32 32 100 22 22 100
TR-90 60 60 100 52 46 88.5
TR-120 82 82 100 52 54 96.2
TR-180 94 98 95.7 52 57 90.4
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For the case of the 120-day forecast (Figure 8a), the model incorrectly forecasted
hydrological drought for 15 September and 13 December (2021) at Blountstown. In addition,
the transformer models predicted the occurrence of drought at various points over 180 days
(TR-180) within the predicted series when, in truth, there was no actual drought for either
the Chattahoochee or Blountstown stations (Figure 8a,b).
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predicted drought across several months but there was no drought for that specific point on that date.

4. Discussion

When analyzing drought, many researchers (e.g., [8,12]) initially quantify the hydro-
logical drought with standardized indices (e.g., SPI, SRI) before predicting or forecasting
future droughts using a machine or DL model. However, the approach in this study first
predicted future data points from the historical data before quantifying drought with the
forecasted outcomes from the DL models using the theory of runs, thresholding at 75Q.
The advantage of predicting variables before converting to drought series is that unlike
computing a monthly, quarterly, or annual hydrological drought series using specified
indices, the procedure calculates daily drought series, giving a finer temporal scale for
understanding the drought characteristics. The sheer timescale of the hydrological drought
series is significant, given that it aids in water resource conservation and management [58].
Daily hydrological drought time series can help in the easy computation of the frequency,
magnitude, and duration of drought phenomena within a short timescale [4,59,60]. Fur-
thermore, this research used stage-level data to assess hydrological drought, noting that
stage height has a more direct influence on connectivity and inundation [61]—especially
for rivers disturbed by anthropogenic activities.

The research compared the transformer and LSTM models, with results showing the
superiority of transformer models over LSTM—especially for long-term prediction. The
outcomes of this research are consistent with the findings of other studies [28,38] that used
DL models for hydrological drought prediction, showing similar quality in the prediction
of drought events. For instance, Adikari et al. [38] predicted high runoff values more
accurately, since the LSTM models do not overestimate high flow values. This was also true
for this study, as the LSTM models predicted high-stage data better than the transformer
models. Moreover, Li et al. [28] achieved a high prediction accuracy when comparing the
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LSTM model to ARIMA, showing the superiority of the LSTM model over the ARIMA
model. Although LSTM was proposed to tackle the impact of short-term memory for the
better prediction of longer time sequences, the transformer models have an advantage in
that they incorporate a seasonal trend decomposition scheme, which can significantly boost
prediction outcome by about 50–80% [41]. In addition, while the results of the transformer
models are better, the time needed for the individual models to converge and forecast
future timestamps is significantly shorter than that for the LSTM models [42], making the
transformer models better for predicting future and real-time hydrological drought events.
However, the LSTM models performed slightly better than the transformers for predicting
a longer lead time (180 days, ~6 months)—especially for the Chattahoochee station, where
the models found it difficult to mimic the trend given lower evaluation metrics (Table 2).
The lack of accurate depiction of the stage height by the models could arise from the fact
that the Chattahoochee station is closer to the Jim Woodruff Dam, which may increase the
fluctuation in flow and, consequently, in stage. Dam construction can affect variations in
peak discharge and stage levels [62]. It therefore becomes important for future studies to
carry out a detailed examination of the degree to which DL models can predict flow or
water levels in river ecosystems shaped by human activities.

Based on our results (Figures 4 and 5), the transformer models overestimated some
values—especially in areas with a sudden increase in the stage-level data. It was evident
that the pattern of the trends for 120 days showed a reducing trend in the f water level,
with visible fluctuation—probably due to the possible degradation observed in the upper
Apalachicola River [55]. The river has suffered multiple human alterations, including long-
term historical dredging, dam construction, irrigation, etc. These human activities affect
the stream storage capacity, which is critical for developing and transforming hydrological
drought signals, since water storage creates a long-term memory in the hydrological
system. The stage data document the cumulative impact of changes upstream as well as
the modifications of the channels and floodplain [61]; for this reason, stage-level changes
are more noticeable, making the use of stage data very suitable for use in forecasting
hydrological drought.

The forecasted hydrological drought values show that over half (>60) of the data points
for 1 September 2021–27 February 2022, for both stations, experienced drought (Table 2).
The outcome here with respect to drought is not unexpected, given that the drought-defined
period from the 75Q for the Apalachicola River is within the window of low rainfall. This
result reveals the potential to predict future droughts in a river that shows decreasing
flows and stage levels [44,46]. It is clear that the propagation mechanism of hydrological
drought is associated with human perturbations in the Apalachicola, such as changes in
land use and land cover [63], construction of dams [64,65], dredging [44,46], irrigation
water use [66], etc. Specifically, the construction of dams modifies drought propagation,
since it has a substantial impact on surface runoff processes. Upstream construction of
reservoirs exacerbates the hydrological drought conditions downstream by decreasing
flows, favoring locations upstream for water supply, and by decreasing stage levels, further
induced by riverbed degradation. Dredging structurally alters several hydraulic variables
(e.g., depth, roughness, slope, width) that determine the flow and conveyance capacity,
with flood stages typically decreasing, affecting the spatial extent of flood inundation.
However, dredging affects stage height differently along the course of the river, revealing
disparities in hydrologic processes and water levels along the river’s length.

Although the DL models were successful in the forecasting for the example of the
upper Apalachicola River, more studies should be carried out on rivers and drainage
basins of different sizes and in different settings. Model performance would be expected
to vary with the characteristics of the river and its basin, including the drainage basin
area, flashiness, climate, geology, vegetation, tidal influence, anthropogenic activities, and
a variety of other factors. Thus, we recommend more testing on a wide variety of rivers.
Furthermore, if an unusual event occurred during the prediction period—such as a tropical
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storm with intense rainfall in what is normally the dry season—it is unknown how well
these models would perform.

5. Conclusions

There is frequent drought in the Apalachicola River owing to interannual variations,
water consumption battles, and human disturbances. Using stage levels, this paper ex-
plored the use of transformer models in predicting drought characteristics. The article
benchmarked LSTM for use in comparison with the transformer models. The theory of
runs, using a truncation level of 75Q, was adopted to develop hydrological drought se-
ries. Four evaluation metrics—MSE, MAE, RSME, and R2—were adopted to compare
the transformer and LSTM models against observed values. The main conclusions are
as follows:

i. Evaluation metrics reveal that, on average, the transformer models performed better
than the LSTM models across all timestamps for predicting hydrological drought.

ii. The transformer models overestimated peak stage levels compared to the LSTM
models, which accurately forecasted high-stage values.

iii. The drought series generated from the flow–duration curves (FDCs) were forecasted
accurately for the transformer models, except for a few instances in Chattahoochee
and Blountstown.

iv. Water-level data are an important metric for assessing hydrological drought in hydro-
logical systems with increased human pressures.

v. Although the DL model performed well in this river, model performance would be ex-
pected to vary with the characteristics of the river and its basin, including the drainage
basin area, flashiness, climate, geology, vegetation, tidal influence, anthropogenic
activities, and an array of other factors.

vi. It is unknown how well the model would perform if there was an unusual event,
such as a tropical cyclone passing over the study area during what is typically the
dry season.

Hydrological drought research is increasingly becoming an essential domain among
hydrologists, given the persistent changes in the complexity of coupled natural and human
systems. Deep learning models in the era of big data will be vital for forecasting the mag-
nitude, frequency, and duration of hydrological droughts and developing early-warning
systems that help curtail future ecological, agricultural, and socioeconomic losses.
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5. Almikaeel, W.; Čubanová, L.; Šoltész, A. Hydrological Drought Forecasting Using Machine Learning—Gidra River Case Study.

Water 2022, 14, 387. [CrossRef]
6. Achite, M.; Jehanzaib, M.; Elshaboury, N.; Kim, T.-W. Evaluation of Machine Learning Techniques for Hydrological Drought

Modeling: A Case Study of the Wadi Ouahrane Basin in Algeria. Water 2022, 14, 431. [CrossRef]
7. Agana, N.A.; Homaifar, A. A Deep Learning Based Approach for Long-Term Drought Prediction. In Proceedings of the

SoutheastCon 2017, Charlotte, NC, USA, 30 March–2 April 2017; pp. 1–8.
8. Dikshit, A.; Pradhan, B. Explainable AI in Drought Forecasting. Mach. Learn. Appl. 2021, 6, 100192. [CrossRef]
9. Jehanzaib, M.; Shah, S.A.; Yoo, J.; Kim, T.-W. Investigating the Impacts of Climate Change and Human Activities on Hydrological

Drought Using Non-Stationary Approaches. J. Hydrol. 2020, 588, 125052. [CrossRef]
10. Maity, R.; Khan, M.I.; Sarkar, S.; Dutta, R.; Maity, S.S.; Pal, M.; Chanda, K. Potential of Deep Learning in Drought Assessment by

Extracting Information from Hydrometeorological Precursors. J. Water Clim. Chang. 2021, 12, 2774–2796. [CrossRef]
11. Nabipour, N.; Dehghani, M.; Mosavi, A.; Shamshirband, S. Short-Term Hydrological Drought Forecasting Based on Different

Nature-Inspired Optimization Algorithms Hybridized With Artificial Neural Networks. IEEE Access 2020, 8, 15210–15222.
[CrossRef]

12. Wang, G.C.; Zhang, Q.; Band, S.S.; Dehghani, M.; Chau, K.W.; Tho, Q.T.; Zhu, S.; Samadianfard, S.; Mosavi, A. Monthly and
Seasonal Hydrological Drought Forecasting Using Multiple Extreme Learning Machine Models. Eng. Appl. Comput. Fluid Mech.
2022, 16, 1364–1381. [CrossRef]

13. McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the
8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993.

14. Nalbantis, I.; Tsakiris, G. Assessment of Hydrological Drought Revisited. Water Resour. Manag. 2009, 23, 881–897. [CrossRef]
15. Garen, D.C. Revised Surface-Water Supply Index for Western United States. J. Water Resour. Plan. Manag. 1993, 119, 437–454.

[CrossRef]
16. Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standard-

ized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [CrossRef]
17. Shukla, S.; Wood, A.W. Use of a Standardized Runoff Index for Characterizing Hydrologic Drought. Geophys. Res. Lett. 2008,

35, L02405. [CrossRef]
18. Alley, W.M. The Palmer Drought Severity Index: Limitations and Assumptions. J. Appl. Meteorol. Climatol. 1984, 23, 1100–1109.

[CrossRef]
19. Narasimhan, B.; Srinivasan, R. Development and Evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit

Index (ETDI) for Agricultural Drought Monitoring. Agric. For. Meteorol. 2005, 133, 69–88. [CrossRef]
20. Dehghani, M.; Saghafian, B.; Zargar, M. Probabilistic Hydrological Drought Index Forecasting Based on Meteorological Drought

Index Using Archimedean Copulas. Hydrol. Res. 2019, 50, 1230–1250. [CrossRef]
21. Liu, Z.; Wang, Y.; Xu, Z.; Duan, Q. Conceptual Hydrological Models. In Handbook of Hydrometeorological Ensemble Forecasting;

Duan, Q., Pappenberger, F., Thielen, J., Wood, A., Cloke, H.L., Schaake, J.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2017;
pp. 1–23. ISBN 978-3-642-40457-3.

22. Shirmohammadi, B.; Moradi, H.; Moosavi, V.; Semiromi, M.T.; Zeinali, A. Forecasting of Meteorological Drought Using Wavelet-
ANFIS Hybrid Model for Different Time Steps (Case Study: Southeastern Part of East Azerbaijan Province, Iran). Nat. Hazards
2013, 69, 389–402. [CrossRef]

23. Belayneh, A.; Adamowski, J. Drought Forecasting Using New Machine Learning Methods. J. Water Land Dev. 2013, 18, 3–12.
[CrossRef]

24. Mokhtarzad, M.; Eskandari, F.; Jamshidi Vanjani, N.; Arabasadi, A. Drought Forecasting by ANN, ANFIS, and SVM and
Comparison of the Models. Environ. Earth Sci. 2017, 76, 729. [CrossRef]

25. Bazrafshan, O.; Salajegheh, A.; Bazrafshan, J.; Mahdavi, M.; Fatehi Maraj, A. Hydrological Drought Forecasting Using ARIMA
Models (Case Study: Karkheh Basin). ECOPERSIA 2015, 3, 1099–1117.

26. Dikshit, A.; Pradhan, B.; Alamri, A.M. Temporal Hydrological Drought Index Forecasting for New South Wales, Australia Using
Machine Learning Approaches. Atmosphere 2020, 11, 585. [CrossRef]

27. Hao, Z.; Hao, F.; Singh, V.P.; Sun, A.Y.; Xia, Y. Probabilistic Prediction of Hydrologic Drought Using a Conditional Probability
Approach Based on the Meta-Gaussian Model. J. Hydrol. 2016, 542, 772–780. [CrossRef]

28. Li, Y.; Wang, B.; Gong, Y. Drought Assessment Based on Data Fusion and Deep Learning. Comput. Intell. Neurosci. 2022,
2022, 4429286. [CrossRef]

http://doi.org/10.1016/j.ijdrr.2019.101211
http://doi.org/10.1016/j.jhydrol.2018.09.012
http://doi.org/10.1016/j.jhydrol.2010.07.012
http://doi.org/10.1002/wat2.1085
http://doi.org/10.3390/w14030387
http://doi.org/10.3390/w14030431
http://doi.org/10.1016/j.mlwa.2021.100192
http://doi.org/10.1016/j.jhydrol.2020.125052
http://doi.org/10.2166/wcc.2021.062
http://doi.org/10.1109/ACCESS.2020.2964584
http://doi.org/10.1080/19942060.2022.2089732
http://doi.org/10.1007/s11269-008-9305-1
http://doi.org/10.1061/(ASCE)0733-9496(1993)119:4(437)
http://doi.org/10.1175/2009JCLI2909.1
http://doi.org/10.1029/2007GL032487
http://doi.org/10.1175/1520-0450(1984)023&lt;1100:TPDSIL&gt;2.0.CO;2
http://doi.org/10.1016/j.agrformet.2005.07.012
http://doi.org/10.2166/nh.2019.051
http://doi.org/10.1007/s11069-013-0716-9
http://doi.org/10.2478/jwld-2013-0001
http://doi.org/10.1007/s12665-017-7064-0
http://doi.org/10.3390/atmos11060585
http://doi.org/10.1016/j.jhydrol.2016.09.048
http://doi.org/10.1155/2022/4429286


Water 2022, 14, 3611 18 of 19

29. Shamshirband, S.; Hashemi, S.; Salimi, H.; Samadianfard, S.; Asadi, E.; Shadkani, S.; Kargar, K.; Mosavi, A.; Nabipour, N.; Chau,
K.-W. Predicting Standardized Streamflow Index for Hydrological Drought Using Machine Learning Models. Eng. Appl. Comput.
Fluid Mech. 2020, 14, 339–350. [CrossRef]

30. Sharma, T.C.; Panu, U.S. Prediction of Hydrological Drought Durations Based on Markov Chains: Case of the Canadian Prairies.
Hydrol. Sci. J. 2012, 57, 705–722. [CrossRef]

31. Sattar, M.N.; Lee, J.-Y.; Shin, J.-Y.; Kim, T.-W. Probabilistic Characteristics of Drought Propagation from Meteorological to
Hydrological Drought in South Korea. Water Resour. Manag. 2019, 33, 2439–2452. [CrossRef]

32. Bae, D.-H.; Son, K.-H.; So, J.-M. Utilization of the Bayesian Method to Improve Hydrological Drought Prediction Accuracy. Water
Resour. Manag. 2017, 31, 3527–3541. [CrossRef]

33. Jehanzaib, M.; Shah, S.A.; Son, H.J.; Jang, S.-H.; Kim, T.-W. Predicting Hydrological Drought Alert Levels Using Supervised
Machine-Learning Classifiers. KSCE J. Civ. Eng. 2022, 26, 3019–3030. [CrossRef]

34. Aghelpour, P.; Bahrami-Pichaghchi, H.; Varshavian, V. Hydrological Drought Forecasting Using Multi-Scalar Streamflow Drought
Index, Stochastic Models and Machine Learning Approaches, in Northern Iran. Stoch. Environ. Res. Risk Assess. 2021, 35,
1615–1635. [CrossRef]

35. Malik, A.; Kumar, A.; Singh, R.P. Application of Heuristic Approaches for Prediction of Hydrological Drought Using Multi-Scalar
Streamflow Drought Index. Water Resour. Manag. 2019, 33, 3985–4006. [CrossRef]

36. Rose, M.A.J.; Chithra, N.R. Tree-Based Ensemble Model Prediction for Hydrological Drought in a Tropical River Basin of India.
Int. J. Environ. Sci. Technol. 2022, 1–18. [CrossRef]

37. Anshuka, A.; Chandra, R.; Buzacott, A.J.V.; Sanderson, D.; van Ogtrop, F.F. Spatio Temporal Hydrological Extreme Forecasting
Framework Using LSTM Deep Learning Model. Stoch. Environ. Res. Risk Assess. 2022, 36, 3467–3485. [CrossRef]

38. Adikari, K.E.; Shrestha, S.; Ratnayake, D.T.; Budhathoki, A.; Mohanasundaram, S.; Dailey, M.N. Evaluation of Artificial
Intelligence Models for Flood and Drought Forecasting in Arid and Tropical Regions. Environ. Model. Softw. 2021, 144, 105136.
[CrossRef]

39. Salleh, M.N.M.; Talpur, N.; Hussain, K. Adaptive Neuro-Fuzzy Inference System: Overview, Strengths, Limitations, and Solutions.
In Proceedings of the International Conference on Data Mining and Big Data, Fukuoka, Japan, 27 July–1 August 2017; Tan, Y.,
Takagi, H., Shi, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 527–535.

40. Yaseen, Z.M.; Sulaiman, S.O.; Deo, R.C.; Chau, K.-W. An Enhanced Extreme Learning Machine Model for River Flow Forecasting:
State-of-the-Art, Practical Applications in Water Resource Engineering Area and Future Research Direction. J. Hydrol. 2019, 569,
387–408. [CrossRef]

41. Wen, Q.; Zhou, T.; Zhang, C.; Chen, W.; Ma, Z.; Yan, J.; Sun, L. Transformers in Time Series: A Survey. arXiv 2022, arXiv:2202.07125.
42. Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series

Forecasting. Adv. Neural Inf. Process. Syst. 2022, 34, 22419–22430.
43. Minixhofer, C.; Swan, M.; McMeekin, C.; Andreadis, P. DroughtED: A Dataset and Methodology for Drought Forecasting

Spanning Multiple Climate Zones. In Proceedings of the Tackling Climate Change with Machine Learning: Workshop at ICML,
Gainesville, FL, USA, 23–24 July 2021; p. 9.

44. Light, H.M.; Vincent, K.R.; Darst, M.R.; Price, F.D. Water-Level Decline in the Apalachicola River, Florida, from 1954 to 2004, and Effects
on Floodplain Habitats; Scientific Investigations Report; U.S. Geological Survey: Tallahassee, FL, USA, 2006; Volume 2006–5173,
p. 61.

45. Smith, M.C.; Anthony Stallins, J.; Maxwell, J.T.; Van Dyke, C. Hydrological Shifts and Tree Growth Responses to River Modification
along the Apalachicola River, Florida. Phys. Geogr. 2013, 34, 491–511. [CrossRef]

46. Mossa, J.; Chen, Y.-H.; Kondolf, G.M.; Walls, S.P. Channel and Vegetation Recovery from Dredging of a Large River in the Gulf
Coastal Plain, USA. Earth Surf. Process. Landf. 2020, 45, 1926–1944. [CrossRef]

47. Chen, Y.-H.; Mossa, J.; Singh, K.K. Floodplain Response to Varied Flows in a Large Coastal Plain River. Geomorphology 2020,
354, 107035. [CrossRef]

48. Mishra, A.K.; Desai, V.R. Drought Forecasting Using Feed-Forward Recursive Neural Network. Ecol. Model. 2006, 198, 127–138.
[CrossRef]

49. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You
Need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30.

50. Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence
Time-Series Forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 22 February–1 March 2021.

51. Zou, F.; Shen, L.; Jie, Z.; Zhang, W.; Liu, W. A Sufficient Condition for Convergences of Adam and RMSProp. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2019, Long Beach, CA, USA, 15–16 June 2019;
pp. 11127–11135.

52. Yevjevich, V. An Objective Approach to Definitions and Investigations of Continental Hydrologic Droughts. J. Hydrol. 1969, 7, 353.
[CrossRef]

53. Tallaksen, L.M.; Hisdal, H.; Lanen, H.A.J.V. Space–Time Modelling of Catchment Scale Drought Characteristics. J. Hydrol. 2009,
375, 363–372. [CrossRef]

http://doi.org/10.1080/19942060.2020.1715844
http://doi.org/10.1080/02626667.2012.672741
http://doi.org/10.1007/s11269-019-02278-9
http://doi.org/10.1007/s11269-017-1682-x
http://doi.org/10.1007/s12205-022-1367-8
http://doi.org/10.1007/s00477-020-01949-z
http://doi.org/10.1007/s11269-019-02350-4
http://doi.org/10.1007/s13762-022-04208-6
http://doi.org/10.1007/s00477-022-02204-3
http://doi.org/10.1016/j.envsoft.2021.105136
http://doi.org/10.1016/j.jhydrol.2018.11.069
http://doi.org/10.1080/02723646.2013.853019
http://doi.org/10.1002/esp.4856
http://doi.org/10.1016/j.geomorph.2020.107035
http://doi.org/10.1016/j.ecolmodel.2006.04.017
http://doi.org/10.1016/0022-1694(69)90110-3
http://doi.org/10.1016/j.jhydrol.2009.06.032


Water 2022, 14, 3611 19 of 19

54. Elshaboury, N.; Marzouk, M. Comparing Machine Learning Models For Predicting Water Pipelines Condition. In Proceedings of
the 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), Giza, Egypt, 24–26 October 2020; pp. 134–139.

55. Mossa, J.; Chen, Y.-H. Geomorphic Response to Historic and Ongoing Human Impacts in a Large Lowland River. Earth Surf.
Process. Landf. 2022, 47, 1550–1569. [CrossRef]

56. Mossa, J.; Chen, Y.-H. Geomorphic Insights from Eroding Dredge Spoil Mounds Impacting Channel Morphology. Geomorphology
2021, 376, 107571. [CrossRef]

57. Ward, A.; Trimble, S.; Buckrard, S.; Lyon, S. Environmental Hydrology, 3rd ed.; Taylor and Francis Group: Abingdon, UK, 2016;
ISBN 978-1-4665-8941-4.

58. Rivera, J.A.; Araneo, D.C.; Penalba, O.C. Threshold Level Approach for Streamflow Drought Analysis in the Central Andes of
Argentina: A Climatological Assessment. Hydrol. Sci. J. 2017, 62, 1949–1964. [CrossRef]

59. Tallaksen, L.M.; Hisdal, H.E.G.E. Regional Analysis of Extreme Streamflow Drought Duration and Deficit Volume. IAHS Publ.
1997, 246, 141–150.

60. Van Loon, A.F.; Van Lanen, H.A.J. A Process-Based Typology of Hydrological Drought. Hydrol. Earth Syst. Sci. 2012, 16, 1915–1946.
[CrossRef]

61. Pinter, N.; Ickes, B.S.; Wlosinski, J.H.; van der Ploeg, R.R. Trends in Flood Stages: Contrasting Results from the Mississippi and
Rhine River Systems. J. Hydrol. 2006, 331, 554–566. [CrossRef]

62. Graf, W.L. Downstream Hydrologic and Geomorphic Effects of Large Dams on American Rivers. Geomorphology 2006, 79, 336–360.
[CrossRef]

63. Hovenga, P.A.; Wang, D.; Medeiros, S.C.; Hagen, S.C.; Alizad, K. The Response of Runoff and Sediment Loading in the
Apalachicola River, Florida to Climate and Land Use Land Cover Change. Earths Future 2016, 4, 124–142. [CrossRef]

64. Elder, J.F.; Flagg, S.D.; Mattraw, H.C., Jr. Hydrology and Ecology of the Apalachicola River, Florida: A Summary of the River Quality
Assessment; U.S. Government Publishing Office: Washington, DC, USA, 1988.

65. Joshi, S. Long Term Hydrological Changes in the Apalachicola River, Florida. Int. J. Environ. Sci. Nat. Resour. 2019, 19, 152–159.
[CrossRef]

66. Piqué, G.; Batalla, R.J.; Sabater, S. Hydrological Characterization of Dammed Rivers in the NW Mediterranean Region. Hydrol.
Process. 2016, 30, 1691–1707. [CrossRef]

http://doi.org/10.1002/esp.5334
http://doi.org/10.1016/j.geomorph.2020.107571
http://doi.org/10.1080/02626667.2017.1367095
http://doi.org/10.5194/hess-16-1915-2012
http://doi.org/10.1016/j.jhydrol.2006.06.013
http://doi.org/10.1016/j.geomorph.2006.06.022
http://doi.org/10.1002/2015EF000348
http://doi.org/10.19080/IJESNR.2019.19.556025
http://doi.org/10.1002/hyp.10728

	Introduction 
	Materials and Methods 
	Case Study 
	Data and Methods 
	LSTM 
	Transformers 
	Flood Frequency Analysis 
	Model Evaluation 


	Results 
	Discussion 
	Conclusions 
	References

