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Abstract: The measurement of river discharge is essential for sustainable water resource management.
The velocity–area approach is the most common method for calculating river discharge. Although
several velocity measurement methods exist, they often have varying degrees of technical issues
attributed to their operational complexity, time effectiveness, accuracy, and environmental impact. To
address these issues, we propose a three-dimensional (3D) hydrodynamic model coupled with data
assimilation (DA) for velocity measurement with improved accuracy and efficiency. We then apply
this model to the Lanxi River reach in Zhejiang Province, China. The experimental results confirm
that the obtained assimilated velocities using our proposed algorithm are much closer to the observed
velocities than the simulated velocities. Our results show that when using the proposed method, the
RMSE is decreased by 78%, and the SKILL and DASS values are 0.96 and 0.92, respectively. These
confirm that the DA scheme of the flow velocity measurement is effective and capable of significantly
improving the accuracy of the velocity with lower computational complexity.

Keywords: data assimilation schemes; velocity measurement; river reach; particle filter; three-dimensional
hydrodynamic models; horizontal acoustic Doppler current profiler; Lanxi River in Zhejiang Province

1. Introduction

Flow velocity is an essential hydrological factor used to evaluate discharge through
the velocity–area method [1]. Therefore, an accurate flow velocity is a prerequisite for
obtaining an accurate discharge estimation, which is the base for developing flood control
techniques, water supply systems, and agricultural and energy production. Pariva et al. [2]
reviewed the existing methods for measuring flow velocity and investigated their pros
and cons (Table 1). Several flow velocity measurement techniques exist. For instance, the
float method is a low-cost and straightforward method. However, its accuracy is limited.
An alternative is the dilution gauging method, which also has low accuracy and further
affects the environment. The trajectory method requires expert and trained manpower and
complex calculations [3].

Another flow velocity measurement technique is the current meter method. This
method, however, is challenging to implement and labor-intensive, and hence it is only
suitable for short-term studies [4,5]. Moreover, the effectiveness of horizontal acoustic
Doppler current profilers (HADCP) is influenced by blind spots near the river boundaries.
Surface velocity radar, as another example, is highly dependent on the roughness of the
river surface and can be affected by the existing environmental noises [6]. Large-scale
particle image velocimetry (LSPIV) is also used for measurement. To establish a geometric
transformation of the digital images, LSPIV requires sufficient ground reference points in
the field of view. Therefore, in cases where the reference points are covered by flood water,
LSPIV accuracy is significantly reduced [7].
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Table 1. Velocity estimation methods and their characteristics [2].

Method Operational
Complexity

Cost-
Effectiveness Accuracy Time-

Effectiveness Ecological Impact

Float method Easy Inexpensive Low Efficient Non-polluting

Dilution gauging
method Difficult Inexpensive Low Efficient Affects the stream

ecosystem

Trajectory method Difficult Inexpensive High Inefficient Non-polluting

Current meter method Difficult Expensive High Efficient Non-polluting

Acoustic Doppler’s
current profiler method Difficult Expensive High Efficient Non-polluting

Electromagnetic
method Difficult Expensive High Efficient Non-polluting

Remote sensing
method Difficult Expensive Low Efficient Non-polluting

Particle image
velocimetry Difficult Expensive High Efficient Non-polluting

We argue that a three-dimensional (3D) hydrodynamic model coupled with data
assimilation (DA) addresses the above issues of the existing current velocity measurement
methods and further improves the accuracy and efficiency of velocity measurement. The
3D hydrodynamic model provides information about the distribution of and variation in
the flow velocity during the simulation period. Then, DA offers the best estimation of the
model state variables by combining the dynamic model and actual data [8–10] to ensure
that the dynamic model does not deviate from reality.

Several previous works also considered utilizing real data to improve numerical
models. For instance, the 3D hydrodynamic model was used by Akiko et al. (2015) to
investigate the dispersion of suspended matter in Lake Sakylan Pyhajarvi. In their work,
they derived turbidity from satellite data and then analyzed the applicability of direct
insertion of the total suspended matter (TSM) concentration field into the numerical model.
It was then shown that direct insertion significantly improves the forecast, even if it is
applied occasionally [11]. Nowicki et al. (2016) developed an automatic monitoring
system to forecast the physical and ecological changes and control the conditions and bio-
productivity of the Baltic sea environment. Similarly, in their proposed approach, satellite-
measured data assimilation was adopted to constrain the eco-hydrodynamic model, where
they reported improvement in accuracy [12].

Furthermore, Wang et al. (2019) developed a fully integrated catchment-wide mod-
eling and monitoring framework based on the 3D hydrodynamic water quality model
and DA. They then applied their approach to real-time forecasting and made long-term
predictions for water quality [13]. Theo et al. (2020) also proposed a flexible frame-
work incorporating DA into 3D hydrodynamic lake models, where in situ and satellite
remote sensing temperature data were assimilated to understand the physical dynamics
in the lake ecosystem management. They further showed that DA effectively improves
model performance over a broad range of spatiotemporal scales and physical processes,
where the temperature error was reduced by 54% [14]. To improve the model results and
map local phenomena occurring in the Gulf of Gdansk area, Janecki et al. (2021) also
extended the EcoFish numerical model using a satellite data assimilation module. This
module assimilated the SST data from a medium-resolution imaging spectroradiometer
and an advanced ultrahigh-resolution radiometer, reducing the error, compared with in
situ experimental data [15].

Although using a 3D hydrodynamic model coupled with DA to estimate the model
state variables is often used in coastal waters and environment management, it has rarely
been used in hydrometry. The DA method can assimilate a variety of data (such as point-
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wise data, vertical-wise data, and data at a certain level of water body) and data types (water
level data, velocity data, roughness factor data, and temperature data) into a hydrodynamic
model [14,16–18]. Due to its flexibility in assimilating data and data types, in areas of
hydrometry, it is possible to use this approach to correct the velocity state variables of the
3D hydrodynamic model with a variety of observational data and data types for providing
accurate flow velocity values. For example, point-wise velocity data, vertical-wise velocity
data, and velocity data at a certain level of water body, water level data, roughness factor
data, and other data are used alone or simultaneously to correct velocity state variables of a
3D hydrodynamic model to improve the accuracy and efficiency of velocity measurement.
This is an alternative to the current velocity measurement methods.

In this paper, a DA scheme of velocity measurement based on coupling a 3D hydrody-
namic model with DA is developed to improve the accuracy and efficiency further. This
paper is organized into the following sections: Section 2 describes the proposed approach
and presents a practical experiment. Section 3 provides the results and discusses the main
findings of the practical experiment. Conclusions are briefly presented in Section 4.

2. Materials and Methods
2.1. TELEMAC System

A hydrodynamic model that can be coupled with DA in a user-friendly manner and
allow a variety of data and data types to be inserted in the future with less computa-
tion cost will be the first choice for simulating the river reach in this study. The open
TELEMAC-MASCARET (www.opentelemac.org, accessed on 13 January 2021) is a non-
commercial, open-source numerical suite system, developed by Eletricité de France (EDF)
for hydrodynamic numerical simulations. Since its birth (1987), this software by EDF has
been continuously serving the energy industry. It has rich user technical support and a
wide range of industrial applications and verification and has been approved by safety
authorities. It is based on the FORTRAN language and formed by a conjunction of modules
in two or three dimensions. This software is widely used to study flows (MASCARET,
TELEMAC-2D, and TELEMAC-3D), sediment transport (COURLIS and GAIA), waves
(ARTEMIS and TOMAWAC), and water quality (TRACER and WAQTEL) in the coastal
and oceanic regions [19–25]. In this paper, we used the three-dimensional hydrodynamic
module TELEMAC-3D. A module using the TELEMAC Application Program Interface
(API), the TELAPY module, which is based on Python, was also used in our work. Its
open-source nature and user-friendly API facilitate the implementation of the proposed
velocity measurement using a 3D hydrodynamic model and DA.

2.1.1. The TELEMAC-3D Model

The TELEMAC-3D model solves the Reynolds-averaged Navier–Stokes equations
while incorporating the local variations in the free surface of the fluid. This model further
ignores the density variation in the mass conservation equation and considers the hydro-
static pressure and Boussinesq approximation to solve the motion equations. The core of
this model is based on the finite element method that solves the hydrodynamic equations.
For vertical discretization, this model uses the sigma coordinate system. Further details of
model formulations can also be found in [26]. The following three-dimensional equations
are solved:

∂U
∂x

+
∂V
∂y

+
∂W
∂z

= 0 (1)

∂U
∂t

+ U
∂U
∂x

+ V
∂U
∂y

+ W
∂U
∂z

= −g
∂Zs

∂x
+ϑ ∆(U) (2)

∂V
∂t

+ U
∂V
∂x

+ V
∂V
∂y

+ W
∂V
∂z

= −g
∂Zs

∂V
+ϑ ∆(V) (3)

p = patm + ρ0g(Zs − z) (4)

www.opentelemac.org
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where U, V, and W (m/s) denote the three-dimensional velocity components, p (pa) is the
pressure, h (m) denotes the water depth, Zs (m) is the free surface elevation, and Zf (m)
denotes the bottom depth. In the above, patm (pa) is the atmospheric pressure, g (m/s2)
is the gravitational acceleration, ϑ (m2/s) is the kinematic viscosity and tracer diffusion
coefficients, ∆ρ (kg/m3) is the variation in density around the reference density, t (s) is the
simulation time, x and y (m) are the horizontal space components, and z (m) is the vertical
space component. U, V, W, and h are the unknown quantities in the above formulations
and act as computational variables.

The chosen spatial discretization of the TELEMAC-3D model is a finite element dis-
cretization using prisms. Each prism has six nodes with quadrangular vertical sides. The
prism with linear interpolation was retained because its two-dimensional (2D) horizontal
projection constitutes one of the finite elements (triangle with linear interpolation) used to
resolve the Saint–Venant equations in two dimensions. Therefore, to build a 3D mesh, it is
possible to build the triangulation of 2D mesh and repeat it along the vertical in superim-
posed layers [27]. In addition, the elevation of the points belonging to a vertical line should
increase from the bed to the free surface (Figure 1). The “superimposed layers” structure
of TELEMAC-3D mesh allows the spatial location of a variety of observational data to
be accurately and quickly found in the 3D mesh. Moreover, the “superimposed layer”
structure of TELEMAC-3D mesh incurs less computation cost than the block-structured
mesh of fluid dynamic models, such as OpenFoam, which can also simulate the velocity of
the river reach.

 

Layer 1 

Layer 2 

Layer 3 

Layer 4 

Layer 5 

bed 

free-surface 

Figure 1. A 3D mesh of TELEMAC-3D model built from a 2D mesh.

2.1.2. The TELAPY Module

The TELAPY module provides a Python-based interface with the TELEMAC API,
where the API controls the simulations [28]. For example, TELAPY enables the user to stop
the simulation at any time, retrieve the values of the variables, and modify them. The API
is not limited to FORTRAN programming and can be further used by a scripting language,
i.e., Python. The details of the TELAPY module are available in [28]. The TELAPY module
(Figure 2) also comes with a tutorial that explains controlling the physical components
of the TELEMAC-MASCARET SYSTEM in an interactive mode using Python scripting
language. API development enables the interoperability of the TELEMAC-MASCARET
SYSTEM modules. Interoperability is the ability of a computer system to operate with other
existing or future informatic products without restricting access or implementation. This
feature enabled coupling the TELEMAC-3D with DA in our work.
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2.2. Particle Filter

We used particle filter (PF) as the assimilation algorithm to combine with the TELEMAC-
3D model and improve the accuracy of velocity measurements. PF is a sequential Monte
Carlo filter, developed based on the sequential importance sampling filter (SIS) of Bayesian
sampling estimation [30]. The main idea of PF is to approximate the probability density
function (PDF) of the state variables based on random discrete sampling points and replace
the integral operation with the sample mean. This is to obtain the minimum variable
estimation of the state. These samples are called particles. The PF algorithm consists of the
simulation (or prediction) step and the updating (or analysis) step.

(1) The Simulation Step

For N particles, each particle is initialized at time t. There are several methods to
initialize the particles. For instance, one may add noise to the state variable(s) or perturb
the parameter(s) that critically affect a state variable. In this study, we used the method of
adding noise to the velocity variable. The obtained velocity particles are then inserted into
the model. The model obtains the particles of the velocity state variable at the next time
instant as follows:

Xf
i,t+1 = Mt,t+1(Xa

i,t) + ωi,t , ωi,t ∼ N(0, Qt) (5)

where Xa
i,t is the velocity state variable analysis value of the particle i at the time t, Xf

i,t+1 is
the velocity state variable simulated value of the particle i at the time t + 1, Mt,t+1 represents
the relationship of different values of X at time t and t + 1 (provided by the TELEMAC-3D
model), and ωi,t is the error that follows a normal distribution with a mean of 0 and a
covariance of Qt.

(2) The Updating Step

In the updating step, following the SIS scheme, the weights are updated by the velocity
data without changing the particle of the velocity state variable, therefore

wi
t+1=

P(yt+1|Xi
t+1|t)

∑j P(yt+1|Xi
t+1|t)

(6)
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In this paper, we used the Gaussian distribution function as the weighting function:

wi
t+1=

1√
2πσ2

exp[−

(
yt+1 −Xi

t+1

)2

2σ
] (7)

where wi
t+1 is the weight of velocity particle i at time t + 1, yt+1 is the velocity data at time

t + 1, Xi
t+1 is the simulated value of velocity particle i from the simulation step at time t + 1,

and σ is the variance of the velocity particle error.
By increasing the number of filter iterations, the weights of most particles diminish,

and only a few particles have a considerable weight. Since particle degeneration is in-
evitable, resampling becomes an effective way to address this issue. The resampling idea
is to inhibit degeneration by resampling particles, where a large number of particles with
high weights are kept, and the rest are eliminated. Before resampling, the ordered pair

of particles is set, and the weight is {X(i)
t+1, w(i)

t+1}
N

i=1. After resampling, the particles with
large weights are divided into multiple particles, and particles with minimal weights are
discarded. The total number of particles remains the same, and the ordered pair of particles

set and weight becomes {X(i)
t+1, 1/N}

N

i=1.
In this paper, we implemented the classical residual resampling method [31] based on

multinomial resampling [32]. In the residual resampling method, the normalized weights
are multiplied by N, and then the integer value of each weight is applied to define how
many samples of that particle are kept. Subtracting the weights by their integer part leaves
the fractional part of the number. Multinomial resampling was used to select the rest of the
particles based on the residual.

2.3. Practical Experiment
2.3.1. Study Area

Qiantang River is the largest river in Zhejiang Province, China, where the Lanxi
gauging station is the main control station in the midstream. The study area is near
the Lanxi gauging station, northwest of Jinhua City, Zhejiang Province. As illustrated
in Figure 3a, the experiment’s reach is relatively straight, with 460 m in width and an
extension of 7 km. It has a total area of 18,233 km2, and its mean annual river discharge
is 544 m3/s. The water flows from the Qu River and Jinhua River into the Lanxi River.
Several three-stage gauging stations are set up for the upstream and downstream of the
considered experiment to monitor the water level upstream and downstream.
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2.3.2. Observations

1. The water level data

Water level data were gathered from the stage gauging stations on the Qu River, Jinhua
River, and Lanxi River in 5 min intervals for 3 days, from 5 January 2022 to 7 January 2022.
The water level gauge is a radar water level gauge, and it can measure up to a millimeter
(extra fine grade) and is not affected by the water body and environmental factors, such as
temperature, humidity, wind speed, and rainfall. The collected data were used as upstream
and downstream boundary conditions to establish the 3D hydrodynamic model of the
experiment reach using the TELEMAC-3D model.

2. The flow velocity data

The velocity measurement equipment used in this study is a CM600 horizontal acoustic
Doppler current profiler (HADCP) manufactured by the TRDI Company. This equipment
also obtains high-quality velocity data for low and unsteady flows that are difficult to
measure. CM600 HADCP has an accuracy of ±0.5% (±0.002 m/s) and a resolution of
0.001 m/s. It was installed below the cable tunnel at an elevation of 0.86 m. It also has a
blind spot of 1 m and a total of 10 cells for measuring velocity with a length of 4.4 m for
each cell (Figure 3d). The HADCP recorded ensemble-averaged velocity profile data within
5 min intervals from 5 January 2022 to 7 January 2022. The collected data were used to
correct the simulated velocity in the reach through the PF algorithm.

2.3.3. TELEMAC-3D Setup

The computation domain was discretized by a non-structured grid of finite elements
(triangular elements). The 3D computational grid comprised a 2D grid describing the river
bottom geometry duplicated several times along the vertical axis. The 2D finite element
grid was composed of 2542 nodes (Figure 3b). The mesh size varied from 4.4 m in the
area of HADCP, which was equal to the HADCP cell length, to 50 m (i.e., the computation
domain except for the area of HADCP) (Figure 3c). In the TELEMAC-3D model, we used
3 layers, and the height of the middle layer was equal to the HADCP installation elevation.
The first layer also represented the bottom reach, and the third layer represented the free
surface. This could effectively reduce the computation cost and accurately implement
observational data assimilation.

For turbulence modeling, we adopted the common practice of separating the vertical
and horizontal turbulence scales that are not relevant to the same dynamics as those used for
the standard applications of TELEMAC-3D [33]. This process involves defining horizontal
and vertical viscosities rather than a single viscosity. The implementation of TELEMAC-3D,
therefore, requires defining two separate models for horizontal and vertical turbulence. To
balance the calculation time and quality of results, we chose constant and Prandtl’s mixing
length viscosity models for the horizontal and vertical turbulence.

The simulated period of the experiment was from 5 to 7 January 2022, with a simulation
time of 1 s. The reach’s upstream and downstream boundary conditions were the time
series of the water level data provided by the stage gauging stations at Qu River, Jinhua
River, and Lanxi River, respectively. A spin-up of 6 h was also used to generate realistic
initial conditions to better simulate the actual reach conditions.

2.3.4. Particle Filter Setup

We developed a DA scheme for velocity measurement coupled with the TELEMAC-3D
model and PF to improve reliability and efficiency. All processes were performed in the
TELAPY module and executed in two phases. In the first phase, each state variable was
computed using a specific function in TELEMAC-3D with the FORTRAN API. Then, in
the second phase, the state variable particle was updated using the PF algorithm, thus
assimilating the HADCP velocity data through the Python Wrapper. The flowchart of the
DA scheme is presented in Figure 4. The detailed procedure is described as follows:
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(1) Set the number of particles N, the model error Errm, and the observed error Erro (see
Section 3.1);

(2) Call the specific function for TELEMAC-3D from FORTRAN API, then load and
initialize the TELEMAC-3D configuration with the computed conditions and start the
velocity simulation;

(3) Obtain the velocity state variable at each grid node and each time step;
(4) Determine whether there are observations. If no observations exist, continue the

simulation process. Otherwise, determine the locations of the HADCP velocity data
according to the HADCP installation elevation (the middle layer of the 3D mesh), the
grid resolution (the HADCP cell length of 4.4 m), and the coordinates of HADCP;

(5) Generate the N particles of velocity states in each grid node of the HADCP locations
by adding the noises generated by the normal distribution N ~ (0, Errm) at time t;

(6) Add the HADCP velocities in U and V directions;
(7) Compute the weight of each particle and perform normalization according to Equa-

tions (6) and (7);
(8) To inhibit particle degeneration, use residual resampling to copy high-weight particles

and eliminate low-weight particles based on the weights from the previous step. The
new particles contain similar weights;

(9) Obtain the assimilated velocity state variables for each grid node of the HADCP
locations and set them as the initial velocities at time t + 1;

(10) Repeat Steps (4)–(9) until the end of the simulation period;
(11) Output the assimilated velocities.

2.4. Model Evaluation

The simulated velocity values were compared with the HADCP velocity data. Three
statistical measures, namely the root mean square error (RMSE), the model skill (SKILL),
and the data assimilation skill score (DASS), were used for the state variables at each node
of the HADCP locations. The mathematical equations of these measures are

RMSE =

√
1
n

n

∑
i=1

(Fi −Oi)
2 or

√
1
n

n

∑
i=1

(Di −Oi)
2 (8)

SKILL = 1− ∑n
i=1 (Fi −Oi)

2

∑n
i=1
[
(Fi −O) +

(
Oi −O

)]2 or 1− ∑n
i=1 (Di −Oi)

2

∑n
i=1
[
(Di −O) +

(
Oi −O

)]2 (9)

DASS = 1−
1
n ∑n

i=1 (Fi −Oi)
2

1
n ∑n

i=1 (Di −Oi)
2 (10)

where n is the number of timesteps, Fi denotes the simulated value at time i, Di is the
assimilated value at time i, Oi is the observed value at time i, and O is the mean of the
observed value at time i.

The RMSE is in the range of [0, +∞]. A zero RMSE value means the observed value is
consistent with the simulated/assimilated value. The smaller the RMSE value, the higher
the accuracy of the simulated/assimilated output.

SKILL is an indicator of model data consistency. A SKILL value of “1” means complete
agreement, whereas “0” indicates complete disagreement. Maréchal (2004) [34] showed
that the model performance is excellent if SKILL > 0.65, very good if it is between 0.65 and
0.5, good if it is between 0.5 and 0.2, and poor if SKILL < 0.2.

The DASS score was used to evaluate the assimilation effect of the model [35,36]. If
DASS is greater than zero, the DA method improves the model accuracy, whereas a DASS
score less than zero shows that the DA method contaminates the model’s basic dynamic
process, deteriorating the model’s accuracy.
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Figure 4. The flowchart of the proposed DA scheme for soft velocity measurement coupled with the
TELEMAC-3D model and PF.

2.5. Model Calibration and Validation

Model calibration is the adjustment of model parameter values within reasonable
and acceptable ranges so that the deviations between the model and the measured data
are minimized and are within an acceptable range of accuracy. Model validation is the
subsequent testing of a calibrated model to a second independent dataset, usually under
different external conditions. This is to further examine the model’s ability to represent
reality [37] realistically. To evaluate the effect of the PF on the velocity measurements,
TELEMAC-3D model calibration and validation had to be performed. The simulation
results of the TELEMAC-3D model were compared with the HADCP velocity data at
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the same time and locations. The performance measures used at this stage were RMSE
and SKILL.

The results of the TELEMAC-3D model calibration exercise are presented in Figure 5,
where comparisons between the simulations and the observations are presented within
each 5 min interval starting at 06:00 and ending at 23:59 on 5 January 2022, on cells 3 and 6
of the HADCP. The simulated velocity trends of other HADCP cell locations were similar
to those in Figure 5. The RMSE and SKILL of the 10 cell locations of the HADCP in the
calibration exercise are also shown in Table 2. As seen in the table, the SKILL values ranged
from 0.779 to 0.934, with a mean value of 0.86. Therefore, according to the value range of
SKILL, the TELEMAC-3D model performance was excellent (0.86 ∈ (0.65,1)). However,
the model overestimated the velocity, with an RMSE reaching 0.16 m/s (with a range of
0.088–0.237 m/s). This might be attributed to the TELEMAC-3D model settings that balance
the computation cost with simulation accuracy.
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Table 2. The RMSE and SKILL values of the calibration and validation exercises of the
TELEMAC-3D model.

Trial Verification Metrics
Number of Cell

1 2 3 4 5 6 7 8 9 10 Mean

Calibration
Exercise

RMSE 0.114 0.147 0.088 0.134 0.161 0.237 0.176 0.183 0.183 0.178 0.16

SKILL 0.915 0.884 0.934 0.894 0.865 0.779 0.84 0.831 0.824 0.85 0.86

Validation
Exercise

RMSE 0.142 0.171 0.103 0.156 0.179 0.248 0.192 0.19 0.177 0.199 0.175

SKILL 0.879 0.849 0.913 0.863 0.839 0.768 0.819 0.824 0.83 0.821 0.84

The mesh size, the superimposed layers, and the choice of the turbulence model affect
the simulation accuracy and computation cost. The smaller the mesh size, the higher
the simulation accuracy, and the more the computation cost. The computation cost can
be reduced by increasing the mesh size appropriately, but the computation convergence
should be taken as the premise. In order to accurately find the location of the observed
velocity in the computational domain, the 3D mesh was set as a 4.4 m mesh size (the
HADCP cell length) over the area of HADCP. To reduce the computation cost and ensure
computation convergence, the 50 m mesh size was set in the computation domain except
for the area of HADCP.
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Similarly, the more superimposed layers, the higher the simulation accuracy, and the
longer the calculation time. When the number of superimposed layers is large enough,
the calculation time is longer than the simulation period, which makes the simulation
meaningless. Therefore, a three-layer of 3D mesh was determined in this study, considering
the computational efficiency and effective simulation. Combined with the mesh size and
superimposed layers, the spatial location of HADCP velocity data could be quickly and
accurately found in the computation domain.

In the choice of the turbulence model, the calculation time and application domain
need to be considered. As for the river reach of this study, it is relatively straight, and the
flow state of the river reach falls under the general flow state category, which is suitable
for a relatively rough turbulence model. Therefore, the constant and Prandtl’s mixing
length viscosity models were selected as the horizontal and vertical turbulences for this
study because of their small calculation and low-resolution requirement, as well as relative
stability and good convergence.

Due to the setting of the mesh size, the superimposed layers, and the turbulence
models, the calculation time of this study was controlled within 10 min, while its simulation
period was 24 h. This satisfies the need for a high level of time effectiveness in the currently
used velocity measurement methods and, therefore, classifies the TELEMAC-3D model’s
reproduction as reasonable and acceptable because of the realistic requirement of measuring
the velocity.

To validate the TELEMAC-3D model, we used the HADCP velocity data within 5 min
intervals on 6 January 2022. Figure 6 only displays the simulations and observations in cells
3 and 6 of the HADCP, as the rest followed a similar trend. The details of the RMSE and
SKILL results for the 10 cells of the HADCP in the validation exercise are also presented
in Table 2. The results were similar to those of the calibration exercise. The mean of the
SKILL was 0.84, which showed that the model performance was excellent, while the mean
of the RMSE was 0.175 m/s, implying that the model overestimated the velocity. This is the
tradeoff between the computation cost and simulation accuracy, considering the realistic
requirements of measuring the velocity. Therefore, the validation of the TELEMAC-3D
model can be classified as within a reasonable and acceptable range. The above results
showed that the TELEMAC-3D model reproduced the velocity of the experiment reach
with reasonable and acceptable quality.
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3. Results and Discussion

The experiment reach was near Lanxi Gauging Station in Jinhua City, Zhejiang
Province, China. In order to simulate the velocity of the experiment reach, the TELEMAC-
3D model was established, and the model was performed for calibration and validation.
To evaluate the effect of the PF on the velocity measurements, a PF parameter sensitivity
analysis was carried out, and in what follows, two treatments, namely the TELEMAC-3D
simulation without and with the PF coupling, are discussed and compared.

3.1. Preliminary Sensitivity Analysis

The model error (Errm), observation error (Erro), and the number of particles (N)
are essential PF parameters directly affecting the assimilation effectiveness of the PF. To
determine the values of these parameters, we performed a sensitivity analysis using the
coupled model, and the results are shown in Table 3.

Table 3. The sensitivity parameter settings of the particle filter.

Trial
Parameters Verification Metrics

Model Error
(m/s)

Observation Error
(m/s)

Number of Particles
(-)

RMSE
(m/s)

SKILL
(-)

DASS
(-)

1 0.01 0.001 100 0.1862 0.9055 −0.0505

2 0.05 - - 0.1542 0.9141 0.3023

3 0.08 - - 0.091 0.9326 0.7523

4 0.1 - - 0.0533 0.9471 0.8974

5 0.2 - - 0.045 0.9536 0.9077

6 0.2 0.002 0.0449 0.9545 0.9098

7 0.2 0.003 0.0446 0.9567 0.9126

8 0.2 0.004 0.0443 0.9591 0.9144

9 0.2 0.005 - 0.0438 0.961 0.9174

10 0.2 0.005 200 0.0416 0.9615 0.9225

11 0.2 0.005 500 0.041 0.9619 0.9234

12 0.2 0.005 1000 0.0401 0.9622 0.9251

The initial values Errm, Erro, and N, were 0.01, 0.001, and 100, respectively. Figure 7
also illustrates the impact of Errm on the PF. When observation error and number of particles
were set to the initial values of 0.001 and 100, respectively, the RMSE of the coupled model
was significantly dropped. The values of SKILL and DASS were also significantly increased,
with a model error between 0.001 and 0.1. The RMSE value also reached the minimum
value (0.045 m/s), and SKILL and DASS had the maximum values of 0.9536 and 0.9077,
respectively, with a model error of 0.2. After that, RMSE slightly increased, while SKILL
and DASS values were slightly reduced.
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Figure 8 displays the variations in the observation error (Erro) from 0.001 to 0.01
for the model error, and the number of particles was 0.2 and 100, respectively. For the
observation errors lower than 0.005, the RMSE showed a steady decline, while SKILL
and DASS increased. By increasing the observation error to 0.005, the changes in the
three curves followed the opposite trend. Similar to the case of the model error, the three
parameters reached their extreme values (0.0438, 0.961, and 0.9174) for an observation error
of 0.005.
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Figure 9 shows the sensitivity of the number of particles (N) in the PF. As expected, by
fixing the model error and the observation error values to 0.2 and 0.005, respectively, with
the number of particles from 100 to 1000, the RMSE rapidly decreased, while SKILL and
DASS steadily increased. The three parameters were 0.0401 m/s, 0.9622, and 0.9251, which
were their extreme values for 1000 particles. Beyond that, the RMSE slowly increased,
while SKILL and DASS slightly decreased by increasing the number of particles. The final
values of the model error, the observation error, and the number of particles were 0.2, 0.005,
and 1000, respectively.
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3.2. Simulation with Updated Data Assimilation Period

The velocity correction was performed by coupling TELEMAC-3D with the PF in
Python through the TELAPY component of the TELEMAC-MASCARET SYSTEM. To
evaluate the performance of assimilating the HADCP velocity data, the model settings in
the assimilation period were the same as those in the calibration and validation period of
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the experiment reach. The parameters of the PF, namely the model error, the observation
error, and the number of particles, were set to 0.2, 0.05, and 1000, respectively.

The results of velocity correction on cells 3 and 6 of the HADCP during the assimilation
period (7 January 2022) are shown in Figure 10. As expected, the overestimation of velocity
significantly improved. The assimilated velocities were also much closer to the observed
velocities than the simulated velocities on cells 3 and 6 locations of the HADCP. A similar
trend was also seen in other HADCP cell locations. It was also seen that the RMSE
significantly declined, whereas SKILL improved, as shown in Figure 11a,b, respectively.
Table 4 quantitatively shows the RMSE and SKILL of the 10 cell locations of the HADCP
before and after assimilation. After assimilation with the PF, the RMSE of cell 3 decreased
from 0.108 m/s to 0.049 m/s with a decrease of 54%, while the SKILL of cell 3 increased by
5.38%, from 0.91 to 0.959. Similarly, when the PF intervened in the model, the RMSE of cell 6
decreased from 0.259 m/s to 0.028 m/s with a decrease of 89.2%, while the SKILL increased
by 26.7%, from 0.756 to 0.958. Although the simulation could not capture the peak and
trend of the velocity very well after assimilation, as shown in Figure 10, the mean RMSE
and SKILL values during the assimilation period (7 January 2022; 24 h) showed significant
improvement on each of the 10 cells, as shown in Table 4 and Figure 11a,b; especially notable
was the improvement in the RMSE. This shows that all in all, the approach of coupling
the 3D hydrodynamic model with DA could correct the simulated velocity. Moreover, the
mean RMSE for the 10 cells was reduced to 0.042 m/s from an initial value of 0.182 m/s,
showing that the model performance improved with a reduction of 78% the in overall
simulation error. Furthermore, SKILL increased from 0.836 to 0.96, indicating that the
model’s performance level significantly improved by using the PF. Similarly, DASS was
0.92 (Table 4 and Figure 11c), indicating excellent assimilation performance. Therefore,
from the point of view of the improvement in velocity values and model performance,
the results of coupling the 3D hydrodynamic model with DA to correct the velocity are
encouraging for velocity measurement.
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simulation and DA; (c) DASS of the experiment during the assimilation period.

Table 4. RMSE, SKILL, and DASS of the simulations and DA in the assimilation time.

Trial Verification Metrics
Number of Cell

1 2 3 4 5 6 7 8 9 10 Mean

SIM
RMSE 0.142 0.172 0.108 0.16 0.186 0.259 0.197 0.204 0.19 0.201 0.182

SKILL 0.882 0.849 0.91 0.861 0.836 0.756 0.815 0.808 0.819 0.819 0.836

DA

RMSE 0.07 0.053 0.049 0.052 0.046 0.028 0.029 0.021 0.022 0.051 0.042

SKILL 0.94 0.954 0.959 0.956 0.958 0.958 0.971 0.968 0.985 0.957 0.96

DASS 0.759 0.904 0.791 0.894 0.939 0.989 0.978 0.99 0.986 0.934 0.92

The currently used flow velocity measurement methods have various disadvantages,
such as operational complexity, time effectiveness, and accuracy. The approach of using DA
to correct the numerical model’s state variables so that the state variables do not deviate
from reality is widely used in coastal water and environmental management [11–15] but
has not been applied in hydrometry. The results of our practical experiment showed that
this approach yielded good results in terms of improving the velocity value and model
performance. This implies that coupling 3D hydrodynamic model with DA can improve
the accuracy and efficiency of velocity measurement.

Moreover, the experiment presented in this article is an initial attempt to apply the
approach of using DA to correct numerical models’ state variables for their use in hydrom-
etry. The future research direction can be to use a variety of observational data (point-wise
data, vertical-wise data, and data at a certain level of water body) and data types (water
level data, velocity data, roughness factor data, and other data) simultaneously to correct
the simulated velocity of the model for improving the accuracy and efficiency of the ve-
locity measurement. Furthermore, this approach can also be applied to measure other
hydrological factors in hydrometry, such as water level, sediment, water temperature, and
water quality.

4. Conclusions

To improve the accuracy and efficiency of velocity measurements, we proposed a
DA scheme coupled with the TELEMAC-3D model and the PF. We used Python scripting
using the TELAPY component of the TELEMAC-MASCARET SYSTEM. The validity of
the proposed system was demonstrated based on the data collected in a Lanxi River
experiment reach. To reproduce the velocity of the reach within reasonable and acceptable
ranges, a TELEAMC-3D model for the experiment reach was calibrated and validated.
Then, we carried out a sensitivity analysis to identify the PF sensitivity parameters. A
modified process was developed to improve the velocity and model performance accuracy
by combining the TELEMAC-3D model and the PF. The experimental results indicated
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that the obtained assimilated velocities were much closer to the observed velocities than
the simulated velocities. Although the peak and trend of real velocity were not replicated
well, the three statistical measures (RMSE, SKILL, and DASS) were substantially improved
on each of the assimilated nodes. Our results showed that the proposed DA scheme
coupled with the 3D hydrodynamic model improved the accuracy and efficiency of velocity
measurements. In the future, the proposed DA scheme can also be extended to measure
other hydrological factors, such as water quality, water temperature, and sediment. The
proposed model can be a reasonable alternative to the current velocity measurement
techniques and hydrometry techniques.
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